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UNIT THEOREMS ON ALGEBRAIC TORI
HYUN KWANG KIM

Let k£ be a p-adic field (a finite extension of Q,) or an algebraic
number field (a finite extension of Q). Let T be an algebraic torus
defined over k. We denote by T the character module of T Ge T =
Hom (T, G,)), where G, is the multiplicative group.

As is well-known (cf. [7]), T is split by a finite galois extension K/k.
We denote by G the galois group of K/k. Then T becomes naturally a
G-module. Since the map T — T yields a canonical isomorphism between
the category of tori defined over &k and split by K and the dual category
of finitely generated Z-free G-modules, it is natural to use Homy (7T, My)
as a definition of an object relative to T over k& when M, is a G-module

of arithmetical interest related to K.
In this paper, we will determine the structure of Hom, (’_i’, 0%) where
O3 is the group of units of K and will discuss the meaning of this group.

§1. Local unit theorem

Let k& be a p-adic field. First we recall the structure of OF. Let =
be a prime element of 2 and let U, be the group of one units of & i.e.
U =1+ z0,. Z, acts on U, as follows:

Let a=a,+ap+ - +a,p"+ ---€Z, and ueclU. Set a,=
>roa;p'. Then {u°"} is a Cauchy sequence in U,. Since U, is compact,

the limit exists and denoted by u®.
So we can view U, as Z,-module. We have the following proposition

(cf. [5]).
(1.1) ProrosiTioN. U, = W(U)) X ZV-91 where W(U,) is the group
of roots of unity in U,. I}
Now O,/(z) has g = p* elements. Let » be a primitive (g — 1)th root
of unity in O,. Then
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O = () X Uy = (&) X W(U,) x ZF91,
We have proved

(1.2) ProposiTiON. Let k be a p-adic field. Up to finite torsions,
O is a free Z,-module of rank [k: Q,]. |

Let & be a p-adic field and T be a torus defined over k split by K,
where K is a finite galois extension of k& with galois group G. We
can think Hom(f’, 0%) as a G-module. Let Hom, (T, 0%) denote the G-
invariant submodule of this module.

(1.3) DeriniTION. T(0,) = HomG(T, 03)
We have the following main theorem for local theory.

(1.4) TaeoreMm. Up to finite torsions, T(O,) is a free Z,module of
rank r(T) = [k: Q,]-(dim T).

Proof. By Proposition 1.2,
0% = W x U,, where W is a finite group.
Therefore,
T(0,) = Hom, (T, W) x Homy(T, U)).

Since Homy(T, W) is a finite group, it suffices to determine the Z,module
structure of Homa(f’, U). For each m>1, set U, =1+ {z™).

It is well-known that (cf. [5]):

(i) U, is a Z,-submodule of U, of finite index.

(i) U, is free if m > e 1 where e is the ramification index of
p over K.
We will determine the Z,rank of Homu(T, U,) for sufficiently large m.

Now we need lemmas.

(1.5) LemmA. Let R be a commutative ring and M, N be R-modules.
We have an isomorphism

Homy(M, N) = M*®. N,

where M* = Homz(M, R) denote the dual module of M. Assume further
that a finite group G acts on M and N. Then the isomorphism induces
an isomorphism of G-invariant parts.
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Homppe(M, N) = (M* ®z N)°¢

Proof. See Proposition 10.30 in [2]. O

(1.6) LeEmMA. Let R be a principal ideal domain and let K be its
quotient field. Let X be a finitely generated R-free module. Assume that
a group G acts on X. Then

rank, X¢ = dim (X ®z K)¢.
Proof. It sufficies to show X°®,K = (X®,K)¢ Clearly X°®,K C

(X®zK)° To do converse, choose a basis {x,, - --, x,} of X over R such
that {e,x,, ---,a;x;} is a basis of X¢ a, ---,a,€ R. Assume x = xk, +
-oo + x,k,, k,e K, be an element of (X®;K)°>. We can choose reR
such that kireR for all i =1, ---, n. Hence xr = xkr + ---x,k,r € XC
By the choice of our basis, we have k,r =0 if { > I. This proves that
xeX°®:K. O

(1.7 LeEmMmA. Let V be a vector space over a field K, char K = 0.
Let ¢: G— GL(V) be a representation of G in V. Then

. ¢ 1
dim, V¢ = Gl :L;GX(g),

where X is the character of ¢.

Proof. First assume that ¢ is irreducible. Then V¢ =0 or G.
(i) V¢= V. Then ¢(g) =id, for all geG.

Hence
1 s ye = L 5 (dim V) = dim V.
|G| ¢e@ |G| g€
(i) Vé=0.
Let {v,, - - -, v,} be a basis of V over K and let (a;;(g)) be the matrix

of ¢(g) with respect to this basis. For each i,
> (8, e Ve =0.
gEG
On the other hand,
2 o8 = 25 (2 a(gv) = 25 (X a,[8)v;.
gEG geEG Jj 7 gEG

By linearly independence,
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2, a;(8) =0 foralli,j=1,---,n.
gEG
Hence
28 = 3 (Cag) = (X alg)) =0.
gEeG gEG 1 T g€G

For general case, let V=V, ® ... ® V, be a decomposition of V into
irreducible subspaces. So we have V¢ = Vi@ ... D V¢ Let X, be the
character of the subrepresentation ¢;: G— GL(V,). By the first case,

1

dim V¢ = @%Xz(g).
Hence
dim Vo = ¥ dim V¢ = 3 <ﬁ T ) = ;_1| 1) O
To apply Lemma 1.5 to our problem we need:
SUBLEMMA. There is a natural isomorphism
Hom, (T, U,) = Hom,,(T'® Z,, U,).
Furthermore,
Homy (T, U,) = Hom,(T'® Z,, U,).
Proof. Straightforward. 0

By abuse of notation, we will write 7' instead of T'® Z,. Assume

that m > € T Then U,, is Z Afree.

By Lemma 1.5,
Hom, (T, U,) = (T*® U,)°.
By Lemma 1.6,
r(T) = rank, (T* ® U,)° = dimg,(T*® U,)°.

Assume that G acts on T and U, with characters X, and X,, respec-
tively. Let X be the character comes from the action of G on T*Q® U,,.
Then

X(0) = X(a7") - %(0) for all e @.

By Lemma 1.7,
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r(T) = T(Tl Z 2(a™") - Zo(0) = Xy, %) .
Now we will describe the action of G on U,,.

SUBLEMMA. Let |G| = n. There exists n’ in n"Oy such that o(z’) = =’
for all ¢ eG.

Proof. Put 7’ = [],eq o(n). O

Assume that m > —¢ 1 and |G| = n/m. By the above sublemma, we
p —

may assume that ¢(z™) = =™ for all ¢ G. We have the following com-
mutative diagram:

&

m

alog a—xn—'m)Oa
P

m log

Choose a normal basis {x°},., of K over k, and let {,, - - -, a,} be a basis
of k over Q,. Then {w;x’},_,,...,,, forms a basis of K over Q,. By multiply-
gEG

ing some power of = which is invariant under the action of G, we may
assume that a;x° €O for all e G and i =1, ---,m. By the above dia-
gram {exp (z";x°)};,...,, forms a basis of U, over Z,. So we have

oEG

Yo) = {m-IGI if ¢ = identity,
n = 0 otherwise.
Therefore

r(T) = ﬁ Z Yo7 )ofo) = T_IXI(ld) -m|G]

=m-(dim T) = [k: Q,]-(dim T').

(1.8) Remark. Take T = G, the multiplicative group. If we think
T is defined over k and split by k, then Theorem 1.4 reduced to Proposi-
tion 1.2.

§2. Global unit theorem

Let & be a number field, and 7T, K, G be as in Section 1. As in
Section 1, we define the O, point of T as follows:
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(2.1) DerFiNITION. T(O,) = Hom, (T, 0%).

Then T'(O,) becomes a Z-module. Let r(T) denote its rank. By the
arguments in Section 1, we have

(T = 2 3 0eYlo) = (y 1,
|GI G EG
where 7, is the character comes from the action of G on 7 and ¥, is the
character comes from the action of G on O%.

Now we will describe the action of G on Of. Let m = [k: Q] and
n=I[K:kl. Let Ry -, Rorpy Roisoss == s Borsonires Borspasts == s Rirspairs D€
the distinct conjugates of & (o, + p; + 2r, = m). To each of them, we
can correspond a conjugate of K to which we will give the same index.
The indices are chosen in the way that:

(i) For 1<i< p, k; and K, are real,

(ii) for p, <i< p, + o k; is real and K, is imaginary,

(iil) for p, + p, <1, K} and ki are complex conjugates and the same
for K} and K7.

Note that K, is galois over k, whose galois group is isomorphic to
G. So we may identify its galois group with G. Suppose that p, 5 0.
Then n is even. For p, <i< p, + ps, K, is of degree 2 over the maximal
real subfield of K,/k, Let H, be the subgroup of G corresponding to
this field. We have the following proposition (cf. [3], [4]).

(2.2) ProprosiTiON. Let H be the representation of G on O%, C be
the trivial representation of G, A be the regular representation of G and
B, be the induced representation of G induced by the trivial representation
of H, o, + 1<i< p, + p,. Then we have

p1tp2
H+C=(P1+r2)A+‘Zle- O
t=p1+
Proposition 2.2 says that

1+p

prtp2
Xy = (oy + )%y + AZ“XBi — g
1=p1
Hence

p1t+p2

oy Aoy = (P1 + )Xy, L) + ; 2 , Xy, Xpy — LUy, Aoy .
=p1+
On the other hand,

Oy LS = I_é,l(dum T).|G] = dim T
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06> = 2 3 10" Me(0) = = 3 1,(6) = rank 7¢ (by Lemma 1.7)
IG‘ seG IG' sEQ
yy X,y = Kl X5,luyn, (by Frobenius reciprocity law)
= rank 7% (by Lemma 1.7).
So we have proved

(2.3) TurEOREM. Let T be a torus defined over a number field k. Up
to finite torsions, T(O,) is a free Z-module of rank r(T), where

r(T) = (o, + ry)-dim T + Pfﬁ rank 7%¢ — rank 7. O

t=p1+1

(24) Remark. T. Ono showed the following generalization of Diri-
chlet unit theorem (cf. [6]):

Let T be a torus defined over Q. Then Z-rank of T(Z) is r. — rg,
where r., = rank T(R) and ry = rank T(Q).

We can deduce this result from Theorem 2.3. Let K be a splitting field
of T over Q. Note first that ry = rank T(Q) = rank 7'°.

(i) Kisreal, ie. p,=1, p=r,=0.
Since T(R) =T, r. =dim T. Therefore,
rT) = dim T — rank T¢ = r_ — ry.
(ii) K is imaginary, ie. o, =0, po=1, r,=0.
Since T(R) = T, r(T) = rank T# _ yank T = r, — - O

(2.5) Remark. Definition 1.3 and Definition 2.1 are independent of
the choice of a splitting field.

Proof. Since the compositum of splitting fields of 7' is again a split-
ting field of T, it suffices to prove the following:
Let E be an another splitting field of T containing K with galois
group L, then
Hom (T, 03) = Hom, (T, 03).

Key point: Assume SeHomL(f’, 0%) such that & = ¢ for all ¢eL =
Gal(E/k). Then ¢° = ¢ for all ¢ e Gal(E/K). Hence &T)cO3. O

(2.6) Remark. Let k be a number field and T = R,,o(G,), where R
is the Weil functor (cf. [9] Chapter 1)
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Let #(K/k) be the category of tori defined over k split by K and
Z(K/E) be the dual category of finitely generated Z-free Gal(K/k)-modules.
We have the following commutative diagram (cf. [7]):

#(KIk) ——> Z(K|F)
Ri/q Ind(G,G :)
G(K|Q) ———> %(K|Q)

where G = Gal(K/Q) and G’ = Gal(K[k). So

T = Rugon = G @201 2[G] = Z @461 ZIG]
Therefore,
Hom, (T, 0%) = Hom,(Z @z Z[Gl, 0F)
= (Z ®Z[G’]Z[G]) ®2[a](01)é)*
= Z Q2671(Z[G] R z:6(0%)*)
= Z@zm'](oﬁ) = Hom,. (Z, O%)
= (09)% = Of.

We have the following conclusion.
If T = R,,(G,), then T(Z) = O} the group of units of k.

Note that similar conclusion also holds true for p-adic field case.
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