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THE INNER PRODUCT OF AN AUTOMORPHIC WAVE FORM

WITH THE FULLBACK OF AN EISENSTEIN SERIES

SHINJI NIWA

In this paper we shall show a relation between a special value of an
automorphic wave form and the inner product of the automorphic wave
form with the pullback of an Eisenstein series on the upper half space.
The main theorem is Theorem 3 in the end of this paper. As is shown
in P. B. Garrett [13], pullbacks of Eisenstein series on Siegel upper half
spaces have interesting properties as a kernel function of an integral
operator. It is natural to try to investigate pullbacks of Eisenstein series
of Hubert type. We can say that Theorem 3 clarifies a property of such
pullbacks in a special case. The idea of the proof is a lifting of auto-
morphic forms by theta functions. We discuss a lifting of automorphic
wave forms in 1, 2 and 3, and obtain Theorem 2 in the end of 3 as a
result. We can prove Theorem 3 without much difficulty by using
Theorem 2.

1. We denote, as usual, by Z, Q, R and C the ring of rational inte-
gers, the rational number field the real and the complex number fields.
For zeC, we define ^Ύ = zλβ so that - π/2 < arg(z1/2) < ττ/2.

We discuss a lifting of an automorphic wave form by means of theta
functions for a quadratic form with the signature (+ 2, — 2). Denote by
H the upper half plane. For gu g2eG = Gra = SL(2, R), put

(1.1) Θ(z,gug2)=v Σ

(1.2) Θ(z, ft, ft) = v g

where

L = «, 6, Cίxie z}, £={(«>) α, b, c, d e Z L z = u + ίv e H
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and 1 is a primitive character modulo a prime p = 1 (mod 4). Assume

X(— 1) = 1. We consider X as a character on Zp by extending 1 to a

character on Z* in the usual way and putting l{p) — 0. Then we have

PROPOSITION 1.

(1.3) θ ( - 1/p*, ft, ft) = p-'βWβί*, ft, &),

with Q(X) = Σ xtf)*2*"" am* /or (" J ) e Γ = Γ0(p),

(1.4) θ(r*, ft, &) = X(d)Θ(z, ft, ft),

(1.5) θ(*, Γft, ft) - θ(s, ft, r&) = X(d)β(z, ft, ft),

(1.6) £(r*, ft, &) = X(d)θ(z, ft, &),

(1.7) θfe rft, ^2) = ©fe ft, r^2) - i(d)θ(z, ft, ft).

Proo/. It is sufficient to prove (1.3), (1.4) and (1.5). Put X = ( ^ *Λ

€ L and r =(J J) € Γ, then T 1 * = £ _ 6 n * + α y ) 6 L and X(p(-6n + ay))

= X(P«y) = W)Upy), which proves θ(z, rft, ft) = X(d)θ(2?, ft, ^ 2). The proof

of Θ(z, ft, 7g2) = X(d)Θ{z, gίf g2) is the same. As for the proof of (1.3) and

(1.4), we can apply transformation formulas in [7], which are summarized

in [16] as Proposition 0, for example. However we describe the trans-

formation formulas in the language of adeles to prove (1.3) and (1.4) for

later use. For an archimedean or non-archimedean place u, QΌ denotes

the completion at v. Let A be the adele ring of Q and denote by ψ(Kn)

the Schwartz Bruhat space on Kn when K = A or Qυ. Define an additive

character ψv (respectively ψ) of Qυ (respectively A) by ψυ(x) = e2πi ( the princiPal

part of x) i£ υ j s nOn-archimedean and ψv(x) = e2πίx if v is archimedean

(respectively ψ((xv)) = Ylυψυ(Xυ))' Denote by dvx the Haar measure on Qυ

normalized by dqx — 1 and d^x = 1. Put d(xυ) = \[vdvx. Define a
J Zq JO

partial "Fourier" transformation J^m B in ^(Ql) by ^"m ,/(x, y) = ί /(x, 2).

ψυ(mzy)dυz with m e Q and a transformation Λ(g) in p(QJ) by λ(g)f(x, y)

= f((x,y)g) for g e Gυ - SL(2, Qv). Then ^ " ^ = |m|υJ^_m,,, Define re-

presentations rVll, rυ,2 and rΌ of Gυ by rvΛ(g) = ^ I ^ ^ f e ^ - p ^ , ^,2(^) =

P^vKg^v* a n d rv(g) = rvΛ(g)®rr^(g). Then the Poisson summation

formula
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is valid for / e ^(A2), and therefore

(1.8) Σ (Π rυ(g))f(x) = Σ /(*)

holds for fe£f(A*) and geGQ = SL(2, Q). Define a representation r of

GA = SL(2, A) on ^(A") by r((gv)) = \\vrv(gv). When K denotes Q, or ^,

we define a mapping a' from if4 to M"2,2(i£) by a(a, b, c, d) — ί *\ ?). De-

fine a representation ^ (respectively p) of Gy X Gυ (respectively GA X

on Q4

υ (respectively A*) by

(1.9) xpΌ(g, h) = a-\ιga(x)h) (respectively xp(g, h) = a-\ιga(x)h)).

For g, h, ke GA and / e «$%4), put

(1.10) θ^fe; Λ, k; f) = Σ r(g)f(xP(h, k)).

Then (1.8) shows that

(1.11) θΛ(rg; h, k; f) = Θ ^ ; Λ, k; f)

holds for T e GQ. For a prime g^P, let fq be the characteristic function

of Z\, Define a function /«, (respectively /p) on JR4 (respectively Q4) by

/ . (σ, 6, c, d) - e-p*(« +6 +c-+* ) (respectively fp(a, b, c, d) = X(pb)φ(a,pb, c, d)

with the characteristic function 9 of Z4) and define a function / on A*

by /((αβ), (6,,), (cv), (dv)) = Π«/»(«!» 6

y>
 c

y > d j . Then it is easy to see that

the restriction of the function ΘA(g; h, k f) of (g, h, k) e GA X GA X G^ to

G X G X G is equal to Θ(gΐ, /&, ^). For a subset A in Qp. denote the

characteristic function of A by φ( A). Then for f{ί)(a, b) — X(pb)φ(a; Zp)

φ(b; llpZ") we have/^(α, b)=^.pJ^(a, b)=pG(ΐ)φ(a; ZP)X(- bp)Ψ(b; 1/pZ")

with G(X) - f X(u)ψp(ulp)du and for /(2)(α, 6) - ^(α; Zp)φ(b; Zv) we have

f*Ka, b) = P^FKa, b) = p(α; Z > ( 6 ; l/pZp). For * = (^ J) such that

a,β,δe Zp, ϊ epZp and aβ — ΐδ = 1, we can easily see that *(<7)/(1) - X(5)/(1)

and ^(σ)/(1) - X(3)/(1). These imply (1.4) since obviously ΘA(gkq; h9k;f) =

ΘA(g; h,k;f) holds for kq e SL(2, Zq) with all primes q Φ p. It can easily

be verified that

= f
QP

= G(ϊ)X(ap)φ(a; \jpZ^)φ{b; \\pZv)
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and that

^pϊpf{2)(a,b)=\ f{2)(x, — a)ψp(—pxb)\p\pdpx

= p>(α; l/pZ>(6; 1/pZ,).

Put f'((aΌ), (bυ), (cυ), (dυ)) = /;(αp, 6P, cp, dp) \[VΦPfv(aV9 bv, cυ, dv) where /£(α, 6,

c, d) = X(pά)ψ(a; l/pZp)φ(b; \\pZp)ψ{c\ l[pZp)φ(d; l/pZp). Then for ω = (ωβ)

such that ωro = ( - A and ωy = 1 if υ Φ oo and for g = (^) such that

/I u\ίJ~ΰ 0 \
"̂oo = I n i ( n /—-i with ^ — u + ίϋ and ̂  = 1 if v Φ oo, we have

\U 1/\ U Y U /

,̂ A;/) = Θ f̂eώ; Λ, A;/)
1 12) θ ( 1 / Z > Λ ' A )

with ώ = (ώυ) where ώ^ = 1 and ώυ = ί.. "^ J for υ Φ oo provided that h,

k e G. Hence the proof of Proposition 1 is completed.

For w = x + iy e H, put ̂ w = (J * ) ( ^ i ; ^ y ) and let

(1.13) θ(z, wl9 w2) = θ(,ε, g ω i, ^ W 2 ) , ^(2;, ̂ 1 ? w2) = θ(0, ̂ ω i , ̂ J .

Denote by T^(g) Hecke operators acting on a space of functions <p(w) of

u; such t h a t <p(Vw) = X(d)φ(w) for Γ = ( ^ ^ r ) e j Γ b y the rule

where the sum is extended over all γi = lCLi j \ such that rl^ jΓ =

UΓ(J J)r, (disjoint).

Let ψ be as above and ψ is a function satisfying ψ(ϊw) =

for 7 = ία T) e Γ . Then we have, if the integrals converge,

ί (ϊϊ(9)p(«))ψ(«)d02; = f rtzXTί(q)*tiz))doz.

JΓ\H J Γ\H

Here Tz

χ(g)* is the operator defined by T*{q)*ψ(z) == 2] Ψ ( ( Q

where the sum is extended over all σi = (ai TM such that Γy% ΛΓ =

U T ( g J)σ t and rfoε - ^ ^ . It is easy to see that T*{q)* =

if q Φ P
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PROPOSITION 2. For any prime q

Tϊ(q)*θ{z, wu w2) = Tfυi(q)θ(z, wl9 w2) - TίΛ(q)θ(z9 wl9 wj ,

whether q equals p or not.

This proposition is almost proved by H. Yoshida ([8]). However we

need the exact result convenient to us, so we describe the proof for the

sake of completeness and convenience, after H. Yoshida.

Proof. Let the notation be as in the proof of Proposition 1. Put

G = GL = GL(2, R), Gq - GL(2, Qq), GQ - GL(2, Q) and GA = GL(2, A). For

primes q Φ p, put Kq - GL(2, Zq) and Kq = SL(2, Zq). Put

a *) e GL(2, Z,)|c = 0 (modp)} ,

^ = Kp Π SL(2, Zp), ZTO = SO(2), 8, =

and 3̂ 1 = I in ) \ a e ^ x r As usual we can extend the character 1 to the
l\u a/\ J

character Ẑ  on SA/BQ a n ( i a function φ on H satisfying φ(ΐzk) = l(d)φ{z)
= ϊ(d)φ(— z) for λ — ία 7) e Γ0(p) to the function φA on G4 satisfying

(1.14) ψA(rgKkPH) = s^A(β)xAi)Ud)

for r e Gβ5 ^ e l = 0(2), 3 e 3A, £ € Γ W - K υ and ^ p - ^ J ) e Z p . Let ^

be as above, g is a prime other than p and put ψ(z) = X(q)T%(q)φ(z), then

we see that ψA{§) = (T(q)ψA)(g) — J^t ψA(§βί) where the sum is extended

over the elements βi in Gq such that ^ ( Q jKq = U βtKq (disjoint). We

can extend a function Ψ on G^ satisfying

(1.15) W(ϊgkkp) = Ψ(g)XA(dp)

for ΐ e GQ, fe e Π ^ P ^ a n ( i ^ P = \ ^) β UΓP to a function ?/ on GA satisfy-

ing (1.14) by putting t(ϊgM) - Ψig^kjX^) for r e GQ, g^ eG^ke \\vφo0 Kv,

r - (O e GA where rM = ( j fj, r > 0 and τq = (J ^J, ί, € Z*. θ^ defined

in the proof of Proposition 1 is a function on GA X GA X G^ having the

same types of property as (1.15) with respect to each variable so we can

extend it to a function ΘA on GAχGAxGA which satisfies (1.14) with respect

to the first variable and (1.14) modified by replacing 1A by XA with respect
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to the second and third variables. Let g = ί~ \ ) \ <\ ι—-l) e G,, /ι =

( Λ ϊ l ί Λ^ /—-i) £ GOT £ e G^, £ = u + iu and «; = x + ίv. Choose the\U l / \ u Y y )

elements ft in Gq such that ^ ( n ) ^ = U βiKq (disjoint). We can take

elements in ΓIQ fΓ as such ft so t h a t Γyl ΛΓ == I J Γ α , w i t h ^ = qβϊ1.

Note that we can take ( n ), {? j ) , (ί = 1, 2, , Q') as ft, ft, (i = 1, 2,
yU yy yU l y

• ••,(?). We denote also by cυ,(J) an element (^) in GA such that ^ = 1

if v Φ υ'; gvr = Γ and also by [̂7] an element (ΛJ in GA such that hΌ = ϊ

for all i; to avoid confusing cv,(J) with [̂Γ] when Γ e GQ. We denote by

d(σ) the lower right entry d of σ = ί a -,). Then, by using (1.15), we have

T*(q)*θ(z, w, ki)

βi); <Jh), Uk);f)

with / =• qf/. Π /„ where f, = Σ rβ((J 2-ΛA)/;, /L(«) = /-(Vί"*) and /,
fv are the same as in the proof of Proposition 1. We can define the re-

presentations, which we also denote by pυ and p, of Gv X Gυ and GA X GA

by (1.9). It is easy to see that

Ti(q)θ(z, w, ki)
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Qι \ \ IΛO q

Σ Σ

X ), 1))

with f = f«,fq Π »#«,»/"» where /g(x) = Σif«(xP<ι(βt> 1)) Therefore it is suf-

ficient to show that g^ = /? in order to prove the former part of Proposi-

tion 2 in case qφp. Choose the elements δteΓ such that rl£ i ) / 1 =

V Γ ( θ l) 5 ί (d i si° i n t) T h e n i1; h o l d s

have

T}{p)*θ{z, w, ki)

with / = /?//„ Π.^.-Λ where /„ = Σ«ZW4))rp((J p - . ) ^ 1 ^ p))/,, h(x)

= /cχ»(Vp ΛJ) and /, /v are the same as in the proof of Proposition 1. Choose

the elements rteΓ such that r(l °)r - Ur(l °)Ti (disjoint). Then it

holds Kp(* tyκp = Un1^ J)iς and we have
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Tϊ,(p)θ(z, w, ki)

= Σ ζ °)], ή

Σ

> DM)
= θA(u(g); ah), Uk);f)

with / = Λ./, β Π^Λ where /„(«) = Σ *(<!#<))ftfxp^r;1^ J ) , l ) ) , Therefore

it is sufficient to show that p/p = /p in order to prove the former part of

Proposition 2 in case q = p. Since we can take ( Λ ) (i — 0, , p — 1)

and ( Q ., V, (i = 0, , p — 1) as ^ and Γέ respectively, it is sufficient to

show that

for all x e ζft.

Let the notation be as in the proof of Proposition 1. Then fp(a, b, c,

d) = Γ(a, b)f«\c, d) and rp(g)fv = rfll(g)f™rv,άg)fm Therefore we com-

pute rp,t(gψ'\ (ί = 1, 2). Since rpΛ(g) = Pz^jUg^.v,v and

f{l)(a, b) = pG(X)φ(a + ib\ 1
\ι 1/

we have

rvi(
l °))/ ( 1 )(α, 6) = G(ϊ)[ φ{a + ίu; Zp)XA(pu)du
\\l 1// Ji/P^p
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= G(ΐ)ψ(a; HpZΪ)φ(b; l/pZo)XA(- p r ' α ) ^ - pi'ιab)

if i Φ 0. Recall that

rp,,(g) = PZM&v* and /^(c, d) = p(c; Z>(d; \\pZv),

then we have

c, d) = φ(c + id; A

and

r Λ I A2)(c, <ί) = p~1ψ(pί~1cd)φ(c; llpZp)φ(d;
' u 0/

if i Φ 0. Hence we have

pfp(cι, b, c, d) = piφici] Zp)φ(b; l/pZp)φ(c, Zv)φ(d\ Zp)X,
p-l

+ ΣP'^OOψipHcd — ab))XA{—pka)

We can easily see that /p(α, 6, c, d) = 0 unless b e l/pZp and that

fp(a, 6, c, d) = pX(pb) if 6 e 1/pZ*, deZp, aeZp, ce Zp,

fp(a, b, c, d) = X(p6) if 6 e 1/pZ ,̂ deZp,ae 1/pZ*, c e l/pZp,

fp(a, b, c, d) = X(pa)X(p\ab - cd)) if b e \\pZp, d e 1/pZ*, a e l/pZp

x,

c € 1/pZ,, p2(αd - 6c) e Z%,

fp(a, b, c, d) = 0 otherwise.

Using this, it is easy to see that pfp(x) = fv{x) in each case stated above.

On the other hand, since we have

««<•• "• '• d> - ir (G ? ) ) + s r ((o ,-•)))«"• " c *
- g/,(α, 6, c, d) + q~ι Σ ψg(p(fec - ad)qί)fq(qa, qb, qc, qd)

ί l

for q Φ p, we can easily verify g/α(x) = /?(x) case by case. These complete

the proof of Proposition 2.

We call a function φ satisfying following conditions on H an auto-

morphic wave form with character X:

1. For z = u + iυ e H, φ(z) is an eigenfunction of Dz = v2l—- + ),
\du2 dυι I
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i.e., D2φ = λφ with λeC.

2. φ{ϊz) = l(d)φ{z) for all γ = ^ *) e Γ.

3. #>(& + iu) = O(V)> ϋ—>oo, with a constant fceR, uniformly in u.

Put p = (1 + Vl + 4A)/2, p = Vl/4 + λ Let ẑ  be a representative of a in-

equivalence class of cusps and σ3 is an element of SL(2, Z) such that

(j.oo = Uj. Then φ has the following Fourier expansion:

(1.16) φiσjz) = α°V + b{j)υι-p + Σ a^vι/2Kv(2π\n\vlNj)e2πnίu/^

with the modified Bessel function Kv and an appropriate integer N5. Let

wo^cχ) and σo = (Q i)» a nd put α^0) = αn. Then iV0 = 1. We call φ a cusp

form if aU) = 6 ω = 0 for all j. For simplicity, we assume φ(—z) = φ{z)

which means an = α_n for all τι. Notice that a cusp form which is a

common eigenfunction for all Hecke operators is the sum of two common

eigenfunctions <p+, φ_ such that φ+ (— z) = .̂+(2;), p_ ( — 0) = —<p-(z). We

further assume αj = α_j = 1. Define

(1.17) F ^ , α;2) = ί φ(z)θ{z, wu w2)d0z
J Γ\H

where dQz = v~2dudυ for z = u + ίυ. The following proposition guarantees

that F is an eigenfunction of DWl, DW2.

PROPOSITION 2.

(1.18) Dgθ(z, wu w2) = DWlθ(z, wl9 w2) = DWΛθ(z, wu w2).

We can easily prove this in the same way as in the proof of [7],

Lemma 1.5. Thus we skip the proof.

By Proposition 1, Proposition 2 and the additional assumptions, we

obtain the Fourier expansion of F, and can easily see the equality

(1.19) F(WU W2) = CφiwJφiWt)

with a certain constant c which can not be determined by these Propo-

sitions and assumptions. Therefore our next task is to determine the

constant c. For this purpose, we consider the integral

(1.20) Γ [F(wy w)dxys~1dy (w = x + iy) .
Jo Jo

On one hand, for φ(w) = Σ»#o a{nly
ι/2Kv(2π\n\y)e2κnix

9 it holds
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f ί F(w, w)dxys^idy = cί f φ(w)φ(w)dxys-ιdy
Jo Jo Jo Jo

(1.21)

(see [1]) with L(s, X) = 2 Γ = i ^ ( Φ " s On the other hand, substituting the

right-hand side of (1.17) for F(w, w) in (1.20) and exchanging the order of

integrations, we obtain

^iw, w)dxys~1dy
(1.22) J ° j o

ί Λoo Λl

φ(z) θ(z, w, w)ys~1dxdydΰz, (w = x + ίy).
Γ\H J 0 J 0

We can easily justify this formal computation by the absolute convergence

of the integrals for sufficient large dies. It is more convenient to consider,

instead of θ(z, w, w)ys'1dxdy, another integral
Jo Jo

(1.23) Ej(z, s) = Γ f θ(z, w, wyy-'dxdy.
Jo Jo

Now recall the definition (1.2) and (1.13) of Θ(z,glyg2) and θ(z,wίyw2),

then we see that an element Γ r) of L in (1.2) is uniquely written as

the sum of two elementsί °L A )> ( _ /70 0 ) w n e r e e a n ( i / a r e integers

with the same parity. Since ' £ ( _ - . Q W = ( _ 1 Q) for g^G, we can de-

compose the summation defining Θ(z, gu g2) into two parts, only when

gί =z g2ί as follows.

(1.24) Θ(z, g, g) = v^βizfifc, 8) + v^W&U*, 8)

where

(1.25) θ{z) = Σ έπίn2z, Uz) = Σ <?"*"",

(1.26) θt(z,g) = JT Σ Z(a)e2lt i (-Itdet-Y+W'1') t r

and
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(1.27)

with L3 =

Therefore
{(& c ) | α > &> c e Z j
we obtain

SHINJI

V1 Ίi
/ 1 ^V

and L3)0

NIWA

α ) e —

ί/α
~ {{b/2

a,b,ceZ, b; odd

( 1 2 8 )

We have to make explicit computation of two integrals in (1.28) to show
that they are equal to SiegeΓs generalizations of Eisenstein-Epstein series.
Put

(J
We treat only the first integral here because the second integral is re-
duced to the first. Eθ(z, s) can be transformed to the following Fourier
series in z.

Z J θ J ( l )

Since α ̂  0 in (L31) and (J, ?)(» *)(J ») - ( . « + fc „„,

e L3 for m e Z if ί ? 1 e L3, we can extend the interval of the integration

with respect to x in (1.31) by letting b run over representatives modulo
a instead of letting b run over all integers in the summation of (1.31).
Therefore we obtain

Σ Γ Γ Σ Σ
nβZ J 0 J -co α^O δmodα,

(132) αeZ&2=nmod
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Change the variable x to x — b/a, then the summand of the sum in the

above integral becomes independent of b and the signature of a. Hence

we have

Λco ΛDD

J? (~ o \ O /^ΓV Λnίnu V y(n\ A (\,\ I I ΛI*"1

Άθ\Zy S) — Δy V 2-1 β 2_i ί\a)Άa\n) y
neZ a>0 J 0 J -co

(1.33) aez

X e x p I — π u t r l ( ( Ύ J I |( 11 I I I
V VVV o i/vyAx l/Vo -n/a/\o l/V o l/vy////

X d x φ ,

where we denote by Aa(n) the number of solutions modulo a for the

equation x2 = n (mod α). Next, change the variables y, x to a~xy, a~ιx

or \n^βa~ιy, \n\1/2a~1x according as n is equal to 0 or not. Then we have

Eθ(z, s) = 2^ΎΞ(s, 0)W0(s, πv)

Ξ(s, ή)W_sgnn(s, π\n\v)
neZ
nΦQ

where

(1.35) Ξ(s, n) = Σ
71 = 1

\ VVV o i/vyAx l/Vo εAo l/V o l/yy// //

and sgn n = nj\n\.

LEMMA 1.

W.sgnn(s, π\n\v) = V'^

(1.37) p Λ s

Proof. By the definition we can express VFs(u) as an integraΓ,|of the

modified Bessel function, namely,

W.
r.(s, w) = 1/2 Γ Vx""8" Γ e - < 't(

i

+')'/1'y/:-ιd!ydx
Jo Jo
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= Γ|ε + x\s/2e~2vxK_sr(2v\x
Jo

Using another integral expression

-iξ{zυx+ iυε)

for K-,,2 and changing the order of the integrations, we have

Wε(s, v) = ιrs/22-'τr1/2/Xs/2 + 1/2)
Λco o-ίlξυε

X dξ
) (ξ2 + -Ly/2+1/2 S J

By changing the variable x to x/2ι>(l + if) and rotating the path of inte-

gration to let it go back to the real axis, we have

^/'xe~2vx{1+ίζ)dx = Λ/2U(1 + ίξ) ~x ^e'xdx
Jo Jo

= V2ϋ(l + iξ)*-" •

Hence we obtain

by changing the variable f to — f, which completes the proof.

Lemma 1 shows that

(1.39) Ee(z, s) = 2s'2Γ((s + l)/2)(2^u)-(5 + 1 )/V^ Σ e2πίnupn(s + 1,
nez

2. After Siegel we define generalizations of Eisenstein-Epstein series,

which we simply call Eisenstein series in this paper, and compute their

Fourier expansions. For integers α, c such that (a, c) = 1 and c > 0, put

(2.1) ^(α/c) = 2 - y 7 / ^ £ e*iΛ2G/<,

then we obtain

LEMMA 2. Lei ί \ εd he as in [2], namely ί-^-j = (-̂ M (α, 6)^ w jί/i

Jacobί symbol I — j and Hίlbert symbol ( , )co at the infinite place, and εd



AUTOMORPHIC WAVE FORM 107

is 1 or i according as d = 1 (mod 4) or d = — 1 (mod 4). Then

•), if c is a even positive integer and (α, c) = 1,
a I

lλ(— ajc) = 0, if a and c are odd, c > 0 and (a, c) = 1,

^i(— ale) = V i εcί — J, if c is a odd positive integer and a is even.

Now let us define Eisenstein series by

(2.2) Ψx(z, s) = v"1 Σ Λ ( - alc)l(c)(cz -
(α,c)=l

c>0

(2.3) ψ,fe s) = vs/2 Σ Λ ( - ajc)l(c)(cz

(2.4) 0z(z, 5) =

(α,c)=l
c>0;odd

(α,c)=l
c>O;even

where the sum in the first line is extended over all integers a, c such

that (a, c) = 1 and c > 0 the sum in the second line is extended over all

integers a, c such that (a, c) = 1, c is odd and c > 0; and the sum in the

last line is extended over all integers α, c such that (α, c) = 1, c is even

and c > 0. Then, by Lemma 2, we have obviously

(2.5) φχ(z, s) = Λjrχ(2, S) + ^ χ ( £ , δ) .

Put θ(*) = Σ£—«*"*""> j'(r, z) = θ(rz)lθ(z) and J(r, z) = C2 + d for

r = ί j J ) e G . Then it holds as well known that jv(r, 2?) = e ϊ 1 ^ ) J(r, ̂ )1/2

for r = ( ^ J)eΓ(2). Put

(2.6) E*>(Z, s) = Σ jv(r, ̂ - ^ ( d ) ! J(r, ^ ) | ~ 5 ,
r6Γ(2)oo\Γ0(2p,2)

where Xp is a character defined by Xp(n) = (—)x(n), Γ(2)M = ί ( α ^) e Γ(2)
\p / I \ c ^/

|c = θj and Γ0(iV, M) = ί ( ° J ) e Γ0(N)\b = 0 (mod M)\. Then one can

easily derive from Lemma 2 that

(2.7) ψχ(z, s) = vs/iVT^~z'x\z\-sE^(- 1/pz, s) ,

(2.8) ^(a, s) = ϋ" ip' 1 + i "iχ(2)j'CUl)>p«)-V0ί,.P2)|-^JΓ'()",P«, s),

with μp = i^ 1 where m, n are integers such that p*~m — 4n = 1.
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Now let us compute the Fourier expansions of φχ(z, s), ψχ(z, s) after

[3]. Observing that λγ(a + 2c/c) = λ^ajc) for a, c e Z coprime to each other,

we have

φz(2z, s) = (2υ)s/2

(α,c)=l
c>0

= W 2 Σ Σ Λ(c/c + 2n)X(c)c—
/ d 2
Σ

α/c mod 2
c>0

X (2z + ale + 2n)- ( s + 1 ) / 2(2δ + α/c

it(c/c)Z(c)(2c)—"2

Σ
α/c mod 2

c>0

X Σ (z + α/2c + n)-<s+1)/2(2 + α/2c + n ) -

Since

Σ (2 + ?i)- ( s + 1 ) / 2(0 + n)- s / 2 - f; i-^υ"+1/ipn(s9 υ)e2

a= — oo n = — co

with

we have

φ Σ ( / ) ) ( ) ^ - f]
α/c mod 2 w = -oo

(2.10) e > 0

where

Mn, s) = Σ λι(alc)X(c)(2c)-ι't-i-1'ιe't""
α/c mod 2

c>0

(2.Π)
= 2"s-3/2 £ c-s-!Z(c) Σ Σ e-"i(ft!1-»>α/β.

c = l Λ = l αmod2c
(α,c)=l

Put L(s,[X) = Σn=iKn)n-s, then

(2.12) L(s, X)jx(n, s) = 2 —

Put

(2.13) ξp(s, n) =



AUTOMORPHIC WAVE FORM 100

for all primes p and put

(2.14) φ, ή) = i: 2-rsX(2r)A2r+1(n),
r = 0

then ξ2(s, n) = 1 + 2"X(2)η2(s, n) and

(2.15) L(s, %)]&, s) = 2 — ^ (Π fP(s, 4 ( S ) 7i) .

In the exactly same way we have

(2.16) Uz, s) = y 'V"- 1 " 2 έ j(n, s)Pn(s, φ2"<"«,
n— — °o

where

(2.17) j(n, s) = Σ ^1(α/c)X(c)(2c)-1/2-sr1/2e'ti"/';.
α/c mod 2
c>0; odd

Put L2(s, 1) = Σ»«=i Kn)n", then
w, odd

(2.18) L2(s, χ)j(/z, s) = Σ
6 = 1
δ odd

Since Ξ(s, n) = UPξP(s, n) and f2(s, n) = 1 + 2-X(2)^(s, n),

2z, s) + 2-sZ(2)L(s, Z)^χ(2^ s)
(2.19)

= 2""η~-'flv-{"1)β Σ eut"Pn{s, v)Ξ(s, ή).

Recalling that

(2.20) ^ f e s) = 2s/2Γ((s + l)/2)(2πu)-^ + I ^ V ^ Σ ^^pn{s + 1, ι;)5(β +
nez

we obtain

THEOREM 1. The integral Eθ(z, s), defined in (1.29), o/ ίΛe ί/ieία

ίion /or ί/ie ternary quadratic form defined in (1.26) is a linear combination

of Eisenstein series φχ and ψ* defined in (2.2) and (2.3), that is,

z, s) = 2s+1Γ((s

X (L2(s, X)ψz(22, s) + 2-sX(2)L(s, X)φz(2z, s)).

3. We continue to compute the right-hand side of the equality (1.22)

in this section. First, by changing the variable z to — 1/pz and using

(1.23), (1.28), (1.29), (1.30), we can transform it to the following forms:
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'1 ί ψ(~ VPZ) Γ ί θ(z, w, w)ys'ιdxdydίsz
J Γ\H JO J 0

1 ί UlΓψ{~llpz)W)Ee(z, s)
J Γ\H

^(z, s))dQz.

Note that θ(z) and Eθ(z, s) are automorphic under Γ0(4p) and so is

ΘQ{Z)EΘ^{Z, S) because

(3.2) Θ(z,g,g) = v^θ(z)Θ3(z,g) +

is automorphic under Γ0(p). Therefore we can decompose the integral in

(3.1) as follows.

fpΛΓ*{p): Γ0(4p)]-1(rf Λ/ΊΓφ{- \\pz)β{z)EQ{z, s)dQz
(3.3) V*

+ £ Λ/~V~Ψ(- l/pz)θJz)EβtQ(z9 s)dozj ,

where Θ denotes the fundamental domain Γ0(4p)\H. To investigate the

second integral, consider

(3.4) Θ3,o(2, g) = V ^ α Σ χ(a)e2πί'-udetx+ί2'

then we see that

(3.5) 03,o(2, g) = Θ?(z, g) + θz(z, g)

when we put

with L* = {(6

α

/ 2

 6 /

c

2 ) I o, 6, c e z } . By [7],

(3.7) Θ3(αz, g) = v'K- Vp^Rx(4)θ3*(2, g)

with σ = ( m 4) where m, n are integers such that 16m — pn = 1. Since

σ normalizes Γ0(4p, 4), 6>*(0, g) is automorphic with respect to Γ0(4p, 4).

Namely, it holds θ?(ΐz, g) = l{d)J^z~^~dθf(z, g) for ΐ = (° J ) e Γ,(4p, 4).

Hence we can decompose the second integral in (3.3) into two terms, that is,
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Vυφ(— llpz)θQ(z)Eθ,0(z, s)dQz
J 2)

= 1/4 f V V <p(-
(3.8) JB'

with S' = Γ0(4p, 4)\F. By (3.7) the first term is equal to

(3.9) 1/4 f JΊΓφi- llpz)W)</2Γ(pz + 4)-"ϊX(4)#,(cr«, s)do2 ,
3 2ι'

and since σ^; is also a fundamental domain of jΓ0(4p) and can be taken
as the domain of integration in (3.9) instead of &, it is transformed to

(3.10) 1/4f ^ΊΓ\pz - 4m\-1φ(ωpσ-1z)θ,(σ-ιz)^/2ι(pσ-1z + 4yi/2X(4)Eθ(z, s)d,z

with ωp = (J - J ) . Put

(3.11) θ,(*)= Σ e - " , Θ8(2)= f] (-l) e**» , θt(z)=

then the well known transformation formulas

(3.12) θi{z + 1) = VT03(0), Θ,(-l/z) =

, θ,(-1/2) =

hold. Using these and the explicit transformation formula for θ^z)

(3.13) θtfz) = (-^-) e jVίiT^θ.ίε) for Γ = (° *) e Γ(2),

we have
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= i ( σ a z ) θ ι ( σ c r z ) = r ( a

= i-1/B(α/α"12;)1/26:i.β(8eα-12; - n -

• _ ^ » f f $ _ (f = *), . - (J }), „ _ (J °) and . _
εσ'ε~ι = ( ̂ Q Q ) . Here notice that ^ = — 1 (mod 4) in (3.14) since

\ o — 72- — oy

16m —£71 = 1; therefore ε_w_8 = 1. Observing that φ(ωpσ~1z) = l{A)ψ{ωvz),

we see that the first term of (3.8) equals

(3.15) I/4J yτ'φ(ωpz)Θ2(2-1z)Eθ(z, s)dQz .

Put r< = (J {), (ί = 1, 2, 3, 4), then Γ0(4p) = Uί-iΓ0(4p, 4)r4. Hence we can

suppose that ^ = \JUιT^. Therefore (3.15) becomes

(3.16)

By the definition of Θ2(z), we have ΣUIΘ2((Q
 ιΛz\ = 4θ(z) and therefore

(3.16) becomes

(3.17) f Λ/Ύφ(ωvz)θ(z)Eθ(z, s)dQz,
J Si

which is identical with the first integral in (3.3).

We show that the second term of (3.8)

(3.18) 1/4 f *JΎφ{- llpz)θMEθ(z, s)doz

is 0. Since &' = U Ui T^ and θo(z) = θ,(2z), it equals

(3.19) 1/4 £ jVφ(ωpz) ± Θ3((Q ψjz)Eθ(z, s)dQz

which is 0 because Σί«i Θ S ^ Q ^ ^ j = 0 by the definition (3.11). Thus we

obtain

[ F{w,w)dxys-ιdy
(3.20) J j

^ ( - llpz)θ(z)Eθ(z,
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By Theorem 1 and (2.5), we have

E,(z, s) = Γ((s + ΐ)l2)(2π)-<°^χ(2)L(s, 1)

X (3C(2)2s+>χ(2z, s + 1) + φi(2z, s + 1)).

Therefore by (2.7) and (2.8) we have

JTφ(- l/pzjθζz)E,(z, s)d(>z

= Γ ( ( s + ι)j2)(2πy{s^'"

X (2 ( s + 1 ) / 2 p s + 3 / 2 Z(2)P 1 (s)

(3.22) = Γ ( ( s + ι)j2)(2πy{s^'"Ί{2)L(s + 1, X)

where

(3.23) P l ( s ) = ί > "
X \J(μp, 2pz)\~s~1Eχp(μp2pz, s + ΐ)doz ,

Pt(8)= f φ(-
(3.24)

X V2~2-1!22|-*-1£>(- l/2pz9 s

Put v = ( A ~~2], then v normalizes Γ0(4p) and we can take v"1^ as

a domain of integration instead of <&. Hence, changing the variable z

to vz, we have

(3.25)
X

α ̂
, we have E*>(/*,(%> fjuz, s + l ) = £ " (2«, β + 1),

— X(— n)φ(z) = %(4)(p(z) and

Therefore we obtain

As for P2(s) in (3.24), changing the variable z to — l/4pz, we have

(3.27) P2(s) - p< + 2 ^ VT" 1 f ^(42)^p2)u5/2+1£^(2^ s + l)doε .



114 SHINJI NIWA

Hence it follows from (2.22) that

J J~ϋφ{- llpz)θ(z)Eβ(z, s)doz

= Γ((s
(3.28)

X (2ls+1^]sφ(z)θ(pz)v"2+iE*>'(2z, s + l)doz

S+I"2 f ψ{ , s

Denote the first (respectively the second) integral in (3.28) by Qj(s)

(respectively Q2(s)). Then the usual computation for convolutions gives

that for φ(z) = ΣnΦ0aMv1'ίKX2π\n\v)e2"ιt\

QAs) = f φ(z)θ(p~z~)v^1EH2z, s + l)doz
J 9

Σ f v{rzys

re(Γoo\Γo)(4p) J ®

(3.29)

= Γ 2 Σ amlKX2πpntv)e-2"nHυs'i-1'idv
JO « = 1

where ΓTO = < ± (Q ? ) \n e Z>. By the same reasoning,

Qi(s) = Γ Γ V^+^2φ(4z)θ(^z)d,Z
Jo Jo

(3.30) = Γ4Σ am*KX8πpniv)e-!s**n*vv'"2-1<ΐdv
J 0 n = l

hence we have

ί J~ϋφ{- llpzffiz)E,{z, s)d,z
J 9

= Γ((s + l)/2)(2π)- ( '+ n / 2L(s + 1, χ)p ( s + 2 > / 2

(3.31) X 2(2τr)-(s+I)/2 f ] σ^.Oίn 1)'*'* 1"* Γϋ(-1)/tjK'»(ϋ)e-t'<iι;
71 = 1 J 0

X (2 ( s + 1 ) / 2 -f- 2 4~(s+1)/223(s+1)/2)

= 6Γ((s + l)/2X2τr)-(s+1)L(s + 1
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X (f]anin'(s+A Γυ'-MKAυϊe-'dv.
\n = l /JO

Therefore we finally obtain

Γ P F ( W , w)dxys~1dy
Jo Jo

(3.32) = Γ((β

X (Σ an*n-is+A Γvι

\»=i / J o

Comparing this with (1.21), we have

c
(3.33) Jo

= Γ((s + I)l2)a^^p-^(1) Γ>-'»%(

Jo

From the well known formulas (see [5], p. 101 and p. 37)

p°°

v(s~ί)/2K (v)e~vdv
(3.34) Jo

= V^2-(s+1)/2Γ(s/2 + 1/2 + v)Γ(s/2 + 1/2 - y)Γ(s/2 + I)" 1 ,

(3.35) Jo

- 2s-2Γ(s/2 + 1/2 + y)Γ(s/2 + 1/2 - v)Γ(sj2 + l/2)2Γ(s + I)" 1

and Γ(2s) - 2z-1π-1/*Γ(s)Γ(s + 1/2),

follows.

We can easily verify the following lemma:

LEMMA 3. Let φ(z) = Σn^o^!niy/2^v(2τr|n|3/)e2^ια; 6β a cusp form with

the character X, which is a common eigenfunction for all Hecke operators,

and assume ax — 1. Define the cusp form φ with the character X by φ(z)

— <p(— 1/pz). Then φ is a common eigenfunction for all Hecke operators

and its first Fourier coefficient λψ is given by

Let φ be as in Lemma 3 and put

(3.37) G(wu w2) - f φ(z)θ(z, wu w2)dQz
J Γ\H
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with Γ - Γ0(p). Then by (1.3), (1.17), (1.19) and (3.36) we have

(3.38) G{wu ιυ2) = %{X)F{wu w2) = ^

Put ΛJΓ(Z) = λ~ιφ{z), then ψ is a common eigenfunction for all Hecke

operators whose first Fourier coefficient is unity and therefore

(3.39) f ψ(z)θ(z, - llpwl9 - l/pw2)dQz = λ?2*apJT<lί- Vpu)M~ 1/P«>2)
J Γ\H

Hence we obtain

THEOREM 2. Let ψ be a cusp form with the character X, which is a

common eigenfunction for all Hecke operators. Assume that the first

Fourier coefficient of ψ is unity. Then it holds

f
J Γ\Π

, - l/pwl9 - llpw2)dQz =

4. Let o be the ring of integers in an imaginary quadratic field

— P) with a rational prime p = 1 (mod 4). Then o — Z + V — PZ.

Put 5β = V — p o and denote the upper half space {(z, v) \ z e C, v > 0} by

i/. Let us define the action of Gc = SL(2, C) on H in the usual way.

For a e C, put a = (% °V For w = (z,ϋ)eH and r -= ̂  ^ e Gc, put ιΣ>

0 " " - ) , and define wf =• ΐw = (V, i;') e // by the relation

Put

(4.1) E£w, s) = Σ ^ ' ( 1 ^ + ^Γ + |m|2u2)

where Z is the character on o/̂ S defined by X(n + V — pi) = X(n) for 72, /

6 Z. Then Eo is a non-holomorphic Eisenstein series on H satisfying

, s) = X(d)E0(w, s) for 7 = (£ J ) 6 Γ, = {(° J ) 6 SL(2, o)\c = 0(mod5β)}.

Put

(4.2) F/ίi>, s) = Σ f(|mβ + n| ! + \mfv2)-%m)

then £0(if, s) = F0(ωw, s) with ω = L ~~Q) FO

 n a s a n usual integral ex-

pression, that is,
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F£w, s) = π'Γis)-1

(4.3) fco

X η8-1 Σ χ(m) e χ P (~ πyv-\\mz + nf + \m\2υ2))dη .
JO τιG $ ,ί)i € o

The series in the integrand can be expressed as a theta function for a
quadratic form over K = Q(V — p). Put $* = V— p -1(Z + V — p -1Z), then,
using the Poisson summation formula, we obtain

(4.5) n

- Σ p-*βη-χυ exp ( -2τri3ΐe(m^) - π(\mfη
e$*

so that
Σ %(m) exp ( -

w6!P,m6o

(4.6) =p-«VIw Σ

X exp(— 2πiΐfie(mnz) — ττ(

Hence we obtain

(4.7) J o

Xu Σ χ(m) e χ P(— 2πίΐfle(mnz)

Now we consider the pullbacks of Eΰ, Fo. It is easy to see that for z •==•

u + iυ e H and ϊ = (^ ^ e SL(2, i?), r(u, v) - (M', I O holds denoting ϊz =

a z + - = u7 + iυ'. Since E0(Γu;, s) - X(d)E£w, s) for r = f J e f , and

Γφ Π SL(2, i?) - Γ0(p), we see that for r = Λj ^) e Γo(p), JK(r(w + iu)) =

X(d)E(u + iϋ) holds and for σ e Γ°(p), F(σ(u + iv)) = X(d)F(u + iu) holds

when we put £J(w + /y) = E0((u, v), s), F(u + iυ) = F0((u, υ)9 s) with u,υe

R. If z = u e R, the series in the right-hand side of (4.7) can be viewed

as a theta function for a quaternary quadratic form over Q. In fact,

put n - (-p)" 1 / 2 (-6 - α(-p)-1/2) and m = d + (-p)1/2c with α, 6, c,deZ,

then

/α 6 \3ΐe(mπ.) — det I ),
\c d\p)

with
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Thus we

(4.8)

K

obtain

F.«u, v),s)

0

= π'l

SHINJI NIWA

*2 0 \

Γ°° (« + iυ)lp, h,, lp)dv
JO

where Θ(z9 g, h) is the theta function defined in (1.1). It follows from

(1.3) that

/2 " ~ P Q

(4.9) F0(ω(u, v), s) - π ' Γ O O - W ) Γ\-%6{u + ίυ, h,9 lp)dη .
Jo

Since ωh1}

tωv = hv and ωplpω~ι = lv with ω = L "" A α>p = ί 1

and Λ, = ( ^ ^ 1 / 4 ^ - i ^ i / . ) , it holds

Θ(z, hη, lp) = $(z, α>pΛ,, α>pZp).

Therefore, for a cusp form ψ, putting 3fx = ΓQ(p)\H and 2 = w + ίι;, we

have

f E0((u, v\ s)ψ(z)dQz
(4.10) J*

= p-^βαVΓίs)"1 Γ 9 ' " 2 f £(*, *>Λ, ωplp)ψ(z)dΰzdV .
JO J^i

On the other hand, Theorem 2 asserts

(4.11) f Θ(z, ωphη, ωplp)ψ

Thus we obtain

f E.(iu, v),
(4.12) J s '

= π'Γ(s)-]23ψ(p-I/20 Γ
Jo

Since Γ KAτj)η-ιdη = 2s~2Γ((s - V)I2)Γ((S + v)/2), we finally have
Jo

THEOREM 3. Let 1 be α primitive Dirichlet character modulo a prime

p = 1 (mod 4). Assume 1{- 1) = 1. Let ψ(z) - ΣnΦoCLlnlv
1/2Kv(2π\n\v)e2πnίu

be a cusp form with the character X, which is a common eigenfunction for

all Heche operators, and assume ax = 1. Let E0(w, s) be the Eίsensteίn

series defined by (4.1) on the upper half space. Then it holds
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E0((u, u), s)ψ(u + ίυ)v2dudv
J ΓQ(p)\H

X 2>(p-1/20p-(5-1)/2L(s - 1/2, ψ)

(s, ψ) = Σ~=iαn?r s.
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