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THE INNER PRODUCT OF AN AUTOMORPHIC WAVE FORM
WITH THE PULLBACK OF AN EISENSTEIN SERIES

SHINJI NIWA

In this paper we shall show a relation between a special value of an
automorphic wave form and the inner product of the automorphic wave
form with the pullback of an Eisenstein series on the upper half space.
The main theorem is Theorem 3 in the end of this paper. As is shown
in P. B. Garrett [13], pullbacks of Eisenstein series on Siegel upper half
spaces have interesting properties as a kernel function of an integral
operator. It is natural to try to investigate pullbacks of Eisenstein series
of Hilbert type. We can say that Theorem 3 clarifies a property of such
pullbacks in a special case. The idea of the proof is a lifting of auto-
morphic forms by theta functions. We discuss a lifting of automorphic
wave forms in 1, 2 and 3, and obtain Theorem 2 in the end of 3 as a
result. We can prove Theorem 3 without much difficulty by using
Theorem 2.

1. We denote, as usual, by Z, Q, R and C the ring of rational inte-
gers, the rational number field the real and the complex number fields.
For ze C, we define 4/Zz = 2'* so that — 7/2 < arg (2"*) < =/2.

We discuss a lifting of an automorphic wave form by means of theta
functions for a quadratic form with the signature (4 2, — 2). Denote by
H the upper half plane. For g, g, G = G, = SL(2, R), put

(1_1) @(Z, g gz): v Z z(pd)ezﬂ(—updeLX+i2—1pvtrl(!nggz)(tngge)) ,

x=(3 per
12) Bz gug) = v 3 Ha)ei-we s mtn xats e
X= ‘clg)ezi

where

Eo{(E e s o peed 2= {00
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a,b,c,deZ}, z=u+iveH
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and X is a primitive character modulo a prime p = 1 (mod 4). Assume
X(— 1) =1. We consider X as a character on Z, by extending ¥ to a
character on Z} in the usual way and putting Z(p) = 0. Then we have

ProrosiTiON 1.

(1.3) 0(— 1/pz, g, &) = p~'g(N)O(z, g, &) ,
with g(X) = lmZodp x(De* ? and for <Z 3) el =T(p),
(1.9) O(rz, &, &) = Ud)O(z, &, &),
(1.5) 0(z, 78, &) = 0(z, 8, 78) = Ud)O(z, &, &) ,
(1.6) 0@z, g, &) = Ud)O(z, g,, &) ,
(1.7 Oz, 78, &) = 6(2, 8, 78) = UDO(z, &, &) -
Proof. It is sufficient to prove (1.3), (1.4) and (1.5). Put X = (;n r;)
eL and 7 =(g 3) eI, then 7-'X =(: s ay) e L and Z(p(—bn + ay))

= {(pay) = Ud)X(py), which proves O(z, 7g,, g,) = Ud)O(z, g,, g). The proof
of O(z, g, 78, = X(d)O(z, g,, 8,) is the same. As for the proof of (1.3) and
(1.4), we can apply transformation formulas in [7], which are summarized
in [16] as Proposition 0, for example. However we describe the trans-
formation formulas in the language of adeles to prove (1.3) and (1.4) for
later use. For an archimedean or non-archimedean place v, @, denotes
the completion at v. Let 4 be the adele ring of @ and denote by ¢(K™)
the Schwartz Bruhat space on K" when K = 4 or @,. Define an additive
character +, (respectively ) of Q, (respectively A) by i, (x) = e~ (the principal
partof ) if py is non-archimedean and +,(x) = ¢ if v is archimedean
(respectively ¥((x,)) = [],¥(x,)). Denote by d,x the Haar measure on Q,

normalized by J dx =1 and Jl d.x =1. Put d(x,) = [[,d,x. Define a
Zq 0

partial “Fourier” transformation &%, , in #(Q?) by F,..f(x,y) = j f(x, 2)-
0

Vr(mzy)d,z with me @ and a transformation A(g) in ¢(Q}) by ).(vg)f(x, ¥)
= f((x, y)g) for geG, = SLZ,Q,). Then %!, =|m|,#_,, Define re-
presentations r,,, r,. and r, of G, by r, (8 = F,.,HF _,.., (8 =

FNQF ., and r,(g) =r,,(8) @r,,(g). Then the Poisson summation
formula
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eréZ(IvT F o) (x) = x§2f<x>
is valid for fe #(4%, and therefore
19 5. (@ = 3 £

holds for fe #(4*) and ge G, = SL(2, Q). Define a representation r of
G, = SL(2, A) on L(4" by r((g,) = [[.7.(8,). When K denotes Q, or A4,

we define a mapping « from K* to M, (K) by «a(a, b, c, d) = (z g) De-

fine a representation p, (respectively p) of G,X G, (respectively G, X G,)
on Q! (respectively 4*) by

1.9 xp.(g h) = a~'(‘ga(x)h) (respectively xo(g, h) = a~'(‘ga(x)h)).
For g, h, ke G, and fe (d), put

(1.10) O48; h ks f) = xg,é‘r(g)f(xp(h, k) .

Then (1.8) shows that

(1.11) 047g; h, k; f) = 04(8; h, k5 f)

holds for 7 € G,. For a prime g#p, let f, be the characteristic function
of Zi. Define a function f.. (respectively f,) on R* (respectively Q;) by
f.(a, b, c, d) = e-rret+biret+ad)  (pegpectively f,(a, b, ¢, d) = X(pb)p(a, pb, ¢, d)
with the characteristic function ¢ of Z;) and define a function f on A4*
by f((a,), (b,), (c.), () = [1.fs(@s, by, yy d,). Then it is easy to see that
the restriction of the function @,(g; h, k;f) of (g, h, k) e G4, X G4 X G4 to
G X GX G is equal to O(gi, h, k). For a subset A in @,, denote the
characteristic function of A by ¢( ; A). Then for f“(a, b) = X(pb)p(a; Z,)
o(b; 1/pZ}) we have f(a, by=F _, ,f(a, b)=pG(Dp(a; Z)(— bp)p(b; 1IpZ})
with G() = pr(u)«]»p(u/p)du and for f®(a, b) = ¢(a; Z,)p(b; Z,) we have

)
a,B,6e€Z, TepZ, and af — 15 = 1, we can easily see that 2(o)f" = %(3)f®

and A(o)f® = x(B)f®. These imply (1.4) since obviously @ A8k R R ) =
O4(g; h, k; f) holds for k, e SL(2, Z,) with all primes q # p. It can easily
be verified that

f®(a, b) = F,,.fa, b) = pla; Z,)p(b; 1/pZ,). For ¢ = (“ ﬁ) such that

Fohafa, b) = [ T = b (pxb)| plydyx
= GMOUap)e(a; 1/pZ;)e(b; 1/pZ,)



96 SHINJI NIWA
and that
Z5ufO@ b) = | FO@, — ayp, (- prb)pl,dyx

= p~'p(a; 1/pZ,)p(b; 1/pZ,) .

Put f/((av), (bv)7 (Cv)’ (dv)) = fz/J(az), bp! cp’ dp) nv#:pfv(am bv, Cv, dv) Where f}ﬁ(ar b7
¢, d) = Upa)p(a; 1/pZ,)p(b; 1/pZ,)o(c; 1/pZ,)p(d; 1/pZ,). Then for o = (v,)

such that w. = (_01 (1)> and w, =1 if v #* oo and for g = (g,) such that

8o = <(1) L{)(‘/Ov ‘/%_1) with 2= u + (v and g, = 1 if v % oo, we have

O(— 1/z, h, k) = O 0g; h, k; f) = 0,(ga; h, k; f)
= p'a(N)04(8; h, k; ") = p~*a(N)O(p~'2, h, k)

with @ = (@,) where @, =1 and @, = ((1) —01> for v # oo provided that A,

ke G. Hence the proof of Proposition 1 is completed.
For w= x4+ iyeH, put g, = ((1) 3{)(“/03' 1/37) and let

(1.12)

(113) 6(Z7 wl: wZ) = @(z’ gwp gW2) ’ 5(2, wl’ wZ) = @(Z, gwn ng) .

Denote by T#(q) Hecke operators acting on a space of functions ¢(w) of

w such that o(fw) = X(d)p(w) for 7 = (g 2) eI’ by the rule

Tx@ew) = Yo ((( o))

where the sum is extended over all 7, = (at bi) such that p(l 0) I =

c, d, 0q
10 C .
Ur (0 q)Ti (disjoint).
Let ¢ be as above and + is a function satisfying (Tw) = 2(d)(w)
for v = (g 3) eI’. Then we have, if the integrals converge,

[, TH@e@N @z = [ o@THe W)z

Here TX(g)* is the operator defined by Tg)*y(2) = z;\;,((g O>oiz>x(di)

1
where the sum is extended over all g, = (g’ gi) such that F(g (1))F =
k2 1
Ur <g (;)ai and d,z = du2dv. It is easy to see that TZ*(g)* = X(q)T*4q)
i v

if g # p.
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ProrositioN 2. For any prime q
T;(Q)*ﬁ(zy wl’ w2) = w;(Q)ﬁ(Z wl; wZ) - TL (Q)ﬂ(z wu w )9
whether q equals p or not.

This proposition is almost proved by H. Yoshida ([8]). However we
need the exact result convenient to us, so we describe the proof for the
sake of completeness and convenience, after H. Yoshida.

Proof. Let the notation be as in the proof of Proposition 1. Put
G = G. = GLEZ,R), G, = GL{Z, Q,), GQ = GL(2, Q) and G, = GL(2, A). For
primes ¢ #* p, put Kq = GL(2, Z,) and K, = SL(2, Z,)). Put

R, = {r - (‘; Z) e GL(2, Z)|c = 0 (mod p)} ,

K, =K, N SL@, Z,), K. = SO@), 3, — {(g 2)’(1 e Qv}, 3, = {(g 2)ia e QX}
|

and 8, = {(g 2)%& c A% } As usual we can extend the character X to the

character %4 on 3,/3, and a function ¢ on H satisfying ¢(rzk) = 1(d)¢(2)

= Ud)p(— z) for 7 = (a 2) e I'(p) to the function ¢, on GA satisfying

(1.14) pa(Tgk.Rk3) = &L 481431 A(D)

for TeGQ, k.eK., = = 02), 384 ke ﬂm,mK and &, ( d) eK Let ¢
be as above, g is a prime other than p and put (2) = 1(¢)T*g)¢(z), then
we see that ¥ (g) = (T(@v)(E€) = 2., pi(gB;) where the sum is extended
over the elements g, in G, such that Kq((l) 2)12,, = L{) 8.k, (disjoint). We

can extend a function ¥ on G, satisfying
(1.15) U(rgkk,) = ¥(g)t(d,)

for 7€ Gy, ke [],,K, and k, = <g 3) e K, to a function ¥ on G, satisfy-

ing (1.14) by putting F(7g.ks) = U(g. k), for 7 € Gy, 8. € G., ke [[,... K,,
¢ = (1,) eéA where ¢, = (6 2), r>0and ¢, = <(1) t0>’ t,e Z;. 04 defined
in the proof of Proposition 1 is a function on G, q>< G, X G4 having the
same types of property as (1.15) with respect to each variable so we can
extend it to a function 6, on G 4 X G 4 X G , which satisfies (1.14) with respect
to the first variable and (1.14) modified by replacing %, by X, with respect
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to the second and third variables. Let g = ((1) l{)(‘/ol7 ~/%_1> eG,, h=

((1) ’{)(“637 1/%_1) eG, keG,, z=u-+iv and w = x 4+ iy. Choose the

elements 3, in G, such that Kq((l) S)Kq = U B,K, (disjoint). We can take

elements in [” 10 I' as such B; so that I" g0 I' = Jl'a, with &, = gB;".
0q 01 v

Note that we can take <(1) 2), (g 11), G=12 ---,9) as By, p;, =12
...,q). We denote also by ¢,(7) an element (g,) in G, such that g, =1
if v v; g, =7 and also by d[7] an element (h,) in G, such that k, =7
for all v to avoid confusing ¢, () with 6[7] when TeGQ. We denote by

d(s) the lower right entry d of ¢ — (g 3) Then, by using (1.15), we have
T(q)*0(z, w, ki)
= ; 04(c(;:8); t(h), ¢(R); F)X(d(e)
= X(Q)Z 0.4(c(87'8); t(h), cu(R); FYX(A(B)
= X(Q)Z 04001871e(8)e(B); ¢(R), ¢(B); f)
= X(CI)ZL_ 04(c(8)o(B); ¢.(R), c.(R); f)

= @50 (o[( 0.)]-@uer; . i)

(RNl P v s

20l el 0 )
= 0,(¢.(8); t(h), c(B); )

with f = af.f. [1 f. where f, = Sr(§ o-1)6) fu Ful®) = fu(y @) and f,

VFG,0
f, are the same as in the proof of Proposition 1. We can define the re-
presentations, which we also denote by p, and p, of G, X G, and G, X G,
by (1.9). It is easy to see that

T @)0(z. w, ki)
= 2.04(e(8); c(P)e(B), e(R); f)

= 1@ 0@ (I S)r)el(§ 0-)8) 05D
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= Uq) ; zsz;,y r(e.(e)f <x0<5 [((1) g)]’ 1)

<o (5 o)) = @)el((g -2 1))

-5 3 (o)
< fzo(e (3 2e)2) =®)atee. 1)
= 04(c.(8); e(P); ¢.(h); )

with f = fwfq [Tosq,»fo Where fq(x) = > fxp,(B:» 1)). Therefore it is suf-
ficient to show that qfq = fq in order to prove the former part of Proposi-

tion 2 in case g # p. Choose the elements §,¢ I such that F(p O)F =

UF({)’ ‘1’)5 (disjoint). Then it holds K( >K Ui (1 O)K and we

have
THp)*0(z, w, ki)

= 0, (( ) ); o), eaR); HYUAG)
o

= S0.@)5(07 (]
= ;0A(5[<1 0 )]e (g)¢ ( ( )) tal(R), e (k); ))U(d(5,)

= S (( ) (( L) )) (), c.(R); UG

= o ((B7 D))al(g )i (G 0))s e etirs prcaay
= 0,(0.(8); (), 0.0 P

= zoue-((} t(B), e.(B); HHA))

):
)) L(B), ¢ (B); PUAEG)

with 7 = 7, Tuse fo where F, = S5d0n((§ 5-)0(g 9))fr 7

= f.(v p x) and f, f, are the same as in the proof of Proposition 1. Choose
the elements 7, € I” such that F( )F U[ (1 0)7‘ (disjoint). Then it

holds K (p O)K U (p O)K and we have
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Ty p)d(z, w, ki)
= 200 @); (g OJrih). 0 ey

= S0e(@); 077 (O 1)) . (B); HUA(T))

- ot (" el Y ) oo

<)
=31 5 re@nada (o] (2 9)] 1)

<o ) @5 ) (E D) 1)

— ; erQ4 rw(gw(g))X(d(Ti))

< Sao(((5 ) = @)els((§ D))
= 0,(.(8); e.(h), c.(R); )
with f = fwf ﬂ f. where f,(x) = ZX(d(T N, (xpp< ((I)) (1)> 1)), Therefore

it is suﬁic1ent to show that pf = f in order to prove the former part of

Proposition 2 in case ¢ = p. Since we can take ( I]; (1)) i=0,---,p—1)
and ((1) - 11), (i=0,..-,p—1) as §, and 7, respectively, it is sufficient to

show that

Sofon (9 ) ~Eon (Yoo ot

for all xe@;.

Let the notation be as in the proof of Proposition 1. Then f/(a, b, c,
d) = f%(a, b)f®(c,d) and r(g),=r, (g)f‘ )r 2&)f®. Therefore we com-
pute r,.(g)f", (i =1,2). Since r,,(g) = 2o (&)F -, and

X(Ll (1)>f“”(a, b) = pGDe(a + 1b; Z,)¢(b; 1/pZ,)1,(— bp),

we have

er((; (1)))]”(“(11, b) = G(X)L/pz; ola + tu; Z, )t (pu)du
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= GM)¢(a; 1pZ))e(b; 1/pZ Yy (— pi~'a)y(— pi~'ab)
if i # 0. Recall that

r8) = FLM8)F,, and [O(c, d) = ¢lc; Z)e(d; 1pZ,),

then we have

z((j N)Foe.d) = elc + id; Z)o(d; 1pZ,)

and

oo} g) 7o, d) = p i (pi-'ed)e(c; 1pZ)e(d; 1/pZ,)

if i 0. Hence we have
pf (@, b, ¢, d) = plp(a; Z,)¢(b; 1pZ)o(c; Z,)o(d; Z,)74(pb)
+ 5P G(pk(cd — ab))Ly(— pha)
X ole; 1pZ,)e(d; 1pZ,)p(a; 1/pZ;)e(b; 1/pZ,) .
We can easily see that fp(a, b,c,d) = 0 unless bel/pZ, and that

fa, b, ¢, d) = pI(pb) if bel/pz}, deZ, acZ, ceZ,

fia, b, ¢, d) = 2(pb) if bel/pzy,deZ,acllpZ;, cellpZ,

fp(a, b, ¢, d) = Xpa)X(p’(ab — cd)) if bel/pZ, dellpZ), acllpZ},
cel/pZ,, p*(ad — bc)e Z},

fp(a, b,c,d)=0 otherwise.

Using this, it is easy to see that pfp(x) = fp(x) in each case stated above.

On the other hand, since we have
()

= o)
= qu(a, b,c,d) + g ?;_‘I‘I"I(p(bc — ad)qi)fq(qa, qb, qc, qd)

i

I

01

7

for q # p, we can easily verify gf (x) = fq(x) case by case. These complete
the proof of Proposition 2.

We call a function ¢ satisfying following conditions on H an auto-
morphic wave form with character X:

2

2
1. For z = u + ive H, ¢(z) is an eigenfunction of D, = v‘z<5‘% + 56_)’
u v
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i.e., D,p = 1p with 1¢C.
2. ¢(12) = Ad)e(2) for all T = (g‘ 3) er.

3. o(u + iv) = O@F), v— oo, with a constant ¢ e R, uniformly in w.
Put p = (1 +4/1 + 42)/2, v = v/1/4 + 2. Let u, be a representative of a -
equivalence class of cusps and ¢, is an element of SL(2, Z) such that
0,00 = u;. Then ¢ has the following Fourier expansion:

(1.16)  ¢(0,2) = a9Vv° + bYV'P + 3 aP v K (2| n|ufN et/
n#0

with the modified Bessel function K, and an appropriate integer N,. Let

U, = co and g, = <(1) (1)>, and put ¢ = @,. Then N, = 1. We call ¢ a cusp

form if a¥ = b? =0 for all j. For simplicity, we assume ¢(—2) = ¢(2)
which means a, = a_, for all n. Notice that a cusp form which is a
common eigenfunction for all Hecke operators is the sum of two common
eigenfunctions ¢,, ¢_ such that ¢, (—2) = ¢.(2), ¢_(—2) = —¢p_(2). We
further assume a, = a_, = 1. Define

(1.17) F(w,, w;) = L o200z, w, w)dz

where dyz = v’dudv for z = u + iv. The following proposition guarantees
that F is an eigenfunction of D,,, D,,.

ProPOSITION 2.
(1'18) Dzﬁ(z; wl) wz) = leﬁ(Z, wl’ wZ) = Dw20(27 wl, wz) .

We can easily prove this in the same way as in the proof of [7],
Lemma 1.5. Thus we skip the proof.

By Proposition 1, Proposition 2 and the additional assumptions, we
obtain the Fourier expansion of F, and can easily see the equality

(1-19) F(w, w, = csﬁ(w1)¢(w2)

with a certain constant ¢ which can not be determined by these Propo-
sitions and assumptions. Therefore our next task is to determine the
constant c¢. For this purpose, we consider the integral

(1.20) f:ﬂF(w, w)dxy*~'dy (w=x+1y).

On one hand, for p(w) = >, . @, ¥ K,2x|n|y)e*, it holds
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[ [ P widxy -y = o[ twierdzydy
0 0
= 20(3] a V) (20) ¢+ f “K(yyy idy
(1_21) n>1 0
= 2cL(s + 1, %) (3] ain=“*M)

X <2n)~<s“>j°°Ky(y>2ys—ldy,
0

(see [1]) with L(s, %) = > 2., X(n)n"*. On the other hand, substituting the
right-hand side of (1.17) for F(w, w) in (1.20) and exchanging the order of
integrations, we obtain

J.qu F(w, w)dxy:—'dy
(1.22) o Jo
= [ @] [oew wyddydz,  w=x+iy.
I'\H 0J0

We can easily justify this formal computation by the absolute convergence
of the integrals for sufficient large Res. It is more convenient to consider,

o M
instead of I Jﬁ(z, w, w)y*~'dxdy, another integral
0Jo

(1.23) Efz, s) = r jl 6(z, w, wyy ~‘dxdy .
0J0

Now recall the definition (1.2) and (1.13) of O(z, g, g&) and d(z, w;, w,),

then we see that an element ( b) of L in (1.2) is uniquely written as

the sum of two elements( 72 d <~(j)f/2 1 {)2) where e and f are integers
(1)(1)) ( (1)(1)> for ge G, we can de-

with the same parity. Since g(
g 6(z, g, 8,) into two parts, only when

compose the summation definin
g, = &, as follows.

(1.24) 6(z, 8, 8) = V" 0DO(z, 8) + V" 0,(2)0s(2 &)
where

(1.25) 0@) = L, o) = > e,
(1.26) 02,8) = YU 3 Wa)e-uier ¥t ¢axe)

xe( s

and



104 SHINJI NIWA

(1.27) @M(z, g) — «/—U_ Z X(a)e2ni(—udecX+i2-1vtr((ngg)2>) ,

- t)erao
with I, = {(‘g l;) b, ce z} and L, — {( @ b/2>
Therefore we obtain

b/2 ¢
a0 G e

s ol (8 s

We have to make explicit computation of two integrals in (1.28) to show
that they are equal to Siegel’s generalizations of Eisenstein-Epstein series.
Put

(1.29) Eyz,s) = J: j;& (z, (1 x)(d? 0 ))dxys“dy ,

a,b,cez b; odd}.

01\ 0 14y
w0 o= [ (el G 0w

We treat only the first integral here because the second integral is re-
duced to the first. E,(z, s) can be transformed to the following Fourier
series in z.

o 1
E(zs)=yozem [y 5 @
neZ 0Jo

(1.31) B x=(% Y)eLs,~detx=n B Z
e G (AT [ L 1 W ) 2
Since a =0 in (1.31) and (rln (1)> (z Ié) ((1) ”{) = (a’: b am fl|—m2(_)l_mb i c)

eL, for meZ if (Z 2) € L,, we can extend the interval of the integration
with respect to x in (1.31) by letting b run over representatives modulo
a instead of letting b run over all integers in the summation of (1.31).
Therefore we obtain

Bao=vo e[ [ 5 5 uay-

—o a#0 bmoda,

(1.32) B 4€Z bi=nmoda
com(can{(F 2D %069

% <g ’ 1/¢%‘))2)>)d’“iy :
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Change the variable x to x — b/a, then the summand of the sum in the
above integral becomes independent of b and the signature of a. Hence
we have

Bz =2/ 05 ¢ Sr@am| [
neZ a>0 0J -
(1.33) ez B 2
e (—me(((% ) 2D o DO 15))))
0 1//y/\x 1/\0 —n/a/\0 1/\ 0 1/4/y
X dxdy,
where we denote by A,(n) the number of solutions modulo a for the

equation x* = n (mod a). Next, change the variables y, x to a’ly, a 'x
or {n|”a"'y, |n|”a"'x according as n is equal to 0 or not. Then we have

Ey(z,8) = 24/ v E(s, 0)W(s, nv)

(134) + 2@/*0— Z eZzinu‘n\(s+l)/2E(s’ n)W_sgnn(S, ﬁ\n\v)
where
(1.35) E(s, n) = 3 Ma)Au(n)a~¢ 0,

wiso [ [

oo S U DT )

and sgnn = nfin|

LemMma 1.
W_sgna(s, m|njv) = 2771 ['((s + 1)/2)(2mv) =07
(1.37) Ll e 0,
puls + 1, 0" ol
where
o —2zinved§
1.38 G, =J e :
( ) o (s, v) o (1 — )L £ &)

Proof. By the definition we can express W.(v) as an integraliof the
modified Bessel function, namely,

W.(s,v) = I/Zr J’k_‘g“”jw e v TNy P-lgdydx
0 0
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= [Tle + alres oK uwlx + )y da.

Using another integral expression
le + x| K_(2v|x + ¢))
= v G2 + 1))

e—if(zvz+1ve)

— _d
(EZ + 1)3/2+1/2 5

for K_,,, and changing the order of the integrations, we have
W.(s, v) = v=*"2 'z~ *[(s/2 + 1/2)
dér N X e trtrigy
0

0 e~i25ue
>< J_oo (52 + 1)3/Z+1/2
By changing the variable x to x/2v(1 4 i£€) and rotating the path of inte-
gration to let it go back to the real axis, we have

e 20(1+1§)

r VX e riringy — /2u(1 + ig) Jxe *dx
0 0

= V2l + &z
Hence we obtain

. e 0 ei2€vs
W.(s, v) = v*727"['(s[2 + 1/2)_[_00 (& + 1) AHR1 — gy d¢

by changing the variable & to — &, which completes the proof.
Lemma 1 shows that

(1.39) Ey(z,8) = 2 I'((s + 1)/2)(2av)~“*"2y/ v Z;ez"""“pn(s + 1, v)5(s, n).

2. After Siegel we define generalizations of Eisenstein-Epstein series,
which we simply call Eisenstein series in this paper, and compute their
Fourier expansions. For integers a, ¢ such that (a,¢) = 1 and ¢ > 0, put

2
@1 Aafe) = 27W ijc 3 e,
h=1
then we obtain

Lemma 2. Let (m‘), ¢, be as in [2), namely (%) = (l%) (@, b).. with
l J

Jacobi symbol <—) and Hilbert symbol ( , ). at the infinite place, and ¢4
J
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is 1 or i according as d =1 (mod 4) or d = — 1 (mod 4). Then
2(— alc) = i€a<:52£), if ¢ is a even positive integer and (a,c) = 1,
M(—ale) =0, if a and ¢ are odd, ¢ > 0 and (a,c) =1,

A(—ale) =+ ie, (2—(—1>, if ¢ is a odd positive integer and a is even.
c

Now let us define Eisenstein series by

2.2) oz, 8) = v“z( Z):—ll?\l(—- alox(c)cz — a) ez —-al™®,
(2.3) V2, 8) = vs/z( Z>-1 2 (— alox(c)(cz — a) ez — al®,
(2.9 $u(2, 8) = vs’z( }):.:1 A (= afo)x(c)cz — @) |ez — al™*,

¢>0;even

where the sum in the first line is extended over all integers a, c such
that (¢,c¢) = 1 and ¢ > 0; the sum in the second line is extended over all
integers a, ¢ such that (a,c) = 1, ¢ is odd and ¢ > 0; and the sum in the
last line is extended over all integers a, ¢ such that (a,c¢) =1, ¢ is even
and ¢ > 0. Then, by Lemma 2, we have obviously

(2.5) 02, 8) = (2, 8) + (2, 8) .

Put 6(z) = > » _.e”, j'(1,2) = 60(2)[0(2) and J(7,2) =cz+ d for
7= (g 3) € G. Then it holds as well known that j/(7, 2) = e,;l(—%dc—) J@, 2"

ab
for 7 :(C d) eI'©@). Put

(2.6) Er(z, ) = )j'(T, 2) (DI, 2|,

€T (2) oo \I"0(20,2

where X, is a character defined by %,(n) = (}Z—)X(n), Q). = {(g 3) eI'(2)
} ab _
lc = 0\ and I'(N, M) = {(c d) e I'(N)b =0 (mod M)}. Then one can

easily derive from Lemma 2 that
2.7 Va2, 8) = v i v 2 2| *E®»(— 1)pz, s),
28) ¢z, 8) = v/ P U2) J (1, p2) 7 1y, PR) T E (1,07, 8)

with p, = (p én 2;’) where m, n are integers such that p'm — 4n = 1.
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Now let us compute the Fourier expansions of ¢,(2, s), (2, s) after
[3]. Observing that 2,(a 4+ 2¢c/c) = 2,(a/c) for a, c € Z coprime to each other,
we have

022, 5) = (20)”2( };, 1Zl(a/c)X(c)c‘s“/z@z + alc)" 42z + alc)*”
S0

— @ 3T 3 alale + 2m)x(c)et

a/cmod2 n=—co
c>0

&9 X (22 + afc + 2n)" D42z + afc + 2n)*"
= (20" 3T AlalOnc)(2e)
(l/cc@gdz

X 3% (2 + af2c + 1) Az + af2 + n)

Since
i:m (z + n)"¢*2(F 4 p)*"* = n:ﬁ“ i"mv'““zpn(s, p)etrine
with
_ oo e—?xinve dE

p?’l(sy v) - ‘[_w (1 _ is)(s+l)/2(1 + if)s/z )

we have

ez, 8) = 2P0 51 A(afO(e)(2) T 3 i (s, v)et e
(210) a/c(ggdZ n=—o0
— 2s/2v—(s—1)/2 _Z jl(ns S)pn(S, v)eZninu ,

where
Jin, 8) = 35 A(ale)i(c)(2c) - r-sim rerinale
a/cmod 2
c¢>0
(2.11) . o 2¢
— 2—s—-3/2 Z c—s—lx<c) Z Z e-—ni(hﬁ—n;a./c‘
c=1 h=1 amod2¢
(a,0)=1
Put L(s%%) = >, X(n)n~¢, then
(2.12) L(s, ji(n, s) = 2777 3 b*1(b) Auy(n) .
b=1

Put

(2.19) &(s,m) = 3P HPNA ),
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for all primes p and put
(2.14) nis, n) = ZOZ‘”X(?)Azm(n),

then &(s,n) = 1 + 2-%(2)y.(s, n) and
(2.15) (s, Dji(n, s) = 2771 (1};12 £.(s, M)n(s, n) .

In the exactly same way we have

(2.16) Vilz, 8) = 2P0 R 31 (m, s)p,s, v)etr,
where
2.17) Jn,s) = 3 alafe)i(c)(2c)- i1 reminale
a/cmod?2
¢>0; odd

Put Lys, ¥) = > 7. X(m)n=*, then
n; odd

(218)  Lys, 0)j(n, s) = 27°71" 2 b7 U(b)Agy(n) = 277 ] &4(s, n) .

b3 odd
Since 5(s, n) = [[,&,(s, n) and &(s, n) = 1 + 275U(2)p,(s, n),
LZ(S7 X)1!/l(22, S) + 2—3X(2)L(S’ X)§01(2Z9 S)

(2.19) -
— 2—s/2_1/207(s-1)/z :Z 62“.7““0”(3, U)E(S, n) .

Recalling that

(2.20) Ey(z,8) = 2°"I'((s + 1)/2)(27rv)‘<““/2«/7v”ze‘jz e (s + 1, )&(s + 1, n),
we obtain

TureorEM 1. The integral E[z,s), defined in (1.29), of the theta func-
tion for the ternary quadratic form defined in (1.26) is a linear combination
of Eisenstein series ¢, and +, defined in (2.2) and (2.3), that is,

E,,(z, S) = 2S+1F((s + 1)/2)(271.)-(“1)/2
X (Lz(S, X)x[rx(?lz, S) + 2_SX(2)L(S, X)§01(22, S)) '
3. We continue to compute the right-hand side of the equality (1.22)

in this section. First, by changing the variable z to — 1/pz and using
(1.23), (1.28), (1.29), (1.30), we can transform it to the following forms:
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’\/F_IJ‘P\H§D(—‘ 1/pz)f:f:é(z’ w, w)y*~'dxdyd,z
(3.1) = x/j)‘—*jwlsa(_ 1/p2)E (2, s)d,z

= VB[ (WTe(-1UpI@Ez 9)
+ VU (—1/p2)0yR)E, (2, 8))dyz .
Note that 6(z) and E,(z,s) are automorphic under I'(4p); and so is
0(2)E, (z, s) because
(3.2) O(z, 8,8) = V'"0(2)04(2, 8) + v"0y(2)0,,,(, &)

is automorphic under I'\(p). Therefore we can decompose the integral in
(3.1) as follows.

VB Irp: Tp1 ([ VT o(— Up@Ez, 9diz
(3.3) 2
+ [ Voo Up2B@ Eusz 9d2)

where 2 denotes the fundamental domain I"(4p)\H. To investigate the
second integral, consider

(3.4 0.2, 8) = VT T Ha)errieaasarn,

x=(§ PeLao
then we see that
(3.5) 05,4(2, 8) = Of(z, 8) + 04z, 8)
when we put

(36) @;“(z, g) — J‘&‘ Z x(a)eZni(—udecX+i‘z—lvnr((tg.¥g)2)) ,

x=(32) e L3

with L = {(zf;z b{f)

a,b ce z}. By [1],

3.7 B0z, g) = V21 ‘Wpz + 4U4)0F(z, 8)

with ¢ = (;l)m 2) where m, n are integers such that 16m — pn = 1. Since

o normalizes I'y(4p, 4), OF(z, g) is automorphic with respect to I'\(4p, 4).
Namely, it holds 07z, g8) = X(d)Vcz + dO¥(z, g) for ¥ = (g 3) eI'(4p, 4).

Hence we can decompose the second integral in (3.3) into two terms, that is,
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[ Vo= 1p20@E. 2 9d2

- e mano ] [on(a (I 2

— 1/4 f VU o(— 1/p2)82)

XJJ@*< ( )(0 1/¢y))dxys dyd.z

+ 1] JTe(— 1p2E)

<[l QD06 15 s

with 2’ = I'(dp, )\H. By (8.7) the first term is equal to

(3.8)

(3.9) 1/4I N U o(— 1/p2)0(2)v 2 (pz + 47 IAE (02, 5)diz

and since ¢2’ is also a fundamental domain of I"((4p) and can be taken
as the domain of integration in (3.9) instead of 2/, it is transformed to

(3.10) 1/4I ‘\/“v*]pz — Am| p(w,07'2)0 (0 '2) 4/ 2i (po~'z + 4)*U(4)E,(z, s)d,2

0 —1

with o, = (p 0). Put

GBI 6 = 3 e, 002) = 3 (—Dre, 62 = 3 et

n=—oo n=—co n=-—0o0

then the well known transformation formulas

0i(z + 1) = 04(2), Oz + 1) = 6,(2),
(3.12) Oz + 1) =+ i 042), 0.(—1/2) = vV 2[i6,(2),
0(—1/2) = ¥ 2[i042),  O(—1/2) = ¥V 2[i042),

hold. Using these and the explicit transformation formula for 6,(z) =
0(2'2),

(3.13) 6,(r2) = (Tz‘) “W/ez + d6,(2) for T = (‘Lf Z) er @),

we have
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0(c7'2) = Oi(ag'2) = Oy(w~'d’a"'2)
= i"o’a'2) "0 d’a"'2) = i~V o’a"'2)"*0 (G 2)
= 170’0 '2) "L _(Bea™'z — n — 8)/°O (et '2)

= /20 'Wpz — 4mO,27'2)

where ¢ = a)ao"a(l(/)z 1?2) = <§7 _ ’21m)’ e = (é i), o= (g (1)> and ¢ =

eole™t = (p8+ 8 —n _*_ 8>' Here notice that n = — 1 (mod 4) in (3.14) since

16m — pn = 1; therefore ¢_, s = 1. Observing that ¢(0,07'2) = U4)¢(v,2),
we see that the first term of (3.8) equals

(3.14)

(3.15) 1/4[ VU 0,20,2 DE Nz, 5)dsz -

Put 7, = <(1) {), (i=1,2,3,4), then I'(4p) = Ui, I'(4p, 4)7,. Hence we can
suppose that 9’ = Ui_,7,2. Therefore (3.15) becomes

(3.16) 1/4 j VU0, Y, @2<((1) g)z)E,(z, s)dyz .
By the definition of 0,(z), we have >, 82«(1) ;).z) = 46(2) and therefore
(3.16) becomes

3.17) J v U p(0,2)0(2)E (2, s)dyz,

which is identical with the first integral in (3.3).
We show that the second term of (3.8)

(3.18) 14 VO o(— Up0@ Edz, 5)dsz

is 0. Since 9’ = U{_, 7.2 and 6,(2) = 0,(22), it equals
— 4 22
(3.19) 1/4 j JU (0,2 3] @3((0 1)z>E,(z, 9)d,z
2 i=1

which is 0 because > i, @3<(g 21i>z> = 0 by the definition (3.11). Thus we
obtain

(3.20) j : J : F(w,w)dxy*~*dy

= 2 DI(P): TAPI[ V0 o= UpDEd(z, )dsz.
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By Theorem 1 and (2.5), we have

Ey(z,8) = I'((s + 1)/2)(2x)~ “*Y2(2)L(s, 1)
X (22 (22,8 + 1) + ¢,(22, 5 + 1)).

Therefore by (2.7) and (2.8) we have

(3.21)

L VU o(— 1/p2)d(2)E (2, s)dyz
(3.22) = I((s + 1)/2)(2x)~*V2U2)L(s + 1, %)
X (26 02ps 359 P () + 1(2)2°¢ 2 1 Py(s))

where
5.29) P() = | o= 1p20@0 ™ 202)
5 | 202)| B, 2p2, 5 + iz
520 P = [ o= 1p2i@
X /227122 'E (— 1/2pz, s + 1)d,z .
Put v = ( _p 4p ;2 r?z)’ then v normalizes ['(4p) and we can take v'9 as

a domain of integration instead of 2. Hence, changing the variable z
to vz, we have

(A S R o o)
ol (2 ) A s e
e 1,30 3= (3 A5 )= (4 20) < ram a1

0 1
. 1 —n 2p 0 Y
={_ eI'(4), we have E(p, 0 1)v% S +1)=FE""2z s+ 1),

(3.25)

p'm
go(((l)) _(1)>vz) = 1(— We(z) = 1@ e(z2) and 6(2) = (— 4pz + p'm)"76(pz).

Therefore we obtain
(3.26) Pys) = p’(“l)’22(4)f AU En(22, s + 1)d,z .
As for Py(s) in (3.24), changing the variable z to — 1/4pz, we have

(3.27) Py(s) = ptrory 3J o(42)0(p2)v P E(22, s + 1)d,z .
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Hence it follows from (2.22) that

[ Voo= 1paiEE 9de
= I'((s + 1)/2)(2r)~=*YL(s + 1, D)pt+H

(3.28) g
% (2<s+:>/zj @(2)0(p)v* " E® 22, s + 1)dyz

+ 23<s+1)/2f ¢(42)0(p2)v* "+ E® 2z, s + 1)d02) .
2

Denote the first (respectively the second) integral in (3.28) by Q.(s)
(respectively @.(s)). Then the usual computation for convolutions gives
that for ¢o(z) = >, . q,, v K,(2x|n|v)e’ ",

Q.(s) = f o(2)0(p2)v* " E*»(22, s + 1)d,z

f w120 p(r2)0(prz)dyz
T€ (T \l)(4D)J 2

(3.29) _ j v j e )A(pR)dz

= j 237 a,,.K,(2npniv)e-trrmtopsA-idy
0 n=1

= 220)" IS (prt) IR rv(s“’”Ku(v)e‘”dv
n=1 0
where [, = {—_i— <(1) ?)ln € Z}. By the same reasoning,

Q@ = | [ v rounipdse

(3.30) = Iw4 i s K,(8rpntv)e=ssrmoyp =12 dy
0

n=1

= 4(8z)- ¢ “)/2; Qe pn®) =1 I: v8-Y2K (v)e-vdy,
hence we have ﬁ
[ Vo= 1p@E =, 9die
=T DR R 4 1, 0p
(3.31) X 2(2r)- s+ nilapng(pnz)‘(“‘)/z J: ve-Y2K (v)e~du

X (2(s+1)/2 + 9.4~ (s+D/293(s +1)/2)
= 60((s + 1)/2)(2r)"“* L(s + 1, X)p'*a, 241"
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X (f} an¢ “))F VDK (v)e~vdu.
n=1 0

Therefore we finally obtain
r r F(w, wydxy ~*dy
0J?
(3.32) = I'((s 4+ 1)/2)(2z)~“*VL(s + 1, X)a,2%* 7p~173(X)
% (i anzn““”) r DDA (vedy .
n=1 0

Comparing this with (1.21), we have

c r K (y)y~'dy
(3.33) 0

= I'((s + 1)/2)ap2“*Wp“‘/zg(f()r ve-Y2K (v)e~tdu .
0
From the well known formulas (see [5], p. 101 and p. 37)

(3.3) Jo v R ey
. 0

= /T2 ()2 + 1/2 + v)[(s/2 + 1/2 — )[(s/2 + 1),
K(y)y~'dy

= 27 (s[2 + 1/2 + )['(s/2 + 1/2 — v)I'(s[2 + 1/2)'T'(s + 1)~
and I'(28) = 2~ 'x=12(s)["(s + 1/2),

(3.35) I :

(8.36) c = 2a,p"*g(%)

follows.
We can easily verify the following lemma:

LEMMA 3. Let ¢(2) = D pvo @YK, (2r|n|y)e’ ™" be a cusp form with
the character X, which is a common eigenfunction for all Hecke operators,
and assume a, = 1. Define the cusp form ¢ with the character 1 by ¢(2)
= ¢(— 1/p2). Then ¢ is a common eigenfunction for all Hecke operators
and its first Fourier coefficient 2, is given by

2, == g(Da,*.

Let ¢ be as in Lemma 3 and put

(3.57) Glw, w) = [ 9@z, w, w)dz
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with I = I'y(p). Then by (1.3), (1.17), (1.19) and (3.36) we have
(3.38) G(w,, wy) = g F(w,, w,) = 2a,y/ p p(w)p(w,) .

Put (2) = 2;'¢(z), then + is a common eigenfunction for all Hecke
operators whose first Fourier coefficient is unity and therefore

339 [ 9@l — lpw, —1pw)dz = i;'%a,y Be(— Lpw)e(— 1ipw) .
Hence we obtain

THEOREM 2. Let +» be a cusp form with the character 1, which is a
common eigenfunction for all Hecke operators. Assume that the first
Fourier coefficient of + is unity. Then it holds

fr\ll 1"[(2)5(2’ — 1pw,, — 1jpwydiz = 2y p g (w)p(w,) .

4, Let o be the ring of integers in an imaginary quadratic field
Qv — p) with a rational prime p=1(mod 4). Then o=2Z4+—pZ
Put ¥ =+ — po and denote the upper half space {(z, v)|zcC, v > 0} by

H. Let us define the action of Gy = SL(2, C) on H in the usual way.
For aeC, put d = <g g) For w=(z,v)eH and ¥ = (? 2)6(}0, put

(i —g), and define w’ = 7w = (2/, v) € H by the relation

W = (@ + byew + d).
Put
(4.1) E(w,s) = 2, ] v(mz + nf + [m[v’)I(n)

nEo,ME

where X is the character on o/ defined by X(n + v —pl) = x(n) for n,l
¢ Z. Then E, is a non-holomorphic Eisenstein series on H satisfying

E(tw, s) = Ud)Ew, s) for T = (? 2) €y = {(g 3) e SL(2, 0)|c = 0 (mod fxs)}.
Put
(4.2) F(w,s) = %Z v'(mz + nf + |m[v*)~*X(m)
neEP,meo
then E (w,s) = F(ow, s) with o = <(1) - (1)> F, has an usual integral ex-

pression, that is,
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F(w, s) = z'I'(s)™"

(4.3) X [Ty 3 Hmw exp (= (mz + nf + mfdy

neER,mEo

The series in the integrand can be expressed as a theta function for a

quadratic form over K = Q(W — p). Put $* = v —p "(Z + v/ — p "'Z), then,
using the Poisson summation formula, we obtain

>, exp (mu~'(mz + nf + |m[v?)
neEP

(4.5)
== Z‘B P~y v exp ( —2xiRe(mnz) — z(mfy + |nfyp~Hv)
neP*
so that
2, M) exp (— - (mz + nf + [mfv)
(4.6) =p*yv 2. Xm)

mEo,ne P*
X exp (— 2riRe(mnz) — z((mfn + |nfyp~Hv) .
Hence we obtain
Fw,9) = #1()"p |
0

X v >, I(m)exp(— 2ziRe(mnz) — z(mfy + |nfp Hu)dy .

meo,nEP*

(4.7)

Now we consider the pullbacks of E, F,. It is easy to see that for z =

u+iveH and T = (3 3) e SL2, R), T(u, v) = (&, v') holds denoting 7z =

Zzzig = u + . Since E(Tw, s) = Ud)E(w, s) for 1 = ((CZ 3) € I'y and

I's N SL(2, R) = I'(p), we see that for 7 = (? 2) el'(p), E(7(u + iv)) =
X(d)E(u 4 iv) holds and for ¢eI'%(p), F(o(u + iv)) = Xd)F(u + iv) holds
when we put E(u + iv) = E((¢, v), s), F(u + iv) = F,((u, v), s) with u,ve
R. If z = ueR, the series in the right-hand side of (4.7) can be viewed
as a theta function for a quaternary quadratic form over Q. In fact,

put n = (—p)""*(—=b —a(—p)y"and m = d + (—p)c with a, b, ¢, d ¢ Z,
then

Re(mn) = det (z dl/’p) :

mPy + |y~ = (d* + pc’)y + p~(b* + p~'a’ )y~

= (e )20 ap)))

with
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h, = ((7]]33/2)’1/‘2 (3)2 12) ) l, = (p-m ?) .
0 (") 0 pv

Thus we obtain
(4.8) Fi(u, v), s) = 2°I(s)" p~i" j :ns'z@((u + iv)lp, h,, L)dy

where 6(z, g, h) is the theta function defined in (1.1). It follows from
(1.3) that

(4.9) Ffo(u, v), 8) = z*I'(s)"* p~*"g(%) J : 7°"0(u + iv, hy, L)dy .

- _ -1
Since wh,'w, = h, and o,l,0™' =1, with 0 = ((1) (1)), w0, = (p(’)ﬂ pO )
1/2p1/4 0

and h, = (’7 0 ,7_1,2p_1,4), it holds

Bz, hyy 1,) = O(z, 0,h,, 0,1,) .

Therefore, for a cusp form +, putting 9, = I'(p)\H and z = u + iv, we
have

(4.10) J 9,E°((“’ v), sV (2)d,z

= p—s/zg(z)ﬂ'sr(s)_lj: 7)3—2‘[91 @(Z’ wpiiv’ wplp)\!’(z)d(’Zd’) :

On the other hand, Theorem 2 asserts

@1) [ 6z 0y, 0, HE@dady = 2V DIV P )

Thus we obtain

(4.12) J LBl v), 919(@)dez

— 71'3[’(3)_]23\!/‘(])_]/27:)“'& 7).9—21!/‘(1)1/2771:)d)7 .
]
Since J- : K,y ~tdy = 2°7°I'((s — v)/2)['((s + v)/2), we finally have

THEOREM 3. Let X be a primitive Dirichlet character modulo a prime
p=1 (mod4). Assume X(— 1) =1. Let y(2) = D 400,V K,(2r|n|v)e****
be a cusp form with the character X, which is a common eigenfunction for
all Hecke operators, and assume a, = 1. Let E(w,s) be the Eisenstein
series defined by (4.1) on the upper half space. Then it holds
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j E(u, v), s)v(u + iv)v-*dudv
T'o(p)\H

— 2T(s)! f<,3_:,_%2_:?i> r <§_*_12/2i_”>

X 24(p™)p~ VAL — 1/2, )

where L(s, ) = > 7.,a,n"".
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