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Introduction

Many authors have studied the relationship between nontrivial class
numbers h(n) of real quadratic fields Q(^~n) and the lack of integer solu-
tions for certain diophantine equations. Most such results have pertained
to positive square-free integers of the form n — i2 + r with integer £>0,
integer r dividing 4& and — £<r<£. For n of this form, Q{~n) is said
to be of Rίchaud-Degert (R-D) type (see [3] and [8]; as well as [2], [6],
[7], [12] and [13] for extensions and generalizations of R-D types.) For
example, if r = 1 (respectively r = 4) Ankeny, Chowla and Hasse [1] (re-
spectively S.D. Lang [5]) have shown that x2 — ny2 = ± m (respectively
x2 — ny2 — ± 4m) for a positive integer m has integer solutions (x, y) only
when m>2l (respectively m>l). They used this fact to show that h(p)>l
when p = (2rq)2 + 1 is prime with prime q and integer r > 1 (respectively
p = ((2r + ΐ)q)2 + 4 is prime with prime q > 2 and integer r > 0). For
r = — 2, H. Takeuchi [9] proved the insolubility in integers (x, y) of x2 —
py2 = ± 3 in the special case where 12m + 7 and p = (3(8m + 5))2 — 2 are
primes and m > 0 is an integer. More recently H. Yokoi [11] considered
the case \r\ = 2. He generalized Takeuchi's results by showing that for
odd primes p = ((2r + ϊ)q)2 ± 2 (with r > 0) and q > 2 prime) x2 — py2 =
± q is solvable in integers (x, y) if and only if p = 7 and g = 3. It is the
purpose of this paper to generalize all of the above by considering arbitra-
ry integers r in the R-D types. The first section will deal with the in-
solubility in integers (x, y) of x2 — ny2 = ± 4ί where t is a positive integer
and Q(V^Γ) is of R-D type. We will use these results in the second sec-
tion to establish h(n) > 1 for a wide class of R-D types including all those
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mentioned above from the literature. As an illustration we provide a table
of values of h(ή) > 1 for which our method applies.

§ 1. Insolubility of x2 - ny2 = ± U

Let n be a square-free positive integer and let t be any positive in-
teger. Suppose that (u, v) is a rational integral solution of x2 — ny2 — ± At.
We say that (u, v) is a trivial solution when t = m2 and m divides both u
and v. Otherwise (u, v) is called nontrivίal.

The following result is attributable to Davenport, Ankeny and Hasse
(D-A-H), (see [4]) in the case where t is not a perfect square. We are
indebted to Professor H. Yokoi for providing, in a recent letter to the
author, a proof of the case where t is a square. In granting the author
permission to include the proof in this paper, Professor Yokoi has indicated
that the proof was communicated to him by Humio Ichimura in relation
to [12, Theorem 3, p. 147]. Note that this proof completes an omission
in the proof of [12], (ibid.); and in fact the letter from Professor Yokoi to
the author was a response to a query about that omission. We state the
result in a fashion not usually found in the literature, but which will
better serve our purposes later, and we have altered the aforementioned
proof to suit the content of the paper.

LEMMA 1.1. Let n be a square-free positive integer and t any positive

integer. Suppose that (A + B^/ΎΪ)lσ is the fundamental unit of Q(Λ/ΊΪ)

where σ = 2 if n = 1 (mod 4), σ = 1 otherwise and A2 — nB2 — σ2δ, (i.e.,

δ = ± 1). // there exists a nontrivίal solution to the dίophantine equation

x2 - nf = ± oH then t > ((2A/σ) - δ - 1)1 B2.

Proof. Let u2 — nv2 = ± σ2t where (u, υ) is a nontrivial solution with

u > 0 and the smallest possible v>0. Thus:

± GH = (u2 - nv2)(A2 - nB2)lσ2 = [(uA - nvB)/σ]2 - n[(uB - vA)/σ]2.

It is easily seen that (uA — nvB)jσ and (uB — vA)/σ are rational integers.
We claim that they provide a nontrivial solution. If not then t = m2 and

( i ) (uA — nvB)jσ = 0 (mod m)

(ii) (uB — vA)jσ = 0 (mod m).

Multiplying (i) by B/σ, (ii) by Ajσ, and subtracting we get:

0 = v(A2 — nB2)lσ2 ~ vδ (mod m), implying u = 0 (mod m) .
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Similarly u = 0 (mod m) contradicting that (u, v) is a nontrivial solution

and securing the claim. Hence, by the minimality of v, \{uB — vΛ)jσ\ > v.

Therefore either:

(iii) u > v(A + σ)/B or,
(iv) u<v(A- σ)IB.

If (iii) then:

± σH = u2 - nv2 > (v%A + σ)2jB2) - nυ2 - v\A2 + 2σA + σ2 - τιB2)/B2

σ2)/£2 > σ\δ + 2A/σ

Therefore t > ((2A)/σ + δ + 1)1 B2 > ((2A)/σ - δ - 1)/JB2. If (iv) then:

± σH =u2- nυ2 < (υ\A - σfjB2) ~ nυ2 = υ\A2 - 2aA + a2 - nB2),IB2

< σ\l + δ- (2A)/σ)/B2.

Therefore t > ((2A/σ) - δ - 1)/JB2. Q.E.D.

The first theorem of this section encompasses and generalizes several

results in the literature. Among these are: Ankeny, Chowla, Hasse [1,

Lemma, p. 218], S.D. Lang [5, Lemma p. 70] and R. Mollin [7, Lemma 1.1,

p. 8].

THEOREM 1.1. Let n — £2 + r be a positive square-free integer with r

dividing 4£ and — t < r < ί and let t be any positive integer. If x2 — ny2

— ± σ2t has a nontrivial solution where σ = 2 if n = 1 (mod 4) and σ = 1

otherwise, then:

( i ) // r = 1 and nψ 5 then σ2t > 26.

(ii) // r = - 1 then t>2(£ - 1).

(iii) If r = 4 then t > 6.

(iv) If r = - 4 *Λerc ί > / - 2.

( v ) J/ |r | =£ 1 or 4 ίλen σ2ί > |r|.

Proof. If I r| — 1 or 4 then the fundamental unit of Q{y/~n) is (I + ^~n)lβ

where β = 1 if |r | = 1 and n =̂  5, whereas /3 = 2 if \r\ = 4, (see [3] and [8]).

If r = 1 and n ~ 1 (mod 4), (ra =£ 5), choose A — 21 and 2? = 2, and other-

wise choose A = /, B = 1. Then (i)-(iv) follow immediately from Lemma 1.1.

If irI Φ 1 or 4 then the fundamental unit of QW~n) is ((2/2 + r) + 2ly/~n)l\r\

by [3] and [8]. Now, choose A = σ(2l2 + r)/|r| and J3 = 2lσ/\r\. By Lemma

1.1: t > ((2(2/2 + r)/|r|) - 2)/(2/σ/|r|)2; i.e., t > (2l2\r\ + r\r\ - r2)/2/V. If r > 0

then oH > r. If r < 0 then σH > - (/2r + r2)/Z2. If σH < - r - 1 then - r

— 1 > — (/2r + r2)//2 which implies Γ < r2, a contradiction. Hence σH > — r.

Q.E.D.
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We are now in a position to prove the main result of this section.

THEOREM 1.2. Let n = ί2 + r > 5 be a square-free integer such that

the following conditions are satisfied:

(1) £ = st where s > 0 cmd ί > 1 are integers with g.c.d. (£, r) = 1.

(2) r divides 4s with - £ <r< β.

(3) jEΐίΛer n a£ 1 (mod 4), or |r | = 1 or 4.

(4) // |r | - 4 tfierc s > 1.

(5) If r = 1 cmd ^ is euerc ZΛerc s > 2.

Let σ = 2 if n = 1 (mod 4) aτιd σ = 1 otherwise. The dίophantίne

equation x2 — ny2 — ± σ2ί /ιas a nontrίυίal solution if and only if n — 7 ara£

ί = 3; i.e., x2 - Ίy2 = - 3 .

Proof. If |r | = 4 then by hypothesis (4) the result follows from Theorem

1.1 (iii)-(iv). If r = 1 then by hypothesis (5) the result follows from Theorem

1.1 (i). If r = — 1 then the result is immediate from Theorem 1.1 (ii).

If \r\ Φ 1 or 4 then by hypothesis (3) n ^ 1 (mod 4), so σ — 1. Let

u2 — nυ2 = ± t be a nontrivial solution with w > 0 and smallest possible

υ > 0. For the sake of convenience we let w = ± ί.

Observe that &; + π;2 = (& — ^u)(w + £v) and let α = \u — £v\ > 0 and

b = (u + £v) < 0. Set # = 1 if ^ > — rv2 and α = — 1 otherwise. Thus:

(a — 1) (6 + a) = ab + act — 6 — or > 0; i.e., αδ — a > aa. Also | ^ | = ab

- arυ2. Hence: 0 <\w\(s - ΐ) = £ - \w\ = ((b - aa)l2ϋ) - ab + αru2 =

(6 — αα — 2uα6 + 2arv*)/2v < (ab - a - 2vab + 2arv*)/2v = - (αr(l - 2rι;3)

+ α6(2ι; — l))/2z; which is less than zero if ra < 0. Thus we assume hence-

forth that ra > 0. Since we will need it later in the proof we label the

following which follows from the above inequality:

( * ) ab < - a(l - 2rvs)l(2υ - 1).

Now, let A = (2^2 + r)/|r| and B = 2£/\r\. As in the proof of Lemma

1.1 we obtain that (uA — nvB, uB — vA) is a nontrivial solution. Hence

by the minimality of v, \uB — vA\ > v. It follows that either:

(a) 2£(u - £v) > v(r + \r\) or

(b) 2£(u- £υ) < v(r - \r\).

Case I. w < — rv2; (i.e., a = — 1). Hence r < 0, since ra > 0.

( i ) If (a) then u > £υ. Thus:

w = u2 - (£2 + r)v2 > £2v2 - (£2 + r)v2 = - rv2 a contradiction,

(ii) If (b) then £u < (S2 + r)υ. Thus:
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£*w = l2u2 - ί\i2 + r)v2 < (i2 + r)2υ2 - ί\ί2 + r)υ2 = r(ί2 + r)v2, so:

(**) £2w < r(£2 + r)υ2

If w > 0 then by (**) 0 < £2w < r(ί2 + r)υ2 < 0, a contradiction. We

assume for the remainder of case I that w < 0.

Suppose υ > - w then by (**): £2v > - £2w > - r(S2 + r)υ2. There-

fore: rV > - £2(rv + ί)v > - w2(rv + ΐ)υ. Hence w2 < - r2v2/(rv + ί)v

< 1 — r, contradicting Theorem 1.1 (v). (Observe that υ > 1 is forced by

our supposition, and the fact that r Φ — 1).

Now assume υ( — r — 1) > — w>v then by (**): £2v(—r — 1) > — ^2w

> - r(^2 + r)zΛ Hence: r2u2 > - r£V + ί2υ(r + 1) = ^2(u(r + 1) - ri;2) >

w2(v(r + 1) - u2r). Thus: w2 < r2υ2l(v(r + 1) - u2r) = r2u/(r + 1 - υr). By

Theorem 1.1 (v) the fact that υ(— r — 1) > — w forces v > 1. Hence:

uf < r2vj(r + 1 — vr) < r2. This, however, contradicts Theorem 1.1 (v).

Assume for the remainder of case I that — w > υ(— r — 1). Recall

that from (*) we have: ab < (1 - 2π/)/(2ι; - 1). Hence:

- w = ab + rv2 < ((1 - 2rυ3)l(2v - 1)) + ri;2 = (1 - rιf)l{2υ - 1)

- v(- r - 1) + (ι/(r + 2) - u(r + 1) + l)/(2u - 1).

Let c - u2(r + 2) - u(r + 1) + 1. If r < - 4 then c < 1 if υ > 1. If r =

- 3 then c = - u2 + 2v + 1 = - ( u - I)2 + 2 < 1 if v>2. If r = - 2 then

c/(2u - 1) = (ϋ + l)/(2u - 1 ) < 1 if v > 2. We have shown that if either

r < - 4 and u > 1, or - 2 > r > - 3 and υ> 2 then u ( - r - 1) < - w

< u(— r — 1) + 1, a contradiction.

Now, if r < - 4 and υ = 1 then: 3 < υ(— r— 1 ) < — M ; < ( 1 — ΓU2)/

(2u — 1) = 1 — r. Therefore — w = 1 — r; i.e., £ = 1 — r, whence w2 — ^2

= 2r — 1. Recall that a — ίv — u and 6 = -#u + u, whence u = (b — a)j2

and i = (6 + α)/2. Hence s = (6 + α)/(αί> + 1) and r = (1 — αb)/2, whence

4s/(— r) = 8(α + b)l((ab)2 — 1) which must be an integer by hypothesis (2).

In particular, 8(α + b) > (ab)2 - 1. Since b > a then 166 > (ab)2 — 1,

whence 1 > b(a2b — 16), i.e., a2b < 16. Since a and b are both odd then

a = 1 < b is forced and b e {3, 5, 7, 9, 11, 13, 15} = S. Of the values in

S only b = 3, 5 or 9 yields that 4s/(— r) is an integer. If b = 9 then r =

— 4; if b = 5 then r = — 2, and if b = 3 then r = — 1; all of which are

contradictions.

I f r = - 3 a n d ι ; = 2 then v(- r - 1) = 4 < - w < (1 - rυ2)l(2v - 1)

= 13/3 < 5, a contradiction. If r = - 3 and u = 1 then u(— r — 1) = 2 <
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— w < (1 — rv2)l(2v —• 1) = 4. If — w = 3 then we have a contradiction to

hypothesis (1). It - w = 4 then - 4 = w2 - τι = u2 - £2 + 3. Thus - 7

= w2 - £2 = (M - ^)(w + ^) which forces u = 3 and ^ = 4. This contradicts

hypothesis (2). If r = — 2 and u = 2 then: 2 = u ( - r - l ) = u < - u ; <

(1 - rυ2)l(2v - 1) == 3. Therefore - w = 3. By (**) we have: 3£2 > 8(£2 - 2)

which implies 16 > 5£2 forcing £ = 1, a contradiction. If r = — 2 and

i; = 1, then 1 = υ(- r - 1) < - w < (1 - ri;2)/(2u - 1) = 3 whence: - 3

= u2 - n = u2 - I2 + 2, i.e., w2 - £2 = - 5 which forces ^ = 3, u = 2, and

n = 7. This completes case I.

Case II. a; > - rv2, i.e. a = 1. Therefore r > 0. If (b) holds then

M < tυ. Thus: u; = u2 - (£2 + r)υ2 < S2v2 - £2v2 - rυ2 = - ri;2 contradicting

our assumption. We assume for the remainder of the proof that (a) holds:

i.e., £u > v(£2 + r). If w < 0 then 0 > £2w = £2u2 - ^(T + r)υ2 > (£2 + r)V

-l\p + r)v2 = r(£2 + r)v2 > 0, a contradiction.

We assume for the remainder of the proof that w > 0. Now assume

w> (r- l)υ. Recall that from (*): ab < (2rv3 - l)/(2u - 1). Therefore:

w = ab- rv2 < ((2rv3 - ΐ)/(2v - 1)) - rv2 = (rv2 - ΐ)/(2υ - 1) = (r - ϊ)υ +

(v(r - 1) - v\r - 2) - l)/(2u - 1) < (r - l)u + 1, a contradiction to our

assumption. Hence 0 < w < (r — l)u. Recall that from (a) we have: ^2w;

> r(£2 + r)v\ Hence: /2w; > r(£2 + r)w;2/(r - I)2 > ίW/r, which implies

r>w contradicting Theorem l.l(v). This completes case II, and secures

the result. Q.E.D.

The following result is immediate from Theorem 2.1.

COROLLARY 1.1 (H. Yokoi [11, Theorem 2, p. 153]). Let p and q be odd

primes satisfying p = ((2n + ϊ)q)2 ± 2 with n>0. Then the diophantine

equation x2 — py2 = ± q has a solution (x, y) in integers if and only if

p = 7 and q = 3, (n = 0).

Yokoi's result was in turn a generalization of H. Takeuchi [9, Lemma,

p. 55].

We note that Theorem 1.1 fails for n = 1 (mod 4) in general. For

example it fails when n ± 4t are perfect squares. An instance of this is

n = 33, with £ = 6, r = — 3 and Z = 2 for which we have u2 — nυ2 = 52

- 33 = - 8 = - σH.

§ 2. Class numbers of real quadratic fields

We now employ the machinery established in Section 1 to study a
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certain class of real quadratic fields and determine that they have non-
trivial class numbers.

THEOREM 2.1. Let n = £2 + r>7bea square-free integer with r\A£,

— ί < r < ty and either n ^ 1 (mod 4) or \r\ — 1 or 4. Suppose there exists

a prime q dividing £ such that q < i if \r\ = 4. Then h(ή) > 1 whenever

any of the following conditions are satisfied:

( i ) g.c.d. (q, r) = 1, q > 2 and (r/g) = 1 w Λere (/) denotes the Leg-

endre symbol. Moreover if r = 1 and ί is even then ί > 2q.

(ϋ) gr = 2 and r =£ 1 is odd.

(iii) g = 2 , r = U = 0 (mod 4), and £ > 4.

(iv) <?ir, |r | > <?, and \r\ ̂  4.

(v) \r\ = q>2.

Proof Assume h(ή) = 1. Therefore there exist integers (x9y) such

that:

(a) In case (i) x2 — ny2 — ± 4^ if n = 1 (mod 4) and Λ:2 — n^2 = ± g

if n ^ 1 (mod 4), since q splits in Q(V^)

(b) In case (ii) x2 — ny2 = ±2, since 2 ramifies in

(c) In case (iii), x2 — ny2 = ± 8, since 2 splits in

(d) In case (iv) x2 — ny2 — ±q, since q ramifies in

(e) In case (v) x2 — ny2 = ± 2, since 2 ramifies in

Now, (a)-(c) contradict Theorem 1.2, and (d)-(e) contradict Theorem

1.1 (v). Q.E.D.

Remark. Known results contained in Theorem 2.1 are [7, Theorem

1.1, p. 8] as well as the following two results.

COROLLARY 2.1 (H. Yokoi [11, Theorem 3, p. 157]).

(a) If n = (st)2 —- 2 is an odd prime where t is an odd prime, t = 1

or 3 (mod 8) and s > 1 is an odd integer then h(n) > 1 except when n = 7.

(b) If n = (st)2 + 2 is an odd prime where t is an odd prime satisfying

t = 1 or 7 (mod 8) and s > 1 is an odd integer then h(ή) > 1.

COROLLARY 2.2 (Hasse [4]; c.r. Ankeny-Chowla-Hasse [4], S.D. Lang

[5] and Mollin [6]-[7]).

If n satisfies the hypotheses of Theorem 2.1 and is either a prime congru-

ent to 1 (mod 4) or of the form qqf for primes q = qf = 3 (mod 4) then

h(ή) > 1.

We now illustrate the above in the form of a table. The class numbers
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Table 2.1

I

3
4
5
5
6
6
6
6
7
8
9
9
9
9
9
10
15
15
16
19
20
21
21
268
270
271
274
275
279
280
282
286
289
299
306
306
308
309
310
312
314
315
316

r

1
-1
1
5

-2
-̂

3
6
2
1

—3
-2
1
4
6

-5
—2
4
1

-2
1

-2
2

-2
2
1

-2
1
1

-2
2

-2
1
1
2

2
2
1

-2
2

-2
1

-2

10
15
26
30
34
35
39
42
51
65
78
79
82
85
87
95
223
229
257
359
401
439
443

71822
72902
73442
75074
75626
77842
78398
79522
81794
83522
89402
93634
93638
94862
95482
96098
97346
98594
99226
99854

h(n)

2
2
2
2
2
2
2
2
2
2
2
3
4
2
2
2
3
3
3
3
5
5
3
19
15
24
20
34
52
13
48
18
32
38
56
15
15
70
14
28
20
94
21
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in the following are taken from [10]. The first 16 entries are all those
integers less than 100 which are available by this method. The next 10
entries are the remaining primes less than 500 which are available. Note
that we miss only one of them namely 499. The remaining entries are
the available integers of the form 2q where q is an odd prime and 70,000
<2q< 100,000.
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