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MODULI SPACES OF STABLE VECTOR BUNDLES ON
ENRIQUES SURFACES

HOIL KIM

Abstract. We show that the image of the moduli space of stable bundles on
an Enriques surface by the pull back map is a Lagrangian subvariety in the
moduli space of stable bundles, which is a symplectic variety, on the covering
K3 surface. We also describe singularities and some other features of it.

§0. Introduction

Moduli spaces of stable vector bundles on algebraic surfaces have been
described by several authors. Vector bundles on rational surfaces ([Ba],
[Hu]), ruled surfaces ([Br], [Q]), K3 surfaces ([Mul, 2], [Tyl, 2]), elliptic
surfaces ([F], [O,V]) and some surfaces of general type ([Bh], [D,K]) have
been studied. In this paper we want to study the moduli spaces of stable
bundles on Enriques surfaces. Every Enriques surface has a K3 surface as
a universal covering space.

Mukai ([Mul]) showed that the moduli space of stable vector bundles
on any K3 surface has a symplectic structure. We will describe the moduli
spaces of stable bundles on Enriques surfaces with relation to those on the
corresponding K3 surfaces.

THEOREM. (1) The image of the moduli space of stable bundles on an
Enriques surface by the pull back map is a Lagrangian subvariety, exactly the
fixed locus of the induced involution, in the moduli space of stable bundles,
which is a symplectic variety, on the covering K3 surface.

(2) The singularities in the moduli space M of stable bundles on an
Enriques surface are the images of finitely many union of the moduli spaces
of the moduli spaces of stable bundles on the K3 surface and the dimension
of singular locus is at most | ( d i m M + 3) (big codimensional singularity).

(3) The pull back map is two to one from the smooth locus of M to
the moduli space of stable bundles on the K3 surface, with no branch locus.
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This paper is based on some part of my thesis, where we proved a weaker
form of the theorem and has been improved during the stay at Bayreuth
University and Max-Planck-Institut in Bonn. I thank to Professor I. Dol-
gachev for suggesting this problem and guiding and to two institutions for
good hospitality with financial support. Takemoto's old result was very
important to our work, which I did not notice before. I thank Professor
C. Okonek for indicating that paper to me and for some other helpful dis-
cussions. I thank Professors, Ono and Borovoi for a lemma in chapter 2
and D. Huybrecht for a good comment in the proof of the theorem and
discussions.

§1. Preliminaries

1. An Enriques surface X is a minimal algebraic surface whose canon-
ical divisor Kx </* 0, but 2Kχ ~ 0, where ~ denotes the linear equivalence.

2. Every Enriques surface has an elliptic structure over P 1 . It has
exactly two multiple fibres of multiplicity 2, say them FA,FB- Then the
canonical divisor can be expressed as a difference of two multiple fibres,
that is Kx ~ FA - FB>

3. The fundamental group of any Enriques surface is Z2, so that the
universal covering space is a K3 surface. Let the quotient map be TΓ. That
is an etale covering with respect to Kx. So π*(Oγ) = Oχ@Kχ, π*(Kχ) =

4. An Enriques surface X is called nodal if there exists a smooth
rational curve R. (In this case R? = —2.) Otherwise, it is called unnodal.
In the 10 dimensional moduli space of Enriques surfaces, a generic one is
unnodal, while the nodal ones form a 9 dimensional subvariety ([C,D]).

5. A nodal cycle N on an Enriques, or a K3 surface is a positive 1-cycle
such that /ι1(Oj/v) = 0. This is a tree of smooth rational curves ([Ar]).

6. We define the slope of E with respect to some ample divisor ϋf,
denoted by μπ(E), as (cι(E) H)/τank(E). A vector bundle E is called
iί(-semi)-stable if for every subsheaf F, with 0 < rank(F) < rank(-E'),

There exists a moduli space of stable vector bundles which is a quasi-
projective algebraic variety.

7. Let X be an Enriques surface (K3 surface). Then the map c\ :
PicX —• H2(X,Z) is an isomorphism (injective). So, we identify PicX
with its image.
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Now we fix the notations.

X is an Enriques surface and its universal covering space, which is a

K3 surface, is denoted by X and the quotient map from I to I is TΓ.

Let Mχ5//(r, ci,C2) (resp. M - ^ ^ ^ r , cχ,C2)) be the moduli space of stable

vector bundles on X (resp. X) with respect to H (resp. 7Γ*iϊ), where r is

the rank of the bundles and Q is the assignment of the z-th Chern class.

We denote by i the involution on X compatible to TΓ and by i* the

induced involution on M γ We mean Kx by K and E ® L by E(L), where

L is a line bundle and E is a vector bundle.

§2. General structure theorem

Here we interpret the results of Takemoto [Ta] in our Enriques surface

X and the covering K3 surface X.

THEOREM. [Ta] (1) // a TΓ*H-stable bundle F on X is not isomor-

phic to π*E for any bundle E on X, then π*(F) is H-stable. IfF is π*H-

semi-stable, then τr*F is H-semi-stable.

(2) If a simple bundle E on X is isomorphic to E(K), then there

exists a simple bundle F on X such that π*(F) = E.

Next we introduce the result of Mukai on the moduli spaces of stable

bundles on K3 surfaces.

THEOREM. [Mul] The moduli space M of stable bundles on a K3 sur-

face S is smooth and there is a line bundle L = OM and a skew-symmetric

bilinear form B : TM x TM —> L such that B®k(\F\) is nondegenerate and

canonically isomorphic to the natural pairing Ext (F,F) x Ext (F, F) —>

Ext 2 (F, F) for any stable bundle F.

Let us begin with a lemma.

LEMMA. Let X be an Enriques surface and X, be the universal cover-

ing space of X and F be a simple vector bundle on X such that F = i*F.

Then there exists a bundle E on X such that π*E = F.

Proof. It suffices to prove that there exists a map / : F —•» F, over the

involution such that f2 = id. For a given isomorphism h : F —> i*F, let g

be a composition of h followed by the natural map j : i*F —> F. Then g is

a map from F to F over the involution and g2 = XId for some λ φ 0 in C.

Let / be (λ)~1//2g. Then, / satisfies the required property. Q



Remark. This can be genralized to any bundle F whose endomorphism

is M r (C), where r is the rank of E.

Before going into the main theorem, we recall the formula for the di-

mension of M = Mχ(r, c\,c2), the moduli space of stable bundles on an

Enriques surface X, and the dimension of the tangent space TβM at E G M.

άimE M > 2rc2 - (r - l)c\ - r 2 + 1

dimT^M = 2rC2 - (r - l)c\ - r2 + 1 + h2(EndE).

Here h2(EndE) = 0 if E ψ E(K) and 1 if E = E{K). This comes from

the fact that for any non-trivial homomorphism between two stable bundles

with the same slope is an isomorphism.([O,S,S]) The right hand side of the

above inequality is called is the expected dimension of M.

Then we state our main result.

THEOREM. Let X be a K3 surface which is the universal covering space

of an Enriques surface X and Mx, (resp. M-^) be a moduli space of stable

vector bundles on X (resp. X) (see §1).

(1) Then, A4χ is singular at E if and only if E = E(K) except the

case that E belongs to a 0-dimensional component (exceptional bundle) or a

two dimensional component, where every bundle E satisfies that E = E(K).

The singular locus of M.χ is a union of the images by π of finitely many

different components of M^- with possibly different Chern classes on X,

where M ^ = {F E Mγ\F ψ i*F} and its dimension is < \(ά\mMχ +

3). So, Mx is generically smooth. In particular, if the rank is odd, it is

everywhere smooth, and if the rank = 2 then it can have only finitely many

isolated singular points.

(2) The pull back map π* from M^- to M-^ is two to one with no branch,

where MQ

χ = {E e Mχ\E ψ E(K)}.

(3) The image of M^ by π* is a Lagrangian subvariety in M-^ and is

equal to the fixed locus by involution i*.

Proof of (1). If E is a singular point in Mx then E = E(K), so that

E = π*F for some stable bundle F on X. ([Ta], or §1) So, the rank is an

even number, say 2k. Then π*E = F 0 2*F. Let the Chern polynomial of

F be 1 + cλ(F)t + c2(F)t2. Then, that of i*F is 1 + (i*ci(F))t + c2(F)t2.

So, we have

2c2(E) = π*c2{E) = a(F) • i*cx{F) + 2c2(F).
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Here cχ(F) • π*H = i*ci(F) • π*H since π*H ~ i*(π*H). This implies that
(c\(F) — i*cι(F))2 < 0 by the Hodge Index theorem (the equality holds if
and only if c\(F) = i*c\(F)). Now we can find a relationship between the
dimensions of Mx(2k,cι(E),c2(E)), and Mγ(k,c1(F),c2(F)).

= 4/ec2(£) - (2k - l)c\(E) - 4k2 + 1

= 2k(a(F) fc^F)) + Akc2(F)

-(2k - l)(cf (F) + ci(F) ΐ*ci(F)) - Ak2 + 1

= 2(2kc2(F) - (k - l)cj(F) - 2k2 + 2)

+(Cl(F) i*ci(F)-c?(F))-3.

(This is a computation when Mx is of expected dimension. For the com-
ponent not of expected dimension, where E = E(K), we must add by 1.)
However we know that

where the equality holds if and only if cι(F) — i*cι(F). So, we can conclude
that

dimMγ(fc,ci(F),C2(F)) < \{άimMx(2k,Cι{E), c2{E)) + 3),
Δ

where the equality holds if and only if c\ (F) = i*c\ (F). (We have dim M-̂  <
^(dimMx + 2), the equality holds if and only if c\(F) = i*c\(F) for the
component not of expected dimension.)

From the above formula, we see that

c i ( F ) 2 - c i ( F ) i*ci(F) > - dimM x - 3 = J5,

so that,

2B < ( i ( ) l ( ) )

So, there can be only finitely many numbers for (cι(F) — i*cχ(F))2 and for a
fixed value there can be only finitely many choices for cχ(F), since (π^H)1-
is a negative definite lattice. However, π*F is stable if and only if F ψ. i*F.
So the singular locus of Mx is a finitely many union of direct images of M-!L
Here the map π* from these M-^ to the singular locus of Mx is 2 to 1 with
no branch. In fact τr*(F) ^ π*(G) implies that π*(π*(F)) ^ π*(π*(G)).
This means that F Θ z*F ̂  G Θ i*G. So

Hom(F, G) Θ Hom(F, z*G) Θ Hom(i*F, G) Θ Hom(i*F, i*G)

^ Hom(F θ i*F, G θ i*G) 7̂  0.
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So, this forces that F *έ G, or F ^ z*G. Obviously, π*F ^ π*(i*F).
If π* is 1 to 1, then F = i*F and τr*F is not stable. The singular locus

is of even dimension and smooth in itself. If the rank is odd, then M is
everywhere smooth.

Conversely, if E = E{K), then E ^ τr*F for some F on X. If E is
a smooth point in M j , then £7 = E(K) everywhere in the component M
containing E. Then M is a finite union of the images of some components of
M-jζ with possibly different Chern classes, which have the same dimension
as M, call one of the components M. From the previous formula, we get

dimM = dimM < -(dimM + 2).

(Note that E = E(K) in M). So, the possible dimension of M is 0 or 2. If
dimM = 2, then for F in M,ci(F) = i*ci(F), so that cχ{F) = iτr*ci(£)
and if dimM = 0, M has a unique bundle E1 and M has two bundles i*1

and z*F such that c?(F) = cx{F) i*cχ(F) - 2. If the rank is 2, then the
singular locus is the direct images of finitely many different line bundles.
This completes the proof of (1). D

Remark 1. In fact, the singularity of Mχ(2fc, Ci, C2) is closely related
to the singularity of the curves in the linear system of c\ (the splitting
behaviour of the divisor of τr*(ci) on X.)

Remark 2. There can be 3 different types of components in Mχ5 (1)
a component M which has the expected dimension and is smooth every-
where, (2) a component M which has the expected dimension, but has
some singularity, (3) a component M which has the dimension one bigger
than the expected dimension (must be smooth everywhere). The singular-
ity can exist only in the second type. The components with codimension
one singularity can exist only for dimM = 1,3 or 5.

We will give those examples.

EXAMPLE 1. The simplest example of M.χ with some singularities is
Mχ(2,FA, 1), where FΛ is a half fibre. Then Mχ(2,FΛ, 1) = FB, another
half fibre. If Fβ is singular with an ordinary double point, then the inverse
image of Fβ is a union of two smooth rational curves i?χ, R2 — i*(Rι) (A\
type). Then the bundle E corresponding to the singularity is just τr*O-^(i?i)
(or R2). Note that det(τr*Oγ(#i)) ~ FB + K - FA ([Ha]).
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EXAMPLE 2. We can find many examples of the moduli space M of
dimension three whose singularity is a K3 surface. We can find a compact
moduli space Mγ(fc,ci,C2) such that cf = c\ i*c\ — 2 (this holds if and
only if ci = N + 5, where TV is a nodal cycle with N i*N = 0 and S is
a divisor fixed by involution and dimMγ = 2. There are many examples
with these conditions. Then M-^ is a K3 surface and the dimension of the
corresponding Mx is 3 and the singular locus is just the image of that K3
surface. (Note that τr*M-̂ (/c, cχ,C2) = τr*Mγ(fc,z*ci,C2) and c\ φ i*c\.)

EXAMPLE 3. If we choose Mγ(k, ci, c2) of dimension 4 with c\ = i*cχ
then the image of M^- by TΓ* is the singular locus of 4 dimension in the
5-dimensional space, Mχ

Proof of (2). First we show that if E is iϊ-stable and is not isomorphic
to E(K), then π*E is τr*iϊ-stable, From the fact that

H°{Έndπ*E) = H°(End E) ® H°((End E)(K)) - C,

π*E is simple. π*E is also a direct sum of stable bundles with the same
slope (since the pull back of an Einstein-Hermitian bundle is still Einstein-
Hermitian and an Einstein-Hermitian bundle is a direct sum of stable bun-
dles with the same slope.) From these two facts π*E must be τr*iί-stable.
From the above equation we conclude also that if E is isomorphic to E(K),
then iτ*E is not simple, just a direct sum of stable bundles. (In fact,
τr*£ = F Θ i*F, for some F such that τr*F = E. ([Ta])) So, TΓ* is well
defined from M£ = {E\E e Mχ,E ψ E(K)} to M γ . M£ is the same
as the smooth locus of Mx except two cases as we saw in the proof of
(1). Next we show that π* is 2 to 1 with no branch. Iΐπ*E = π*Ef, then
H°(π*(E* ® E')) φ 0. However,

H°(π*(E* (8) E')) = H°(E* <g> E1) Θ H°(E* ® E\K)).

So, either H°(E* ® E') φ 0, or H°(E* ® ̂ (ϋΓ)) ^ 0. The property of
stability implies E = Ef, or E = Ef(K). So, the map TΓ* is 2 to 1 with no
branch if the rank is even and 1 to 1 if the rank is odd. Q

Remark (a) TΓ* restricted to M%(2k, D, c2) or M^(2k,D + K,c2) is
still 2 to 1 with no branch. In general, Mχ(2k,D,C2) is not isomorphic
to Mχ(2k, D + K, C2). For example, Mχ(2, F^, 1) = F# is not isomorphic
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to Mχ(2, Fg, 1) = î Λ If a n exceptional bundle E of even rank exists for
det(E) = D, then there is no exceptional bundle Ef for det(£") = D + K.

(b) However, π* restricted to Mχ(2/c+l, £>, c2) or Mχ(2fc + 1, D+K, c2)
is 1 to 1, so that Mχ{2k + l,D,c2) (= Mχ(2fc + l ,D + UΓ,c2)) is isomorphic
to its image.

Proof of (3). First we show that the dimension of Mχ(r, ci, c2) is half
of the dimension of M-χ(r, π*ci, ττ*c2).

d i m M γ = 2rτr*c2 - (r - l)(π*ci)2 - 2r2 + 2

= 2(2rc2 - (r - l)c? - r2 + 1) = 2dimM^.

Next we show that the pull back of the holomorphic two form ω on M-^
to M ίf vanishes. The proof comes easily from the following commuting
diagram,

ΐ T
Ext1 (E,E) x Ext1 (£;,£;) ->

and the fact that Ext2(E,E) = i72(EndE) = 0, for any E G M £ . (In the
above diagram, Ext1 (£7, JS) = Γg Mx and Extx(π*£:, π*£;) = Tπ*EMγ.) So,
we can also conclude that the image of M*χ is a Lagrangian subvariety in
Mjξ. That the image of M^ is fixed by involution z* is obvious. Another
direction comes from the lemma easily. So the image is exactly the fixed
locus by involution. This completes the proof of (3). D

Remark 1. We expect that Λί"γ is birational to the cotangent bundle
of the image of M^ by π*.

Remark 2. We know that the dimension of Mχ(2k + 1, ci, c2) is even.
We expect that Mχ(2k + 1,JD,C2) is birational to a symmetric power of
some Enriques surface. In fact we know many cases that M-% is birational
to a symmetric power of some K3 surface. In this case, the image of Mx
is just the fixed locus by involution, so that it is a symmetric power of
an Enriques surface, the quotient of that K3 surface. Another example is
Mχ(3, ci, 3), where X is a fourfold covering of P 2 and c\ is a pull back of
hyperplane of P 2 . Then c2 = 4. In this case M is birational to the original
Enriques surface X.
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