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DOUBLE COVERS OF P* AS VERY AMPLE DIVISORS

ANTONIO LANTERI, MARINO PALLESCHI

AND ANDREW J. SOMMESE

Introduction

The classical subject of surfaces containing a hyperelliptic curve (here a dou-

ble cover of P ) among their hyperplane sections was settled some years ago by

the third author and Van de Ven [SV] (see also [Se], [Io]). This paper is devoted to

answering the following general question arising very naturally from that prob-

lem.

Let A be a smooth complex projective n-ίo\ά n>2 and let π :A—*P be a

double cover. Classify all the smooth (n + 1)-folds X containing A as a very am-

ple divisor.

Of course two obvious pairs (X, L), where L — ΘX{A), satisfying the above

conditions are (Pn+\ 0p»+i(2)) and (Qn+\ 0Qn+ΛΌ), where Q* c P w + 1 denotes a

smooth quadric hypersurface. The first result we prove is that these two pairs are

the only ones occuring for n > 3 (Theorem (1.5)). This fact relies on topological

restrictions imposed to X by A, combined with arguments and results on hyper-

plane sections.

Surprisingly, the situation becomes far richer for n = 2. In this case KA

 =

π 0P2(a) with a > — 2. For a = 0, X is a Fano 3-fold of principal series. Fano

threefolds were classified by Iskovskih [I] in case b2(X) — 1 and by Mori and

Mukai [MM1], [MM2] when b2(X) > 2. For a Φ 0 the set-up is more interesting

since in this case it 0P2(1) lifts to a line bundle $ί ^ Pic (JO, whose nefness

properties allow us in many instances to apply the results from adjunction theory

[S2], [S3], [BS]. For a = - 2 we get the pairs (P 3 , 0 p 3 ( 2 ) ) , (Q3, 0 Q 3 (1)) above

and scrolls over P . For a > 0 we prove that (X, L) is a conic bundle over a

smooth surface (Theorem (2.2)), the conic bundle map being given by ffl.
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The heart of the paper is the study of case a = — 1, i.e. when A is a Del Pez-

zo double plane. This is a special case of particular interest in the problem of

classifying 3-folds having a Del Pezzo surface among their hyperplane sections.

This study will be carried out in a future paper. For a — — 1 we prove that

(X, L) is one of the following pairs (Theorem (3.2))

1) a quadric fibration over P

2) a scroll over a smooth surface;

3) the blow-up at one point of its reduction (P 3 , 0p 3(3));

4) the blow-up at two points of its reduction (Q , 6Q3(2)), the two points

not lying on a line of Q

5) (P 1 x P 2 , 0 P i x p 2 ( 2 , 2 ) ) ; o r

6) the blow-up at one point of its reduction (P(8), 2ξ — p ^ P i ( l ) ) , where

8 = βpi( l) Θ 0pi( l) Θ 0 P i (2) , ξ stands for the tautological bundle of 8

and p : P(<§) —• P is the bundle projection.

Pairs in 5), 6) come from Veronese bundles, a very special class of polarized

threefolds (X\ L) studied in [BS], such that φ : X' -> C is a P2-bundle over a

smooth curve C and 2Kχr -h 3L' = φ H, for an ample line bundle i/ on C. In our

case C — P and a detailed study of the vector bundles on P giving rise to Xf

leads to the above cases.

We also provide more details about cases 1) and 2) above. Quadric fibrations

as in 1), which turn out to be rational, are described as divisors inside

P -bundles over P and we get a maximal list of 4 possible cases (Theorem (4.4)).

In particular for the sectional genus of (X, L) we have g(X, L) < 5. The proof

uses a combinatorial argument to translate the smoothness of the general fibre of

X into a bound for g(X, L).

As to scrolls over a surface S as in 2) we prove that they admit a second

structure of conic bundles over P , given by the map associated with | ffl |. We de-

scribe X as a divisor inside the product S X P 2 , having proved that the conic

bundle map has no divisorial fibres and that S can only be either P , P X P , or

the Segre-Hirzebruch surface Fv This further description leads to 4 effective

cases (Theorem (5.7)).
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finished, for making this collaboration possible. The third author would also like
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0. Background material

We work over the complex number field. A projective A;-fold is an irreducible

smooth projective scheme of dimension k. Vector bundles are holomorphic vector

bundles. We use standard notation from algebraic geometry. We also adopt some

current abuses. Everywhere we do not distinguish between line bundles and in-

vertible sheaves. We freely shift from the multiplicative to the additive notation

for line bundles; multiplicative notation with " ." omitted is reserved for the in-

tersection product in the Chow rings.

Let V be a projective /c-fold and let 2 be a line bundle on V. We let 2r =

c^&y. 2W will denote the restriction of 2 to a sub variety W of V. Kv will stand

for the canonical bundle of V.

If px, pγ are the projections of a product X X Y onto the factors, we set

ΘXxY(rn, n) = px*Ox(m) + pγ*ΰγ(n).

A line bundle 2 on V is said to be numerically effective (nef, for short) if

2C > 0 for all curves C on V. In addition 2 is said to be big if 2k > 0. We say

that 2 is spanned if it is spanned by Γ(V, 2).

For an ample line bundle 2 on V, the sectional genus g(V, 2) of (V, 2) is

defined by

2g(V, P) ~ 2 = (Kv + (k - l)£)£k~\

If £ is also spanned, then g(V, £) is simply the geometric genus of the smooth

curve obtained by intersecting k — \ general elements of the complete linear sys-

tem I £ |. We also set d(V, 2) = X\

(0.1) Special Varieties.

We denote by Q a smooth quadric hypersurface of P . Let V be a projec-

tive /c-fold. V is said to be Fano (Del Pezzo for k = 2) if — Kv is ample. If £ is

an ample line bundle on V, we say that (V, £) is a Del Pezzo (respectively Mukai)

pair if - Kv= (k-ϊ)% (respectively - Kv = (k - 2)#). Let X be an ample

line bundle on V. We say that (V, £) is a scroll (respectively a quadric bundle,

respectively a Del Pezzo fibration) over a normal variety W of dimension h, if

there exists a surjective morphism with connected fibres p : V^> W and an ample

line bundle H on W such that Kv + (k - h + 1)2! = p*H (respectively Kv +

(k - h)£ = p*H, respectively Kv + (k - h - 1)2 = p*H). In particular, if
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(7 , £) is a scroll over either a curve or a surface W with k — h > 0, then W is

smooth and V is a P -bundle over FF and ^ = ^ P *-Λ(1) for every fibre / of p

[S2, (3.3)].

In some situations we will use the following result.

(0.2) LEMMA Let £ be an ample and spanned line bundle on a projective

3-fold V and assume that (V, £) is a scroll over a smooth surface S. Let p : V~• S

be the scroll projection. Then any smooth element Y ^ | £ \ contains some fibres of

p, which are (~ 1)-lines of (Y, !£γ).

Proof Consider the rank-2 vector bundle 8 = p*£. Then V=P(S), the

tautological bundle being £, which is ample. Hence 8 is ample and then c2(8) > 0.

Since Y is defined by a general section s e Γ(S, 8), it contains the fibres of p

corresponding to the zero set of s, which consists of c2(8) points. Now let/ be a

fibre of p contained in Y as p\γ: Y-* S contracts / to a smooth point of 5, we

have that / is a ( - l)-curve inside Y. Finally, since (Kx + 2£)f = 0, (X, £)

being a scroll, we get £γf — 1 by adjunction. •

(0.3) Reductions [S2, (0.5)].

Let £ be an ample and spanned line bundle on a projective λ -fold V. We say

that a pair (V, !£'), consisting of a projective A;-fold V and an ample line bundle

P, is a reduction of (V, P) if

(0.3.1) there exists a morphism p : V—+ Vr expressing V as V blown-up at a

finite set B,

(0.3.2) £ = p*P - [p~\B)] (equivalent^ Kv+(k~ l)j? = p*{Kv + (k - 1)F)).

Recall that if Kv + (k — l)i£ is nef and big, then there exists a reduction

(V, P) of (7, P) and i^, + (k - 1)2' is ample [S2, (4.5)]. Note that in this

case such a reduction is unique up to isomorphism and that the positive dimen-

sional fibres of p are precisely the linear P c 7 with normal bundle 0P*-i(~ 1).

Furthermore p induces a bijection between the smooth elements of | £ | and the

smooth divisors of | P |, passing through B.

In particular, in the special case of threefolds, we need to recall the following

fact (e.g. see [SV, (0.3.3)]).

(0.3.3) Let (7', P) be the reduction of (7, £), let p: 7-> 7 ' be the reduc-

tion morphism. Let 5 be any smooth element of | £ \ and let S" = p(S). Then
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(S't ϋ?'s') i s the reduction of (S, ϊ£s). In particular, if p contracts t (— l)-planes

of (V, SE), then

K2 = /Γ2 -h / > /("2

For all the results of adjunction theory we will need for pairs (V, £) with £

very ample, we refer to [SV], [S3] and especially [BS].

Now we prove some very ampleness results which we will need in Section 3.

(0.4) THEOREM, i) Let A and B be two disjoint linear subspaces of Pn. Let

π : F-» Pn be the blow-up of A U B and let L = 7Γ*0p»Q) - π~\A) - π~\B).

Then

i ) L is very ample, if λ > 3.

ii) L is very ample outside the proper transform of C4, B}, the linear span of A

andB, if λ = 2.

Proof First let 5 = n — 1 — dim A, and consider the morphisms

p;

PA / \ OA

p. p"

where σA : P
n

A -^ Pn is the blowing-up of Pn along A and pA : P
n

A —»• P s is the

P ! -bundle morphism associated to the projection from A. Note that

(0.4.1) σ*ΘΓn(l) - σA-M) = ptΰ^il).

Note also that

(0.4.2) the map (pA, σA) : Pn

A -> P 5 x Pn is an embedding.

Now let t = n — 1 — dim B, define Pn

B, σB, pB similarly, and consider the follow-

ing commutative diagram
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P"

where sB : Y-* Pn

A (sA : Y—» Pn

B respectively) stands for the blowing-up at

σA (B) (σB

L =

σA (B) (σB (A) respectively). Since

vn(λ - 2) + (τr*0pW(l) - TΓ \

we get from (0.4.1) and the above diagram

L = τrX>wQ - 2) +/*0p,(l) + g*ept(l).

So to prove i) it is enough to show that the map

(/, 7Γ, g) : Y- Ps x Pn x P '

is an embedding. To see this note that the map

(sΛ, sB):Y-P\ x p ;

is an embedding since A and B are disjoint Then recalling (0.4.2) we see that the

map

(/, 7Γ, π, g) : F — P 5 x Pn x P w x P f

is an embedding. Let Zl : P" -^ P w X Pn be the diagonal map. Then looking at the

commutative diagram
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(f,π,π,g)

PSXP"XP'
(idPΛ, Δ, idp,)

we conclude that (/, 7Γ, is an embedding. To prove ii) simply note that the map

(/, g) : F - * P s x P '

is an embedding outside π~~ (04, J5>). In fact the rational map P w • P 5 X P f

given by the projections from A, B gives an embedding when restricted to

Pn\<A,B>. •

(0.5) Remarks. 1) The same argument proving (0.4, i) also shows that if π :

Y—• P w is the blowing-up along a single linear subspace A, then the line bundle L

= 7Γ <9P«Q) — τr~ 04) is very ample if λ > 2.

2) More generally, the same argument actually shows that given r mutually

disjoint linear subspaces, the statement of Theorem (0.4), with λ > r + 1, is true.

Theorem (0.4) also gives the following corollary, which we will use in Section

3.

(0.6) COROLLARY. Let Qw c P w + 1 be a smooth hyperquadric and let x, y e Qn

be two points not lying on a line contained in Q . Let p : Z—> Q be the blowing up at

x and y and let Ex = p~\x)> Ey = p^iy). Then the line bundle p*ΰQn(2) — Ex

— Ey is very ample on Z.

Proof. Let π : Y—* Pn+ be the blowing up of P w + at x and y, let 8X =

7Γ (x), 8y — it (y) and consider the commutative diagram

Z
P I

c Y

c pM + 1.

Since the line through x and z/ is transverse to Qn, its proper transform via π

does not intersect Z, hence p 0 Q « ( 2 ) — Ex — Ey, which is the restriction to Z of
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τr*0p w(2) ~ 8X- gy, is very ample by (0.4, ii). D

The following easy vanishing result will be useful in Section 5.

(0.7) LEMMA. Let L be an ample line bundle on a smooth 3-fold X. Assume that

there exists a smooth surface S ^ | L\. If E is a nef line bundle on X such that E L

> 0, then

H2(X,KX + E) =0.

Proof Look at the exact cohomology sequence of

0 -+ Kx + £ — Kx + E + L-^ Ks + Es-+ 0.

Our assumptions imply that Es is nef and big, hence h (Ks + Es) = 0 furth-

ermore h (Ks + E -\- L) = 0 , since E + L is ample and so we are done. CD

1. High dimension results

In all this paper A will stand for a smooth complex projective n-ίo\ά. Let π :

A —* Pn be a finite morphism of degree d > 2 and assume that A is contained in a

smooth complex projective (n + l)-fold X as a very ample divisor.

In this section we shall also assume that n> d.

(1.1) Since n > d, it induces an isomorphism H2(A, Z) = H2(P , Z) = Z

and h (ϋA) = 0 [La, (3.2)]. As a consequence, we have PicG4) = Z, generated by

(1.2) By the Lefschetz theorem π ϋPn(l) extends uniquely to the ample

generator of Pic (JO = Z, which we call X. Then WA = 7Γ*(9pM(l). Moreover, if

L = [A] then L = aX, for some integer a > 1.

(1.3) LEMMA. Assume that re :A—» P w is associated with a proper sublinear sys-

tem of I XA \, namely h (fflA) > n + 1. Let d be prime. Then the morphism q:A^>

P w (t > 1) associated with \MA\ is birational and its image q(A) is a variety of de-

gree d in Pn+ .

Proof Consider the commutative diagram
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A -* q(A)aP"

* I / p

P"

where p is the restriction to q(A) of the projection of Pn onto P" from a P

not intersecting q(A). Obviously deg /0 — deg q(A) and so

rf = deg 7Γ = deg q deg p = deg q deg #04).

Note that deg #04) Φ 1, #04) being non-degenerate. Since d is prime, it thus fol-

lows that deg q(A) — d and deg q = 1. •

(1.4) Let things be as in (1.3), i.e. h°(#CA) > n + 1 and d prime. By slicing

down P with general hyperplanes up to getting a line we obtain a ladder as fol-

lows:

ΐ ί
* * * IX.

1

P",
where D is a smooth curve and S a smooth surface. By (1.3) the morphism qD is

birational and since it is associated with a divisor of | fflD |, which has degree d,

we conclude that q(D) is a curve of degree d.

We are now able to characterize (X, L) in the case d = 2 ( < w).

ΐ
ί» C

1

P1

P2

ί
5
I

P2

( 1 . 5 ) T H E O R E M . L # ί A k α double cover of Pn contained in X as a very ample

divisor and let L= [A].Ifn>2, then (X, L) is either ( P w + 1 , UPn+i(2)), or (Q w + 1

Q where Q w is a smooth quadric hypersurface of Pn .

Proof Assume that h°(XA) — n + 1 + t, t > 0. We thus get a diagram as in

(1.4) and a smooth curve D such that q(D) is a curve of degree 2. Therefore

g(D) = 0. As a consequence, (5, $s) is either i) (P 2 , Θ^ie)), e = 1,2, or ii) a

rational scroll [SI, (1.5.2)] Case i) cannot occur as d — 2, while in case ii), going

backwards over the ladder in (1.4) we conclude (e.g. see [LP]) that (A, $A) is
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either (Q , ΘQΠ(1)) or a scroll. In the latter case however we would have H 04, Z)

= Z , contradicting (1.1). In the former case (X, L) is either (P w , ^P«+i(2)), or

vv« > L/Q»+I(1;) as expected.

To complete the proof we assume that

(1.5.1) h°WA) = n + 1.

From the exact sequence

*• VI CL) Jl * Jt * Jl A * U ,

by the Kodaira vanishing theorem (and by the Lefschetz theorem and (1.1) when

a = 1), we get

CLAIM. Ifh°WA) = n + 1, ffon α > 2.

By contradiction, assume a = 1 and A°(MfΛ) = « + 1. Then A 0 ^ ) = w + 2,

by (1.5.2) and so π extends to a map P : JΓ—•*• P w + , which is associated to | #6 |.

Since in this case ffl = L, we have that P is an embedding. On the other hand

P|4 = 7Γ has degree 2, a contradiction. This proves the claim.

By the claim and (1.5.2) we have }ι{$) = h°(tfA) = n + 1. Hence 7Γ extends

to a meromorphic map

P:X —>P n ,

whose indeterminacy locus is finite since A is very ample. Let C be a general fibre

of the projection onto Pn of the graph of P. By identifying C with its image in

X, C is the smooth intersection of n general elements of | X |. Therefore

(1.5.3) 2 = CA = tfC2ί?,

and so a — 2, CM = 1. Moreover, recalling that PicCX) = Z, by (1.2), we have

-K* = r $ \ for some integer r then by adjunction we get

(1.5.4) 2g(C) - 2 = degKc = (Kx + ntf)C= r+ n.

Furthermore, since A is very ample, (1.5.3) says that g(C) — 0. Therefore (1.5.4)

gives r= - n- 2= - (dimZ + 1), hence X = Pn+1 and L = ^P«+i(2). In this

case it would be (A, XA) = (Qw, ΰQn(D), hence h°(tfA) = n + 2, contradicting

(1.5.1). D
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2. Double covers of P

In this section A will be a smooth complex projective surface, π :A—> P a fi-

nite morphism of degree 2, X a smooth 3-fold containing A as a very ample di-

visor; we set L — [A]. Recall that KA = π Θ^ia), where the branch locus of π

has degree 2 (a + 3). Of course

(2.0.1) a > ~ 2.

If C ^ I TΓ ΰpzil) I is a general element, by the Riemann-Hurwitz formula we get

that C has genus

(2.0.2) g{C) =a + 2.

(2.1) LEMMA. Let a Φ 0. Then there exists a line bundle $€ ^ PicQO

its restriction to A is fflA — π Θ^iX).

Proof. This follows from the adjunction formula (Kx + L)A — KA, the fact

that KA — π ΰγ2(ά)(a Φ 0), and the Lefschetz theorem claiming that the cokernel

of the restriction map Pic(X) —* Pic (A) is torsion free. O

In view of (2.0.1) we divide our analysis according to the possible values of

a. We first deal with case a > 0.

(2.2) THEOREM. If a > 0, then (X, L) is a conic bundle over a smooth surface.

Proof Since KA = (Kx + L)A is ample, it follows that

(2.2.1) A cannot contain (— l)-curves.

CLAIM. Kx + L is nef

To see this start assuming, by contradiction, that Kx + 2L is not nef. Then

(X, L) is as in [S3, (0.2, c)]. However, pairs (P 3 , 0 p 3 ( l ) ) , (Q3, ΘQs(D) and
9 1

scrolls over a curve are ruled out, since our A is neither P nor a P -bundle, hav-

ing an ample canonical bundle.

Now assume that Kx + 2L is nef but not big. Then (X, L) is as in [S3, (0.3)].

First assume that (X, L) is a Del Pezzo pair, then from Kx — — 2L and by ad-

junction, A cannot have an ample canonical bundle. Secondly assume that

(X, L) is a quadric fibration over a curve B then (A, LA) is a conic bundle over
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B. This case is ruled out for the same reason as above. Finally assume that

(X, L) is a scroll over a smooth surface S. In this case A would contain some

(— l)-curve by (0.2), contradicting (2.2.1).

Therefore Kx + 2L is nef and big. So (X, L) admits a reduction, but

(X, L) coincides with its reduction since otherwise the reduction morphism would

contract some (— 1)-curves of A, contradicting again (2.2.1). Then, by looking at

the list of the exceptions to the nefness of Kx + L one easily sees that in no case

KA could be ample (see [S3, (0.4)] and [BS, sec. 1]). This proves the claim.

It follows from the claim that ίt itself is nef, hence tf3 > 0. If ΐ%3 = 0 then

Kx + L is not big and then, since d i m X = 3, (X, L) would be either a Mukai

pair, a Del Pezzo fibration over a curve or a conic bundle over a surface [S3,

(0.4)]. The first two cases are ruled out since the corresponding KA is not ample.

So, (X, L) will be proved to be a conic bundle once we have shown that $ is not

big.

By contradiction assume that M > 1. By the Hodge index theorem [BSS,

(0.15)], we have

By setting δ = ML2 = άegLc and recalling that tf2 L = (MAΫ = 2 we thus get

$3 δ < 4, so that the possible values for (̂ f3, δ) are

X3 = 1 δ = 1,2,3,4

(2.2.2) ^ = 2 δ = 1,2

tf3 = 3,4 δ= 1.

Since Lc is a very ample line bundle of degree δ on C it must be

(2.2.3) g(C) < (δ~ l ) ( δ - 2 ) / 2 .

It is easy to check that (2.0.2), (2.2.2), (2.2.3) are compatible only if

M3 = 1, δ = 4, a = 1.

On the other hand using again the Hodge index theorem we get

2(L3) = α 3 ) W2L) < (XL2)2 = δ2 = 16

hence L < 8. Note also that L is even since the genus formula for G ^ \ LA

gives:

2g(G) - 2 = (KA + LA)G = aiMU) + L3 = L3 + <5 = L3 + 4.
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Furthermore L Φ 2,4, since otherwise KA would not be ample; hence L — 6 or 8.

In both cases the above formula shows that G cannot be a plane curve, hence | LA

cannot embed A in P therefore h (LA) > 5. On the other hand the Castelnuovo

inequality rules out case L = 6, while for L = 8 it implies h (LA) = 5. Then A

would be embedded by | LA | in P , however its characters do not satisfy the

numerical formula holding for these surfaces [H, p. 434].

Therefore (X, L) is a conic bundle over a surface. The smoothness of the

base follows from [Be]. Π

Case a = — 2 is very easy. In fact we have

(2.3) THEOREM. If a= -2 then (X, L) is either (P 3, 0 p 3 (2)) , (Q3, 0Q3(1)),

or a scroll over P .

Proof Since KA — π Θpzi— 2), A is a Del Pezzo surface with canonical bun-

dle in 2PicC4), hence A is a quadric surface. Then the assertion follows from [Ba,

Th. 5]. D

As to case a = 0, the fact that KA is trivial prevents us from proving that the

line bundle it 6^iX) lifts to some element of PicQO. So we only have the follow-

ing result

(2.4) PROPOSITION. Let 0 = 0. Then X is a Fano 3-fold of the principal series, L

= — Kx, and I — Kx \ contains a smooth surface endowed with an irreducible curve of

genus 2.

It only remains to deal with case a — ~ 1, which is equivalent to assuming

that A is a Del Pezzo surface doubly covering P . This will be done in the next

three sections.

A class of pairs (X, L) fitting into all the above results is given by following

(2.5) PROPOSITION. Let E be any rank 2 spanned holomorphic vector bundle over

P\ letp:X=P(E)-+ P 2 be the corresponding P 1 - bundle and let £ = 6v{E){m) +

p ϋpzin), with suitable mf n Ξ Z. Let A be a smooth element of\2!\, and let π =

p\A be the P -bundle projection restricted to A. If m > 1 and n > 0, then it is a finite

morphism of degree m.
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Proof. The finiteness of π is equivalent to A not containing any fibre of p.

This is equivalent to the section of the bundle p%£ corresponding to A not being

zero at any point. On the other hand p^£ — p J3p{E)(yvi) ® ϋpzin) =E £*)

Θp2(n), where E denotes the m-th symmetric power of E. Since m > 2, the

rank of E m 0 Θpz(n) is at least 3. Therefore, since E m 0 Θpzin) is spanned a

general section is nowhere zero. •

As a consequence of (2.5) we get a class of 3-folds containing double covers

of P as very ample divisors. For instance, by taking E — Θpzie) 0 0P2, with e ^

0, we have that the following facts are equivalent [Bar, §3]: i) ϋf is ample, ii) £ is

very ample, iii) m > 0 and n > (m — \)e. Hence, for m = 2, n > e, A is a

smooth double cover of P contained in X as a very ample divisor; moreover by

the adjunction formula we get

a = n + e — 3.

Note that for a > 0, (X, L) is a conic bundle over P 2 , as in (2.2), (2.4); this hap-

pens for any e ^ 0, provided that n > e + 3. For α = ~ 1 we have e + 2 = ^ >

£, so that £ = 0, n = 2 and then (X, L) is exactly the pair occurring in case

(3.2.5) of the next section. Finally for a — — 2 we get e = 0, n = 1 so that

( Z , L) = (P 2 x P \ 0p2 x p i ( l ,2)) is a scroll over P 1 as in (2.3).

3. The Del Pezzo double plane

From now on we will deal with case a — — 1. In this section we prove a

general result, while the next two are devoted to special subcases. Note that for

a— — 1, π :A—+P is the so-called Del Pezzo double plane. In particular, A is a

Del Pezzo surface since

(3.0.1) - KA = 7rX> 2(l)

is ample. Moreover

(3.0.2) K\ = 2.

Before stating the main result of this section it is convenient to recall the follow-

ing fact.

(3.1) Remark. Let S be a Del Pezzo surface. Every smooth surface Sf domin-

ated by S via a birational morphism is a Del Pezzo surface too.

This follows immediately from the Nakai-Moishezon criterion.
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(3.2) THEOREM. Let (X, L) be as in Section 2 and assume a = — 1. Then

either

(3.2.1) (X, L) is a quadric fibration over P (for more information see Section 4),

(3.2.2) (X, L) is a scroll over a surface (for a precise description see Section 5),

(3.2.3) (X, L) admits (P , 0^(3)) as a reduction, the reduction morphism X—+J*

being the blow-up at a single point,

(3.2.4) (X, L) admits (Q , ^ 3 ( 2 ) ) as a reduction, the reduction morphism X —• Q

being the blow-up at two points not lying on a line ofQ ,

(3.2.5) (X, L) = (P 2 x P 1 , 0p2x Pi(2,2)) f or

(3.2.6) (X, L) admits (X\ U) as a reduction, where Xf is the blow-up o : X' —• P

along a line £, L = σ Θp3(2) + F, F being the proper transform of a plane through

£, and the reduction morphism X~* Xf is the blow-up at a single point not lying on

σ~\£).

The proof of (3.2) takes the rest of this section. The first step is following

(3.3) LEMMA. Let (X, L) be as in (3.2). Then Kx + 2L is nef and big unless in

cases (3.2.1), (3.2.2).

Proof As a first thing assume that Kx + 2L is not nef. Then by [SV],

(X, L) is either (P , 0^3(1)), (Q , 0 Q 3 ( Ό ) , or a scroll over a smooth curve C.

In the last case A, which is a smooth element of | L\, is a P -bundle over C and

then, since A is rational, it follows that C = P . Anyway in all the above cases we

have KA = 9 or 8, which contradicts (3.0.2). Therefore Kx + 2L is nef. Assume

that it is not big. Then, according to adjunction theory [S3, (0.3)], either (X, L) is

a quadric bundle over a smooth curve C and C = P since A, which is rational, is

a conic bundle over C (case (3.2.1)), or (X, L) is as in (3.2.2), or Kx = — 2L. But

the last case cannot occur since in that case, by adjunction and (3.0.2),

(X, L) would be (Q , 6^(1)), hence A would be isomorphic to a quadric surface,

a contradiction. •

In view of (3.3) we can proceed assuming that Kx + 2L is nef and big. Let

{X\ L) be the reduction of (X, L) and let p:X~^X' be the corresponding re-

duction morphism.

(3.4) Remark. Kx, + L is not nef.
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Proof. Let S' = p(A). Then S' is a smooth element of | L | and by adjunction

(Kx, + L)s, = KSr. If KXr + L were nef, then so would Ks, be. On the other hand

— Ks, has to be ample in view of (3.1), a contradiction. •

(3.5) By adjunction theory [S3, (0.4)] and [BS, (1.2)] it follows from (3.4) that

(X', L) is one of the following pairs:

(3.5.1) (P 3 , 0ps(3)),

(3.5.2) (Q3, 0 Q 3 (2)) ,

(3.5.3) Xr is a P -bundle over a smooth curve C and 2KX, + 3U — φ H, where

φ : Xr —* C is the bundle projection and H is an ample line bundle on C.

Let S' = p(A) as before; then according to (0.3.3), p is the blowing-up of X' at t

points, where

We deal with the above cases separately.

In case (3.5.1) we have Ks, — 3, hence p : X—• P is the blowing-up at a sing-

le point x and L — p 0^(3) — p~ι(x).

In case (3.5.2) we have KSr = 4, hence p:X—*Q is the blowing-up at two

points x, y and L = p <^QS(2) — p~ Cr) — p~ (y). Note that x, y cannot lie on a

line K Q otherwise we would get L p~ {£) = 0, contradicting the ampleness of

L
The very ampleness of L in the above cases follows from (0.5.1), (0.6). In

both cases the general element of | L \ is a Del Pezzo surface with K\ — 2 in fact

it is either a cubic surface blown-up at a point or a complete intersection of two

quadrics blown-up at two general points.

As a last thing assume that (Xr, L) is as in (3.5.3). First of all note that

C = P . Actually S\ which is a rational surface, being dominated by A, inherits a

conic bundle structure on C from the P -bundle structure of Xr.

Let X' = P(8) and let F be a fibre of ^ X ^ P 1 . Since LF =

0P2(2) according to (3.5.3), we have CK^ + 2Z/)F = €^{1) and so we can

assume that 8 — φ*(Kx, + 2L). For shortness let ξ be the tautological bundle of

8 then

(3.5.4) ξ = Kx, + 2U:

Note that
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2ξ = 2(KX, + 210 = 2KX, + 3U + L = φ*H+U

is the sum of a nef and an ample line bundle, hence ξ is ample and so is 8. There-

fore

(3.5.5) 8 = Θ t βBlf...f30pi(0ί), where a{ > 0 (i = 1,2,3).

By the canonical bundle formula

(3.5.6) KXr = - 3ξ + (α - 2)F, where α = cx(8) = aγ + a2 + a3.

From (3.5.4), (3.5.6) we see that

L = 2ξ + (1 - ( α / 2 ) ) F .

In particular, recalling also (3.5.5), we have that

(3.5.7) a is even and > 4.

On the other hand, recalling the basic relation for the tautological bundle ξ

ξ3 - φ*aξ2 = 0,

adjunction formula gives

K2

S, = (Kjr + LΫL =(~ξ+ ((a/2) - l)F)2(2ξ + (1 - (a/2))F) = 5 - (a/2).

So recalling (0.3.3) and (3.0.2) we get

(3.5.8) t = As2, - ϋΓi = 3 - (a/2).

Since t > 0, by combining (3.5.7) with (3.5.8) we get only the following possibili-

ties:

(a) a = 6, with t = 0

(b) α = 4, with ί = 1.

(3.6) PROPOSITION. Cases (a) and (b) /̂ αd respectively to (3.2.5) and (3.2.6).

Proo/. In case (a) note that U = 2(ξ — F). This shows that ξ — F is ample,

which means that 8 ® 0 P i(— 1) is ample. Therefore, recalling (3.5.5) we get at —

1 > 0 (i = 1,2,3). Hence 8 = 0pl(2) Θ 0pl(2) Θ ^ p l ( 2 ) = ϋPΛ2) ® «', where

5' is the trivial bundle. This shows that X' = P 1 X P 2 . Let £' = ^ p l χ p 2 ( 0 , l ) be

the tautological bundle of <f then ξ = ξ'+ 2F and so L = 2(ξ - F) = 2 ( f +

F) = 0 P i x p 2 (2,2) . Finally (Z, I ) = (X', L), since ί = 0. Conversely, note that
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such an L is very ample and by adjunction

KA = (Kx + L)A = 0 P i x p 2 (O, - 1)^,

so that (3.0.2) is fulfilled and the projection of X onto the P factor exhibits A as

a Del Pezzo double plane.

As to case (b) of course we have 8 = 0 P i ( l ) Θ 0 P i ( l ) Θ 0 P i(2) =

0 P i ( l ) ® 5', where «' = 0 p i ® 2 Θ 0 P i ( l ) . Let ξ' be the tautological bundle of 8'.

Then ξ' = ξ — F. Since <fr is spanned with h (80 = 4, ξ' defines a morphism

σ \Xr—* P . Moreover the basic relation for the tautological bundle ξ' gives ξ' =
Φ 9

1, hence σ is generically 1 to 1. Now look at the surface Y — P((9Pi ) c X',

Since we have the exact sequence

with ^ P i a quotient of 5', we conclude that ξr

γ is the tautological bundle of Y —

P ( 0 P i ), and thus that σ maps the horizontal fibres of F t o points, with σ(Y) a

line £. Since ξ' is spanned, it follows that if C is an irreducible curve on Xr con-

tracted by σ to a point, then ζ''c — Oc. From this it follows that C c Y and there-

fore that C is a horizontal fibre of F. This shows that Xr is P blown-up along a

line /via σ. Since £7 = σ (9^3(1) we get

U = 2ξ - F = 2ξ' + F = σX 3 (2) + F.

Moreover since t — 1, X is the blown-up of Xf at a single point x. It remains to

show that σ(x) £ £. By contradiction, assume that σ(x) ^ £. Let / ' be the proper

transform of σ (σ(x)) under the blow-up map p : X—* ^ί7. Then

L Γ = (p*((j*^p 3(2) + F) - E)Γ = (p*F - E)r = 1 - 1 = 0,

contradicting the ampleness of L. Conversely let (X, L) be as in (3.2.6), let p:X

—> Xr be the reduction morphism and let E be the corresponding exceptional di-

visor. Then the morphism β — p° σ : X—* P exhibits ^ as P blown-up along a

line / and a point x & £. Since F = σ Θp3(l) — σ" (/), we have

(3.6.1) L = <o*(σX>3(2) + F) - E = β*0Ps(3) - β~\x) - β~ι(£)

and then L is very ample in view of (0.4, i). Let A be a general element of | L |. It

is clear from (3.6.1) that A corresponds to a smooth cubic surface S cz P contain-

ing £ and x hence A is isomorphic to S blown-up at x and then it is a Del Pezzo

surface with KA = 2. Π
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4. Quadric fibrations over P

In this section we provide more details on pairs (X, L) occurring in case

(3.2.1) of the above section. Let p\X~*P be the morphism expressing l a s a

quadric fibration over P . Then Kx + 2L = p H, for some ample line bundle H

on P . Note that all fibres of p are irreducible. Actually were there a fibre 2F— P

+ Q, from

CP = mP= [P]P+ [Q]P

since [Q]P = ΘP(1), we would get [P]P — ΘP{— 1), so that P could be contracted,

but this gives a contradiction since PQ, which is a line of Q, cannot be contracted.

Let 8 = p*L. For every fibre SF of p we have h (L^) = 4, since | L \ embeds

f as a quadric of P . This implies that 8 is a rank-4 vector bundle on P .

Moreover 8 is spanned. To see this let x ^ P , let 2F — p (x) and consider the

obvious diagram

Γ(L) - ΠLp)

I I
- Γ(8X)

where the vertical arrows are isomorphisms. Since | L | embeds ^ as a quadric of

P the restriction homomorphism Γ(L) —> Γ(L^) is clearly surjective and then so

is also the homomorphism Γ{8) —* Γ(8X).

Since 8 is a spanned rank-4 bundle on P we have

8 = Θ ί = 0 3 Opiiat), with af > 0.

We let δ = Σ a{. Consider the projective bundle P = P($), l e t ^ ^ r P - ^ P 1 be the

projection and let ξ be the tautological line bundle of 8 on P. Then, from the rela-

tion ξ4 - | V * q ( < f ) = Owe get

(4.0.1) ξ4 = δ.

Moreover since 8 = p*L and X embeds fibrewise inside P, we have that

ξx = L a n d Xe\2ξ- bF\,

where F stands for a fibre of p ~
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(4.1) LEMMA, i) The integers δ and b are related as follows: 2δ = 36 + 6 (in

particular b is even).

ii) We have b > 0.

Proof. By the canonical bundle formula we know that

KP= - 4 ξ + ί ~ * 0 p l ( δ - 2 )

and then, by adjunction,

(4.1.1) Kx= -2L + p*epi(δ- 6 - 2 ) .

Now recalling the relation KA — 2 we get by adjunction and (4.0.1)

2 = K2

A = (Kx + LΫL = ( - ξ + (δ - b - 2)F)2Xξ =

( - ξ + (δ - b - 2)F)2(2ξ - bF)ξ = - 2δ + 36 + 8.

This proves i). To prove ii) note that by (4.1.1) we have

p*H= Kx + 2L = p^ΰ^iiδ - b - 2 ) .

Thus the ampleness of H implies that δ ~ b — 2 = deg H > 1, hence δ > b + 3.

Then the assertion follows by combining i) with this inequality. Π

We can also compute the numerical invariants of (X, L) in terms of b.

(4.2) Remark. We have

1) d = d(X, L) = 2 6 + 6,

2) g = g{XyL) = (6/2) + 2 .

Proof. We have, recalling (4.0.1),

d = U = ξ3X = f(2ξ ~ bF) = 2ξA - bξ3F = 23 - ft,

hence (4.1; i) gives 1). Genus formula, taking into account (4.1; i) and (4.0.1), gives

2). D

(4.3) LEMMA. We have δ > 26.

Proof Let x ^ P and consider the fibre 8X — Θ ί = 0 3 ̂ p* (#*)*. Denoting by

ziy 1'• — 0,. . ., 3 a generator of the stalk ΰ^\{a^)x we can look at zOt zlt z2, z3 as a

set of homogeneous coordinates in the fibre Fx = P(8X). So the quadric $Fx cut out

by X on Fx is represented by a second degree homogeneous equation in the 2/s.
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Note that products zizj are elements of the second symmetric power

€ = [θ,£,0pl(«l +**)]* .

Since Γ(2ξ) = Γ((f(2)), we have

Γ(2ξ - bF) = ΠΘ^j 0pl(α, + a, - b)).

On the other hand X e | 2ξ - bF |, so that

( * ) every summand z{Zj appearing in the equation of SFX can be looked at as the

restriction to x of a section of ϋpiicij + <2; — b).

Now we use ( * ) and the smoothness of $FX for a general x ^ P to prove the de-

sired inequality by a combinatorial argument. Let φ(zOf zlf z2, z3) = 0 be the equa-

tion of 2FX, for x G P a general point.

a) If φ contains terms z{Zj and zhzk with i,j,h,k all different (a complete set of

crossed terms, for short), then the assertion is true.

Actually, in view of ( * ) we have both a{ + af — b > 0 and ah + ak — b > 0

and summing them up we get δ — 2b > 0.

b) If φ contains three squares, then the assertion is true.

Assume that φ contains the squares z0, zl9 z2 then 2tf; — b > 0 for

j — 0,1,2 by ( * ). On the other hand, since 2FX is smooth φ must also contain a

term z3Zj. If i = 3 then ( * ) implies 2α3 — δ > 0 and summing up all the inequali-

ties we get δ — 2b > 0. Assume that i Φ 3, e.g. let / = 0. Then ( * ) gives a0 + a3

— b > 0. On the other hand the above inequalities for j = 1,2 give ^! + a2 — b

> 0 and summing up we get δ — 2b > 0.

Note that the latter argument also proves

c) If φ contains two squares and a crossed term involving the two remaining coor-

dinates, then the assertion is true.

d) If 0 contains two squares, then the assertion is true.

Actually assume that φ contains the squares z0 and zv Since 2FX is smooth φ

has to contain some crossed term involving z2 and z3. In view of c) we can assume

that there are two distinct such terms involving z2 and z3 respectively. E.g. assume

that φ contains z2z0 then, in view of a), b) and c) we can assume that φ contains

just 4 terms, the fourth being the crossed term z3z0. But then, taking derivatives of
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φ, we immediately see that $FX would be singular, a contradiction.

e) If φ contains just one square, then the assertion is true.
2

Actually let φ contain z0, then φ must contain crossed terms involving zlf z2,

z3, no more than 3 in view of the above. Assume that there are three such distinct

crossed terms; if no one of them contains z0, by reasoning as above one gets δ —

2b > 0. So we can assume that one of them involves z0, say Z^ZQ then an easy

check shows that the second one can only be either z2zQ or z2zι and the third one

z3z0 or zzzx accordingly. In both cases, taking derivatives of φ with respect to z2

and z3, one sees that $Px would be singular, contradiction. So there can be just two

crossed terms involving zlt z2 and z3. Since ?F x is irreducible, at least one of them

cannot contain z0. Let zλz2 be this one; then the remaining one must be either z3zly

z3z2, zozh or z0z2 but in all cases, taking derivatives of φ one would conclude that

$FX is singular, contradiction.

f) final step.

In view of a) and e) we can assume that φ contains neither squares, nor a

complete set of crossed terms. So let zozλ be a term of φ. Since φ has to involve all

coordinates and the term z2z3 cannot occur by a), there are two distinct crossed

terms containing z2 and z3. In view of the symmetry between z0 and zλ we can thus

assume that the term involving z2 is z2zQ and then, due to the above, the third one

can only be z3zQ. But in this case $FX would be even reducible, a contradiction.

This concludes the proof. Π

As a consequence of (4.1) and (4.3) we have that b is even and 0 < b < 6, So,

recalling also (4.2) we get the following

(4.4) THEOREM. Let (X, L) be a quadric fibration as in (3.2.1). Then X embeds

fibrewise in a protective bundle P(<§), where 8 = Θ ί = 0 3 ̂ pi(#*•), with a{ > 0, and

Xe\2ξ-bF\, L = ξx

where ζ is the tautological bundle of 8 and F is a fibre ofP(8). Moreover the possible

values of the invariants by δ = Σ av d, g are those listed in the following table

b

0

2

4

6

δ
3

6

9

12

d

6

10

14

18

g

2

3

4

5.
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5. The further structure of the scrolls in (3.2.2)

Let (X, L) be a scroll as in case (3.2.2) of Section 3. Then Kx + 2L is nef

but not big, this giving rise to a morphism px:X~+ S exhibiting X as scroll over

a smooth surface S furthermore

(5.0.1) Kx + 2L = px*H for an ample H e Pic(S).

Note that

(5.0.2) H is spanned,

since so is Kx + 2L [SV, (0.1)]. As before Kx + L = - tf <Ξ PicQO and recall

that the double cover morphism π:A—* P is associated with a (not necessarily

proper) base point free sublinear system of | $CA \ =\ re Θ^il) |. A fortiori

(5.0.3) ίtA is spanned by its global sections.

(5.1) LEMMA. $C is a spanned line bundle and ffi = 0.

Proof. The proof is divided into four parts.

Step.l. $C is nef a n d | $β \\A — \ $ίA |.

Let E — Kx + 2L and look at the exact sequence

Note that E2L = (Kx + 2LΫL > 0 since the Kodaira dimension of Kx + 2L is 2

and recall that E is nef. Therefore (0.7) and Serre duality give h (— E) = 0. As a

consequence the restriction homomorphism

(5.1.1) # ° ( X , if) -> #°G4, flA)

induced in cohomology by the above sequence is surjective, i.e. | X \lA — \ $€A |. As

to the nefness of $?, if there were a curve <€ in X such that f̂̂  < 0 the base locus

Z of I $ί I would contain #. Therefore Z would have a nonempty intersection with

A, this producing base points for | $? |( i4 = | $CA \ and contradicting (5.0.3).

Step 2. f̂3 = 0.

Argue by contradiction and so, since $t is nef, assume that $t > 0. Let δ — ML .

Note that δ — degL c , where C ^ | $€A \ is an elliptic curve in view of (2.0.2),

hence δ > 3, since L is very ample. In addition
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M2L = Qf€A)2 = K2
A = 2.

Then, the Hodge index theorem [BBS, (0.15)] gives the inequality

tf*δ < 4.

This implies X — 1 and δ = 3 or 4. By applying once more the Hodge index

theorem we get

(5.1.2) 2U < δ2 = 9 or 16,

and so

Now, the genus formula, applied to the very ample line bundle LA gives

(5.1.4) 2g(LA) -2 = L2

A+ LAKA = U - XL2 = U - δ,

and so L and δ have the same parity. Thus (5.1.3) gives the following possibili-

ties:

3 = (1,3, if 3 = 3,

[2,4,6,8, if fl = 4.

Assume that L = 8. Then (5.1.2) reads as the equality

16 = L ^ = (LAXAΫ= 16;

and then, by the Hodge index theorem we immediately see that LA — 2 ίtA, which

in turn gives L — 2 lit, hence Kx = — (L + X) — — 3 X. But then X would be a

Fano 3-fold of index 3; this implies that X = Q3, X = ΘQ3(1), L = 0 Q 3 ( 2 ) . In

particular A would be isomorphic to a complete intersection of type (2,2), contra-

dicting the fact that KA — 2. So case L — 8 cannot occur.

Now come back to the remaining cases. By recalling that A is a Del Pezzo sur-

face, the Kodaira vanishing theorem immediately shows that

h'(LA) = hϊ(KA + (LA - KA)) = 0 for i = 1,2.

Hence the Riemann-Roch theorem gives

(5.1.5) h\LA) = 1 + (/£ - LAKA)/2 = 1 + (I3 + <5)/2.

This immediately shows that case <5 = 3 and case δ = 4 with L — 2 cannot

occur. Otherwise h (LA) < 4 and so | LA \ would embed A into P , a contradiction,
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since the only Del Pezzo surfaces in P are those of degree < 3, which are not

isomorphic to A. On the other hand case (5 = 4 with L = 4 cannot occur either.

Actually, in this case, (5.1.5) would give h (LA) = 5 and so | LA | would embed A

into P , while the double point formula for surfaces in P [H, p. 434] implies

- 16 = L\U - 10) + 12χ(OA) = 2K\ + SLAKA = - 53,

a contradiction. Finally consider case δ = 4 with L — 6. In this case (5.1.4) gives

g(LA) — 2; hence (A, LA) is a rational surface of sectional genus 2. In view of the

classification theory this implies that {A, LA) is a rational conic bundle and then

(X,L) is a quadric bundle over P . In this case however note that condition

(Kx + 2LΫL > 0 is not fulfilled, contradicting (5.0.1).

Step 3. h°(XA) = 3.

mif

π(R) is a smooth plane quartic curve and consider the exact sequences

Let R be the ramification divisor of π:A~»P, recall that the branch divisor

0 -> 0 p 2 ( - 3 ) — 0p 2(l) — < W D — 0.

Let a':H°(P2, 0p2(l))^H°(A, %A), β':H°(π(R), Θπ(R)(l)) ~+H°(R, XR),
r', s', be the homomorphisms induced by the isomorphisms α, π 0 p 2 ( l ) = ^ ,

β : ®π(R)(D — ^R a n d by r, s at the H -cohomology level. Also sf is an isomorph-

ism, since hϊW^i— 3)) = 0 for i = 0,1. This shows that β'°s' — rF°a' is an iso-

morphism, so that r' is surjective. Therefore we shall have

once we have shown that h (fflA — if) = 0. This follows immediately from

* * p 2 ( l ) < 0.

Finally, h (JCR) = h (ϋπiR)(D) = 3 since πlR is an isomorphism between the

ramification divisor and the branch locus.

Step 4. M is spanned.

In view of step 3, | #CA \ is generated by three independent divisors, which by step

1 can be extended to three divisors Hif i = 1,2,3, of | X |. Their intersection Γ

cannot meet A otherwise Γ Π A would be the base locus of the linear system

generated by H^Af i = 1,2,3, which is nothing but | #£A \ by step 3 and so (5.0.3)
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would be contradicted. Since A is (very) ample, | $€ | thus contains three divisors

meeting at a possibly empty finite set of points Z. Now step 2 says that Z = 0

and this is enough to conclude. Π

We are now able to show that X admits a conic bundle structure besides the

scroll one of (X, L).

(5.2) THEOREM. (X, L + 2X) is a conic bundle over P via the morphism qx

associated with

Proof. First of all by Lemma (5.1) $ΐ | defines a morphism Φ whose image is

This will follow once

the restriction morphism

P . This will follow once we have shown that h ($) — 3. To see this recall that

is surjective, as proved in (5.1) step 1. Furthermore h (X — A) = 0, as (X~A)f

— — Af< 0, where / is a fibre of the morphism associated with | $ί |. All this

gives h {$() — h (fflA) and so step 3 in (5.1) is enough to conclude. Consider the

Stein factorization of the morphism Φ onto P and get the diagram

x

'•/ V
Z > P

ψ

where ψ is finite and Z a normal surface. For the general fibre F of qx we have

0 = Ft = - (Kx + L)F - - deg KF - LF and so deg KF = - LF < 0, which

yields

degKF= -2,F = Pι,LF=2.

So if G is a connected component of a fibre of Φ, we have

(5.2.1) LG = LF=2.

Assume that deg φ ^ 2 and let / be a non-connected fibre of Φ. Since ΦA —

π : A—> P i s a 2 : l morphism and A intersects every connected component of /

we get Af — 2 and / has exactly two connected components Gx and G2. We thus
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have G{A — 1, contradicting (5.2.1). Thus deg φ = 1. Since Z is normal, Zariski's

main theorem claims that ψ is an isomorphism. So Z = P , Φ = qx and ffl =

qx M for some ample line bundle M on P . Finally letting ί£ = L + 2 f̂ we have

and this shows that (X, i£0 is a conic bundle over P in the sense of (0.1). •

In order to further describe these pairs (X, L) endowed with a double struc-

ture, we need the following
<p*iχ) 2

(5.3) LEMMA. The morphism X • S X P is an embedding.

Proof First of all note that if £ is a fibre of px, then qx(£) is a line in P .

To see this recall that L£ = 1, px being the scroll projection, and so X£ =

— άegK£— L£—\. The projection formula will give the result. To see that (px,

qx) is an injection, choose x, y ^ X. If px(x) Φ px(y) there is nothing to prove,

otherwise there exists a fibre £ of px containing them. The above remark says that

qx(x) Φ qx(y). Finally (pXJ qx) is an immersion. Let τx be a tangent vector to X at

x. If dpx(τx) Φ 0, there is nothing to show, otherwise τx is tangent to a fibre £ of

px. Since qx{£: £^> P 1 is an embedding, we have dqx(τx) Φ 0. •

From now on let p, q stand for the projection of M = 5 X P onto its factors.

Note t h a t ^ = pXJ qιx = qx, so that we have the following commutative diagram

(5.4) Remark. L extends to a line bundle f on S X P , moreover

X = p*W] + <?X>2(1) and [A] = p*[D] + q*UY>2(X)

for suitable effective divisors D', D on S.

Proof. First of all Kx + 2L = px*H in view of (5.0.1) and t = - Kx -

= qx*Cp2(l), so that
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L = Kx + 21 + it = (p*H + q*ej*a))x.

Moreover, [X] — p [D] + q re Θ^ix) where D is a divisor on S and x an inte-

ger. For every point s on S, px (s) = p (s)X is a line with respect to L since

(X, L) is a scroll Via px. Therefore

l = <exρ~ι(s).

Let Dx and D 2 be two effective divisors on S meeting transversely at t — DJ)2

distinct points. Then

t = £Xp*(D1)p*(D2) = (p*(Dι)p*(D2))x (^X 2(l)) 2 = tx. D

(5.5) Remark. Define Cy = ^ ( ^ (z/)) for a general # ^ P and note that Cy

is smooth, p being an isomorphism between qx~ (y) and C r Moreover, if qx has no

2-dimensional fibres, we have h (Cy) > 3 due to the injection P —»| Cy \ obtained

by sending y e P to CΨ

(5.6) EXAMPLES. The following special cases are very important as will be

clear from (5.7).

(5.6.1) Assume that S = P 2 . By (5.4) we have

[X\ = 0p2 χp2(tf, 1) a n d % = ^p2χP2(ft, 1),

with a, b integers, a > 0, X being an effective divisor of P 2 X P 2 . If F stands for

a fibre of the conic bundle map qx, we have 2 = LF — &XF — ab and so the only

possibilities for (X, L) are either

(a) [X] = 0p2 x p 2 ( l , l ) , L = 0P2xp2(2fl)x; or

(β) [X\ = ^ p 2 χ p 2 ( 2 , l ) , L = β p 2 χ p 2 ( l , l ) z .

(5.6.2) The conic bundle map qx cannot have 2-dimensional fibres.

By contradiction, let F be a 2-dimensional fibre of qx. Then the general

smooth surface A ^ | L \ meets F along a curve C (compare [BS, sec. 2]). Moreov-

er, since (Kx + L)F is trivial, we get by adjunction that (KA)C is trivial and thus

— KA cannot be ample, contradicting (3.0.1).

(5.6.3) Assume that S = P 1 x P 1 and that C/ = 2, where Cy =

p(qx~
l(y)) for a general y ^ P 2 as in (5.5).

In view of (5.4) we can write
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[X] = 0plχplχp2(tf A Ό , ^ = 0plxplχp2(C,rf,l).

Letting h = #*0 p 2(l), we have

X/*2 = fe1^) = p*Cy h2,

which yields [Cy] = ΘPιxτ>ι(a,b). Assumption Cy = 2 implies # = δ = 1, as a >

0, X being effective. From now on choose as Cy a curve reducible in £ι U £2,

where £lf £2 correspond to two effective generators of Pic(P x P ). Line bundle

ίt = — Kχ — L extends to — CKPixPixP2 + X + £) and so

it = ΘPixPιxp2(- c + 1, - d + 1, l)x.

Since #tf = Uf where f—(fo(y),ΰt must be trivial on the two components of /

corresponding to £v £2, namely p £{h , i— 1,2. All this implies d — c = 1.

Therefore the only possibility for (X, L) is

(r) υn = 0 p i x P i X P 2 ( i , u ) , L - 0 p l χ p l χ p 2 ( i , u v

(5.6.4) Assume that 5 = FL (the 1st Segre-Hirzebruch surface) and that

Q = 1, where Q = p(qx (y)) for a general y ̂  P as in (5.5).

Let r be a fibre of the ruling of F x and let Co be the fundamental section, i.e.

the unique exceptional curve. Choosing

e= Co + r, r

as generators for PicCF^, we have that

E = p*e, R = p*r, h = ?*0p 2(l)

are generators for PicCF! x P ), so that we can write, by (5.4),

[X] = aE + bR + h, £ = cE + dR + h.

As in the above example we have

Xh2 = q-\y) =p*Cyh
2,

which yields [Cy] = ae + br on F^ Assumption Cy = 1 implies a = 1, b = 0,

Cy = e. From now on choose as Cy a curve reducible in Co U r. Line bundle

it = ~ Kχ- L extends to - (KFiXp2 + X + £) and so

M = - ((c - 1)£ + (d - l)i? - /z)z.

Since f̂/ = 0/ where f—Qχ (y) y $t must be trivial on the two components of /

corresponding to Co and r, namely /> Coh , i?/z . All this implies d — c — 1.

Therefore the only possibility for (X> L) is
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(δ) [X]=E + h, L=(E + R + h)x.

(5.6.5) Note that in all the above cases, (a), (β), (7), (<5) the line bundle cor-

responding to [X] is spanned. Hence the associated linear system does contain a

smooth threefold. Moreover L is very ample since it is the restriction to X of a

line bundle ί£ which is immediately seen to be very ample on S X P . Finally

I L I contains a smooth element which is in fact a Del Pezzo double plane and the

degree 2 morphism is induced by q. Actually in all cases an immediate check gives

— KA — qlA βpzil) and so A is a Del Pezzo surface with KA = 2.

The main result of this section is the following

(5.7) THEOREM. Scrolls as in (3.2.2) are exactly the pairs (α), (β), (7),

(δ) described in (5.6).

Proof. In view of (5.6.2) the conic bundle map qx has only 1-dimensional

fibres. Let Cy = p(qχ

l(y)) for y <Ξ p 2 as in (5.5) and recall that px maps isomor-

phically qx (y) onto its image Cψ so we have that Cy is isomorphic to P .

The line bundle [Cy] on S associated with Cy is spanned. To see this let s be

any point on S. Since px (s) has dimension 1, Γ= qxpx (s) has dimension < 1;

we can thus find a point x ^P2\Γ. Therefore 5 &pxqχ

l(x), but pxqχ

λ(x) ^

\cy\.
Moreover [Cy] is big. By contradiction assume that Cy — 0. Since Cy is

rational, S is a ruled surface, Cy is a fibre and so h (Cy) < 2, which contradicts

(5.5).

Recall that Kx + 2L = px H for an ample and spanned line bundle H on 5

by (5.0.1) and (5.0.2). Now the projection formula gives

(5.7.1) HCy = Hpx(qx\y)) = (Kx + 2L)q~\y) = - 2 + 4 = 2

and so the Hodge index theorem yields

(5.7.2) H2Cy < 4.

Since H is spanned, if H2 = I we have (S, H) = (P 2, 0 p 2 ( l ) ) and (5.6.1) leads

to cases (a), (β). If H2 = 2, either (S, H) = (P 1 x P 1 , ̂ P i x P i ( l , l ) ) o r τ S-^

P is a double cover and H — τ 0 p 2 ( l ) . In the former case by (5.7.2) and the fact

that on P X P the self intersection of any divisor is even, we have Cy = 2 and

so (5.6.3) leads to (7). In the latter case, let 2c be the degree of the branch locus

of T. Since A dominates S via px, S is a Del Pezzo surface by (3.1). Then since

— Ks = τ (9p 2(3 — c) has to be ample we have 1 < c < 2. For c = 1 we fall into
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the above case, while for c = 2, S is isomorphic to A, but this contradicts (0.2).

We can thus assume H > 3, which by (5.7.2) gives

(5.7.3) C] = 1.

If Cy is ample, since it is also spanned, (5.7.3) implies (S, [Cy]) — (P , Θ^i

and (5.6.1) leads to cases (a), (β). To finish with, assume that Cy is not ample

and Cy = 1. So there exists an irreducible reduced curve E such that CyE = 0;

note that E Φ Cy1 Cy being big. From the spannedness of [Cy] we deduce there

exists an effective divisor C on S, linearly equivalent to Cy, with

C' = E + R, R>0.

We have 2 = HC = EH + RH in view of (5.7.1) and so the ampleness of H

says that HR = 1 and R is irreducible and reduced. Since C is the image via p.x

of a reducible fibre of the conic bundle map qx, we also have ER = 1 and so, by

(5.7.3), 1 = C2 = C'(E + /?) = C'i? = 1 + R\ We thus deduce i?2 = 0, HR =

1 and R — P , R being isomorphic via / ^ to a component of a reducible fibre of

the conic bundle map. This says that (S, H) is a rational scroll. On the other

hand S is a Del Pezzo surface by (3.1), S being dominated by A. Hence either 5 =

P X P or S = Fv The first case cannot happen in view of (5.7.3) since the self

intersection Cy = 1 cannot occur on P X P . In the second case (5.6.4) leads to

(<5). D
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