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UNIT THEOREMS ON ALGEBRAIC TORI

HYUN KWANG KIM

Let k be a p-adic field (a finite extension of Qp) or an algebraic

number field (a finite extension of Q). Let T be an algebraic torus

defined over k. We denote by T the character module of T (i.e. T =

Horn (T, Gm)), where Gm is the multiplicative group.

As is well-known (cf. [7]), T is split by a finite galois extension K/k.

We denote by G the galois group of Kjk. Then T becomes naturally a

G-module. Since the map T-+T yields a canonical isomorphism between

the category of tori defined over k and split by K and the dual category

of finitely generated Z-free G-modules, it is natural to use Homσ(T, Mκ)

as a definition of an object relative to T over k when Mκ is a G-module

of arithmetical interest related to K.

In this paper, we will determine the structure of HomG (T, O£) where

O£ is the group of units of K and will discuss the meaning of this group.

§ 1. Local unit theorem

Let k be a p-adic field. First we recall the structure of O£. Let π

be a prime element of k and let E7i be the group of one units of k i.e.

Uι = 1 + 7rOfc. Z p acts on Ut as follows:

Let a = α0 + c^p + + anp
n + e Zp and w e Ux. Set αn =

2ϋi-o0iP* Then {uan} is a Cauchy sequence in Ux. Since E7i is compact,

the limit exists and denoted by ua.

So we can view Ux as Zp-module. We have the following proposition

(cf. [5]).

(1.1) PROPOSITION. U, « W(ϋi) X Zξ*-^1, where W(C7,) is ίΛe group

Now Ofc/(π) has q = p s elements. Let ^ be a primitive (g — l ) th root

of unity in Ofc. Then
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Oϊ = (η) X ^ « (η) X W(Ud X

We have proved

(1.2) PROPOSITION. Let k be a p-adic field. Up to finite torsions,

0% is a free Zp-module of rank [k: Qp]. Π

Let k be a p-adic field and T be a torus defined over k split by K,

where if is a finite galois extension of k with galois group G. We

can think Hom(ί, O£) as a G-module. Let HomG(f, O£) denote the O-

invariant submodule of this module.

(1.3) DEFINITION. T(OU) = Hom^f, Oί)

We have the following main theorem for local theory.

(1.4) THEOREM. Up to finite torsions, T(Ok) is a free Zp-module of

rank r(T) = [k: Qp] (dim T).

Proof. By Proposition 1.2,

OK — W X Ul9 where W is a finite group.

Therefore,

T(Ok) - Hornet, WO X HomG(f, Ux).

Since HomG(T, W) is a finite group, it suffices to determine the Zp-module

structure of HomG(f, Ux). For each m > 1, set Um = 1 + <ττm>.

It is well-known that (cf. [5]):

(i) Um is a Zp-submodule of ϋi of finite index.

(ii) t/m is free if m > — - — , where β is the ramification index of

p over K.

We will determine the Zp-rank of HomG(T, Um) for sufficiently large m.

Now we need lemmas.

(1.5) LEMMA. Let R be a commutative ring and M, N be R-modules.

We have an isomorphism

where M* = Homβ(M, R) denote the dual module of M. Assume further

that a finite group G acts on M and N. Then the isomorphism induces

an isomorphism of G-ίnvarίant parts.
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Proof. See Proposition 10.30 in [2]. •

(1.6) LEMMA. Let R be a principal ideal domain and let K be its

quotient field. Let X be a finitely generated R-free module. Assume that

a group G acts on X. Then

Proof. It sufficies to show XG®RK = (X®RK)G. Clearly XG®RKd

(X®RK)G. To do converse, choose a basis {xu , xn} of X over R such

that {axxu , atxt} is a basis of XG, au , at e R. Assume x = xfa +

••• + xnkn, kteK, be an element of (X®RK)G. We can choose reR

such that ktr e R for all i = 1, , n. Hence xr = xxkxr + xnβnr e Xσ.

By the choice of our basis, we have ktr = 0 if i > Z. This proves that

xeXG®RK. •

(1.7) LEMMA. Lei V be a vector space over a field K, char K = 0.

Let p: G->GL(V) be a representation of G in V. Then

V

|Cr| £

where 1 is the character of φ.

Proof. First assume that φ is irreducible. Then VG = 0 or G.

(i) y* = V. Then p(ff) = idΓ for all g e G.
Hence

T^Ϊ Σ Zfe) = T̂ T Σ(dim V) = dim V.
ICJΓI gee |Cr| gzβ

( ϋ ) y β = Q

Let {u1? , vn} be a basis of V over If and let (a^g)) be the matrix

of φ(g) with respect to this basis. For each ί,

geσ

On the other hand,

Σ φ(g)Vi = Σ (Σ aij(g)vj) = Σ ( Σ
gβG gGG j j gβG

By linearly independence,
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Hence

Σ <*jt(g) = 0 for all ί, j = 1, • , n.

Σ Kg) = Σ ( Σ <*«(*)) = Σ ( Σ <*„<*)) = o.
g €<? £66? i i g6G

For general case, let V — Vx ® Θ Vk be a decomposition of V into

irreducible subspaces. So we have y G = V? Θ Θ Vζ. Let Zί be the

character of the subrepresentation φt\ G-+GL{V?). By the first case,

\G\

Hence

dim V* = Σdim V? = £ ( J - Σ *,(*)) = ^ Σ Z(ί). D

< i \\G\ gee / | G | geo

To apply Lemma 1.5 to our problem we need:

SUBLEMMA. There is a natural isomorphism

Hom z(f, UJ « HomZ p(f ®Z P , Um) .

Furthermore,

HomZ[G](f, C7J « HomZ p [ β 3(f ® Zp, C7J.

Proof. Straightforward. •

By abuse of notation, we will write T instead of T®ZP. Assume
that m > — - — . Then Un is Zp-free.

p -1
By Lemma 1.5,

By Lemma 1.6,

r(T) = rankZ p(f* ® UJ° = dimQ j )(t * ® Um)°.

Assume that G acts on f and Um with characters ^ and X2, respec-

tively. Let I be the character comes from the action of G on T * ® Z7m.

Then

χ(σ) = χx(σ-'). χ2(σ) for all σ e G.

By Lemma 1.7,
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Now we will describe the action of G on Um.

SUBLEMMA. Let \G\ = n. There exists π' in πn0κ such that σ{πf) = πf

for all a eG.

Proof. Put π' = Π.6**00- •

Assume that m > — - — and \G\ = nlm. By the above sublemma, we
P - 1

may assume that σ(πm) = πm for all σ eG. We have the following com-

mutative diagram:

Γ Γ Γ
Um log π UK χπ-m U

Choose a normal basis {xσ}σeG of K over &, and let {aί9 , <xw} be a basis

of k over Qp. Then {oίiXσ}ί=:h... m forms a basis of K over Q . By multiply-
σGG

ing some power of π which is invariant under the action of G, we may

assume that aiX" e Oκ for all σ eG and i = 1, , m. By the above dia-

gram {exp (πmaiXσ)}ί=ί... m forms a basis of Um over Zp. So we have

m IGI if σ = identity,

(0 otherwise.

Therefore

r(Γ) = 1 Σ / i ( ^ % W = i i ( i d ) . m | G |

= m.(dim Γ) = [Λ: QJ-(dim T).

(1.8) Remark. Take T = Gm the multiplicative group. If we think

Γ is defined over k and split by k, then Theorem 1.4 reduced to Proposi-

tion 1.2.

§ 2. Global unit theorem

Let k be a number field, and T, K, G be as in Section 1. As in

Section 1, we define the Ok point of T as follows:
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(2.1) DEFINITION. T(0k) = UomG(f, 0£).

Then T(0k) becomes a Z-module. Let r(T) denote its rank. By the

arguments in Section 1, we have

where Xx is the character comes from the action of G on f and X2 is the

character comes from the action of G on 0%.

Now we will describe the action of G on O£. Let m — [k: Q] and
n — \K- hλ T pf h . h h' . . . hf h" . hff h&

the distinct conjugates of k (ρx + ρ2 + 2r2 = m). To each of them, we

can correspond a conjugate of K to which we will give the same index.

The indices are chosen in the way that:

( i ) For 1 < i < pu kt and Kt are real,

(ii) ίoγ pi<i< Pί + P29 kt is real and Kt is imaginary,

(iii) for pί + ρ2< ί, k{ and k" are complex conjugates and the same

for K'i and K".

Note that Kt is galois over kt whose galois group is isomorphic to

G. So we may identify its galois group with G. Suppose that p2 Φ 0.

Then n is even. For px < i < px + p2, Kt is of degree 2 over the maximal

real subfield of Ktlkt. Let Ht be the subgroup of G corresponding to

this field. We have the following proposition (cf. [3], [4]).

(2.2) PROPOSITION. Let H be the representation of G on 0%, C be

the trivial representation of G, A be the regular representation of G and

Bt be the induced representation of G induced by the trivial representation

of Hίy px + 1 < i < pi + pi* Then we have

P1 + P2

H + C = (pί + r2)A + Σ Bf •

Proposition 2.2 says that
P1 + P2

^2 = = \Pl ~Γ Tljt-A I 2-1 *"Bi — ^C

Hence

On the other hand,

<*i, XA> = ^ ( d i m T)-\G\ = dim T
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<*i, W = ~ Σ Uσ-')Uσ) = - ^ Σ ZiW = rank fβ (by Lemma 1.7)

<%i, X5ί> = <#ik, ^Bi\H^)Hi (by Frobenius reciprocity law)

= rank fHi (by Lemma 1.7).

So we have proved

(2.3) THEOREM. Lei T be a torus defined over a number field k. Up

to finite torsions, T(Ok) is a free Z-module of rank r(T), where

r(T) = (Pl + r2)-dim T + "ff rank fSt - rank TG. •

(2.4) Remark. T. Ono showed the following generalization of Diri-

chlet unit theorem (cf. [6]):

Let T be a torus defined over Q. Then Z-rank of T(Z) is r^ — rQ,

where rM = rank f{R) and rQ = rank f(Q).

We can deduce this result from Theorem 2.3. Let if be a splitting field

of T over Q. Note first that rQ = rank f(Q) = rank fσ.

(i) K is real, i.e. ^ = 1, ρ2 = r2 = 0.

Since f (J?) = f, r^ = dim T. Therefore,

r ( r ) = dim T - rank fG = r^ - rQ.

(ii) if is imaginary, i.e. ^ = 0, ρ2 = 1, r2 = 0.

Since f(Λ) = f*, r(T) = rank fff - rank fG = rOΰ- rQ. Π

(2.5) Remark. Definition 1.3 and Definition 2.1 are independent of

the choice of a splitting field.

Proof. Since the compositum of splitting fields of T is again a split-

ting field of T, it suffices to prove the following:

Let E be an another splitting field of T containing K with galois

group L, then

HomL(T, 05) « HomG (f, O£).

Key point: Assume £ eHomL(T, O^) such that fσ = f for all σeL —

Gεi(E/k). Then fσ = f for all (7 6 Gal(#/iT). Hence ξ{t)(Zθ%. Π

(2.6) Remark. Let έ be a number field and T = Rk/Q(Gm)9 where i?

is the Weil functor (cf. [9] Chapter 1)
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Let ^(K/k) be the category of tori defined over k split by K and

be the dual category of finitely generated Z-free Gal(UL/^)-modules.

We have the following commutative diagram (cf. [7]):

Rk/q\ IInd(G,G' : )

where G = Gal (K/Q) and Gf = Gal (£/*). So

Γ = C ^ I ) = Gm ®Zi

Therefore,

Hom^f, O£) = ΉomG(Z(g)ZίG,1Z[Gl

= ^®w](Oί) = Hom,,(Z, 01)

= (OίΓ = Oί.

We have the following conclusion.

7/ T = Rk/Q(Gm), then T(Z) = Ofc

x ίAe ^rowp o/ wrate o/ ^.

Note that similar conclusion also holds true for p-adic field case.

REFERENCES

[ 1 ] E. Artin, ϋber Einheiten relativ galoisscher Zahlkδrper, Crelle Journal, 167
(1932), 153-156.

[ 2 ] C. W. Curtis and I. Reiner, Methods of representation theory with application to
finite groups and orders, 1, John Wiley <& Sons Inc., 1981.

[ 3 ] M. J. Herbrand, Nouvelle demonstration et generalisation d'un theoreme de
Minkowski, Comptes rendus, 191 (1930), 1282-1285.

[ 4 ] , Sur les unites d'un corps algebrique, Comptes rendus, 192 (1931), 24-27.
[ 5 ] R. L. Long, Algebraic number theory, Marcel Dekker Inc., 1977, pp. 57-65.
[ 6 ] T. Ono, On some arithmetic properties of linear algebraic groups, Ann. of Math.,

70, no. 2 (1959), 266-290.
[ 7 ] , Arithmetic of algebraic tori, Ann. of Math., v. 74, no. 1 (1961), 101-119.
[ 8 ] , Arithmetic of algebraic groups and its applications, Lecture Notes, Rikkyo

1986.
[ 9 ] A. Weil, Adeles and algebraic groups, Birkhauser, 1982.

Department of Mathematics
Pohang Institute of Science and Technology
P.O. Box 125 POHANG 790, KOREA




