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TYPES OF COMPLETE INFINITELY SHEETED

PLANES

MITSURU NAKAI

Abstract. We will answer negatively to the question whether the complete-
ness of infinitely sheeted covering surfaces of the extended complex plane have
anything to do with their types being parabolic or hyperbolic. This will be
accomplished by giving a one parameter family {W [α] : α ∈ A} of complete
infinitely sheeted planes W [α] depending on the parameter set A of sequences
α = (an)n≥1 of real numbers 0 < an ≤ 1/2 (n ≥ 1) such that W [α] is parabolic
for ‘small’ α’s and hyperbolic for ‘large’ α’s.

§1. Introduction

The purpose of this paper is to show the existence of a one parame-

ter family (W [α])α∈A of complete infinitely sheeted planes W [α] such that

W [α] ∈ OG for ‘small’ α ∈ A and W [α] 6∈ OG for ‘large’ α ∈ A.

Recall that a covering (Riemann) surface X, or more precisely, (X,Y, f)

of Y is a triple of two Riemann surfaces X and Y and an analytic mapping

f of X to Y . It is said to be complete (cf. [2]) if every a ∈ Y has a

closed parametric disc K around a such that each component of f−1(K) is

compact. When (X,Y, f) is smooth, i.e. there is no branch point in X, the

completeness of (X,Y, f) is equivalent to the regularity of (X,Y, f), where

(X,Y, f) is regular if, for any arc γ on Y and any point ã ∈ X lying over

the initial point a of γ, there always exists a continuation γ̃ on X along γ

starting from ã, i.e. there is an arc γ̃ on X with its initial point ã such that

f(γ̃) = γ (cf. [2]).

Let P be the plane, or more precisely, P be the finite complex plane

C : |z| < ∞ or the infinite (i.e. extended) complex plane Ĉ : |z| ≤ +∞
(i.e. Ĉ = C ∪ {∞}, the Riemann sphere). If the covering surface (X,P, π)

of P satisfies the following two conditions, then X, or (X,P, π), is referred

to as a multisheeted plane: the cardinal number cardπ−1(a) is a constant
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µX ∈ N∪ {ℵ0} for every a ∈ P , where N is the set of positive integers and

ℵ0 = cardN; for any cover continuation (X ′, P, π′) of (X,P, π), the closed

set X ′ \ X is of logarithmic capacity zero measured on X ′, where a cover

continuation (X ′, P, π′) of (X,P, π) is a covering surface of P such that X

is a subsurface of X ′ such that π′|X = π. If the number, which we call the

sheet number of X, µX ∈ N (µX = ℵ0, resp.), then (X,P, π) is said to be

a finitely (infinitely , resp.) sheeted plane.

What we call our type problem is to judge whether X ∈ OG or not

for a given multisheeted plane (X,P, π) (cf. [7], [11]), where OG is the

class of parabolic (i.e. not hyperbolic) Riemann surfaces characterized by

the nonexistence of Green function on them (cf. e.g. [8], [9]). If (X,P, π)

is finitely sheeted plane, then we can easily see that X ∈ OG along with

the parabolicity or the ellipticity of P . In view of this, we will consider

only infinitely sheeted planes in our type problem. We have been having a

feeling that complete infinitely sheeted planes are apt to become parabolic.

In fact, we have shown the existence of a family W of infinitely sheeted

planes (X,C, π) which is an equivalence class of infinitely sheeted planes

with respect to the similarity, where (X1,C, π1) and (X2,C, π2) are similar

to each other if there is a topological mapping T of X1 onto X2 with the

property that p ∈ X1 is a branch point of multiplicity m if and only if

T (p) ∈ X2 is a branch point of multiplicity m and in this case π1(p) =

π2(T (p)), such that X ∈ OG for a (X,C, π) ∈ W if and only if (X,C, π) is

complete (cf. [5] and [6]). Nevertheless, the main purpose of this paper is

to maintain that the parabolicity and the completeness of infinitely sheeted

planes have absolutely nothing to do with each other. This will be shown

by constructing a one sequential parameter family (W [α])α∈A of complete

infinitely sheeted planes (W [α], Ĉ, π) (α ∈ A) such that W [α] ∈ OG if α is

“small” and W [α] 6∈ OG if α is “large”, where A is the family of sequences

α = (an)n∈N with 0 < an ≤ 1/2. The one sequential parameter family

(W [α] \ π−1(∞))α∈A of (W [α] \ π−1(∞),C, π) (α ∈ A) plays the same role

as that of (W [α])α∈A.

§2. Construction of a one parameter family

Consider the class A of sequences α = (an)n∈N of real numbers an with

0 < an ≤ 1/2 (n ∈ N). We view A = {α} the sequential parameters family.

We will construct a complete infinitely sheeted plane (W [α], Ĉ, π) for each

α ∈ A so that we obtain a one sequential parameter family (W [α])α∈A of

complete infinitely sheeted planes W [α].



TYPES OF COMPLETE INFINITELY SHEETED PLANES 183

Let J = [0, 1/2] be the slit in Ĉ. We denote by S the surface obtained

from two copies of Ĉ\J by pasting Ĉ\J and Ĉ\J crosswise along J . The

closure of one of Ĉ \ J in S will be called the upper sheet of S and denoted

by S+. The other closure of Ĉ \ J left in S is then referred to as the lower

sheet of S and denoted by S−. The surface S is conformally the sphere Ĉ

but presently represented as a two-sheeted plane.

In addition to A and S we use the index set Λ = {−2,−1, 1, 2} as

another ingredient in our construction of W [α] (α ∈ A). An admissible

n-tuple i1i2 · · · in of elements in Λ is an ordered n-tuple of i1, i2, . . . , in in

Λ such that ik 6= −ik−1 (k = 2, . . . , n). There are 4 = 4 · 31−1 admissible

1-tuples i1 in Λ, 4 · 3 = 4 · 32−1 admissible 2-tuples i1i2, 4 · 32 = 4 · 33−1

admissible 3-tuples i1i2i3, and so on, . . . , and in general 4 · 3n−1 admissible

n-tuples i1 · · · in.

First consider 4 slits I0i = [|i|, |i| + 1/2] (i ∈ Λ) in S by the following

rule: I0i ⊂ S+ for i > 0 and I0i ⊂ S− for i < 0 so that I01 and I02 are in

S+ and I0,−1 and I0,−2 are in S−. Then we consider the 4-slitted S:

(1) F0 := S \
⋃

i∈Λ

I0i.

We now fix an α = (an)n∈N ∈ A so that 0 < an ≤ 1/2 (n ∈ N). Let

Ini := [|i|, |i| + an] and

(2) Fi1···in := S \
(

In−1,in ∪
(

⋃

i∈Λ\in
Ini

))

for each i1 · · · in of 4 · 3n−1 admissible n-tuples in Λ (n ∈ N). We then form

an infinitely sheeted planes W [α], which we express symbolically as follows:

(3) W [α] := F0 +
∑

i1

Fi1 +
∑

i1i2

Fi1i2 + · · · +
∑

i1···in
Fi1···in + · · · ,

where i1 · · · in are admissible n-tuples (n ∈ N). Here we add a few words

to mention the exact procedure in the construction in (3). As the first step,

we perform the following: each Fi1 of the four Fi1 (i1 ∈ Λ) is pasted to F0

crosswise along I0,−i1 in F0 and I0i1 in Fi1 . From the second step on, and

in general as the nthstep, we perform the following: each Fi1···in−1in of three

Fi1···in−1in (in ∈ Λ \ {−in−1}) is pasted to each Fi1···in−1
of 4 · 3n−2 Fi1···in−1

for every admissible (n − 1)-tuple i1 · · · in−1 in Λ crosswise along In−1,−in

in Fi1···in−1
and In−1,in in Fi1···in−1in .
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From the construction it is clear that each p ∈ W [α] lies above a point in

Ĉ, which we denote by π(p). Then p 7→ π(p) is an analytic mapping of W [α]

to Ĉ. Now it is easy to see that W [α], or more precisely (W [α], Ĉ, π), is a

complete infinitely sheeted plane. Moreover W [α] is planar . Concerning the

one parameter family (W [α])α∈A constructed above, we have the following

result.

Theorem. The complete infinitely sheeted plane W [α] determined by

the sequence α = (an)n∈N with 0 < an ≤ 1/2 (n ∈ N) is hyperbolic, i.e.

W [α] 6∈ OG, if α is large in the sense that

(4) inf
n∈N

an > 0;

and W [α] is parabolic, i.e. W [α] ∈ OG, if α is small in the sense that

(5)
∑

n∈N

1

3n
log

1

an
= +∞.

The proof of the second part of our theorem above will be given in the

next Section 3 and the first part in Section 4. The proof of the second part

is easy and very short. Since the proof given in Section 4 is considerably

long, the section is divided into 3 Subsections 4.1–4.3.

§3. Proof of Theorem: parabolicity

We now start the proof of our theorem stated in Section 2. In this

present short Section 3 we prove that if α = (an)n∈N ∈ A is so small as to

satisfy (5), then W [α] ∈ OG. For simplicity we set W := W [α]. Let Wn

(n ≥ 0) be regular subregions of W given by

(6) W0 := F0, Wn := F0 +
∑

i1

Fi1 +
∑

i1i2

Fi1i2 + · · ·+
∑

i1···in
Fi1···in (n ∈ N),

where i1 · · · ik (1 ≤ k ≤ n) are admissible k-tuples (1 ≤ k ≤ n). Then

(Wn)n≥0 forms a regular exhaustion of W , which is called the standard

exhaustion of W in this present paper. For each n ∈ N let wn be the

continuous function on W n \Wn−1 such that wn is harmonic on Wn \W n−1

with boundary values wn|∂Wn = 1 and wn|∂Wn−1 = 0. The function wn is

referred to as the harmonic measure of ∂Wn on Wn \ Wn−1. The Dirichlet

integral DWn\W n−1
(wn) of wn over Wn \ W n−1 is, by definition,

DWn\W n−1
(wn) :=

∫

Wn\Wn−1

|∇wn(z)|2 dxdy (z = x +
√
−1y).
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Then the modulus µn of the configuration Wn \ W n−1 is given by

µn := 2π/DWn\W n−1
(wn).

By virtue of (5) we will derive

(7)
∑

n∈N

µn = +∞.

Before proceeding to the proof of the above (7), we pause here to make

the following simple observation. We denote by Aa for 0 < a ≤ 1/4 the

annulus bounded by the ellipse centered at the origin 0 with major axis

1 and minor axis
√

1 − 4a2 and the segment [−a, a], by Ba the annulus

bounded by the ellipse centered at 0 with major axis 1/a and minor axis√
1 − 4a2/a and the segment [−1, 1], and finally by Ca the ring domain

bounded by circles |z| = 2a/(1 +
√

1 − 4a2) and |z| = 1. By the conformal

mapping w = (z+1/z)/2, Ca is mapped onto Ba. By the conformal mapping

w = az, Ba is mapped onto Aa. In view of modAa = modBa = modCa,

where e.g. modAa means the modulus of Aa, and

modCa = log
[(

1 +
√

1 − 4a2
)
/2a
]
,

we see that

(8) modAa = log
[(

1 +
√

1 − 4a2
)
/2a
]

= 2π/DAn(w),

where w is the harmonic measure of the segment [−a, a] on Aa. From the

above (8) it can be derived that

(9)
1

2
log

1

a
≤ modAa ≤ log

1

a
.

We now turn to the proof of (7). Observe that Wn \ W n−1 consists

of 4 · 3n−1 components Fi1···in for all admissible n-tuples i1 · · · in. Since

the modulus µi1···in of Fi1···in is given by 2π/DFi1 ···in
(wn), where wn is the

harmonic measure of ∂Wn on Wn \ Wn−1, and

DWn\W n−1
(wn) =

∑

i1···in
DFi1···in

(wn),

we conclude that

(10) 1/µn =
∑

i1···in
1/µi1···in .
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Let A := Aan−1/2 + (|in| + an−1/2), where a0 = 1/2, and w be the

harmonic measure of the segment part of ∂A on A. Since A ⊂ Fi1···in , the

Dirichlet principle implies

DA(w) = DFi1···in
(w) ≥ DFi1···in

(wn),

where w is extended to Fi1···in from A by setting w = 0 on Fi1···in \A. Thus

modAan−1/2 = modA ≤ µi1···in . Using (10) we see that

1/µn ≤
∑

i1···in
1/

(
1

2
log

1

an−1

)
= 4 · 3n−1/

(
1

2
log

1

an−1

)

or µn ≥ 8−13−(n−1) log(1/an−1). Therefore (5) implies

∑

n∈N

µn ≥ 8−1
∑

n∈N

3−(n−1) log(1/an−1) = +∞,

which is the relation (7) to be proved.

By the Sario-Noshiro modular criterion for the parabolicity of W (cf.

e.g. [8], [9], etc.), the existence of the regular exhaustion (Wn)n∈N, which

we call the standard exhaustion of W in this paper, of W with (7) concludes

that W ∈ OG.

§4. Proof of Theorem: hyperbolicity

Under the assumption that the sequence α = (an)n∈N is large in the

sense that c := infn∈N an > 0, we will show that W [α] is hyperbolic, i.e.

W [α] 6∈ OG. As the largest member in A will be referred to the sequence

σ := (sn)n∈N such that sn = 1/2 (n ∈ N) so that

σ = (1/2, 1/2, . . . , 1/2, . . .).

The plan of our proof for W [α] 6∈ OG goes as follows. First we will show in

Subsection 4.1 the existence of a quasiconformal mapping T of W [σ] onto

W [α]. By the quasiconformal invariance of the parabolicity (i.e. if there

is a quasiconformal mapping of a Riemann surface R1 onto another R2,

then R1 ∈ OG if and only if R2 ∈ OG (cf. e.g. [9])), we can conclude our

objective W [α] 6∈ OG if we show that W [σ] 6∈ OG. Then, as the second step,

we will derive in Subsections 4.2 and 4.3 a contradiction from the erroneous

assumption W [σ] ∈ OG.
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4.1. Construction of a quasiconformal mapping

In this first Subsection 4.1, we will construct a quasiconformal mapping

T of W [σ] onto W [α]. We consider, as we did in Section 3, the standard

exhaustions for covering surfaces constructed in Section 2. Recall that the

standard exhaustion (Wn[α])n≥0 of W [α] is given by

W0[α] := F0, Wn[α] := F0 +
∑

i1

Fi1 + · · · +
∑

i1···in
Fi1···in (n ≥ 1),

where Fi1···ik will also be denoted by Fi1···ik [α] indicating the dependence

on α. Take a standard neighborhood Un[α] of each ∂Wn[α] (n ∈ N) char-

acterized by the following three conditions: a) each component of Un[α]

is a piecewise smooth annulus containing only one component of ∂Wn[α],

where a region is piecewise smooth if the region is relatively compact and its

relative boundary consists of a finite number of mutually disjoint piecewise

smooth Jordan curves; b) any two different components of
⋃

n≥0 Un[α] are

disjoint in their closures; c) W [α] \ ⋃n≥0 Un[α] is an open set independent

of α so that, for example,

W [α] \
⋃

n≥0

Un[α] = W [σ] \
⋃

n≥0

Un[σ].

Let γ[α] be a Jordan curve which is a component of ∂Wn[α] and let V [α]

be the annulus containing γ[α] which is a component of Un[α].

The construction of T goes as follows. First let the mapping T be

defined as the identity between W [σ] \⋃n≥0 Un[σ] and W [α] \⋃n≥0 Un[α].

The construction will be over if we define a K-quasiconformal mapping

of V [σ] onto V [α] for every V [α] and its corresponding V [σ] such that

T : ∂V [σ] 7→ ∂V [α] is the identity and K ≤ K0, where K0 is a constant

independent of the choice of V [α] (and V [σ]).

Suppose γ[α] comes from the slit In,in+1
= In,in+1

[α] = [|in+1|, |in+1| +
an] in Fi1···inin+1

= Fi1···inin+1
[α] and the slit In,−in+1

= In,−in+1
[α] in

Fi1···in = Fi1···in [α], which are pasted crosswise and give rise to the ana-

lytic Jordan curve γ[α]. Let γ[σ] be the corresponding one to γ[α] in W [σ]

so that it comes from In+1,in+1
[σ] = [|in+1|, |in+1|+ sn] in Fi1 ···inin+1

[σ] and

In,−in+1
[σ] = [|−in+1|, |−in+1|+sn] in Fi1···in [σ], which are pasted crosswise

and give rise to γ[σ].

We denote by Z(d) the slitted square

Z(d) := Q \ J(d),
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where Q = (0, 1)×(0, 1) is the unit square and J(d) = [1/4, 1/4+d]+
√
−1/2

is the line segment of the length 0 < d ≤ 1/2 and set

Zi(d) := Z(d) −
√
−1/2 + |i| − 1/4

for i ∈ Λ. Then Zin+1
(an) is viewed as being contained in Fi1···inin+1

[α]

and the slit of Zin+1
(an) is identical with In,in+1

[α]. Similarly Z−in+1
(an) is

viewed as being contained in Fi1···in [α] and the slit of Z−in+1
(an) is identical

with In,−in+1
[α]. Thus as V [α] we take the annulus obtained by pasting

Zin+1
(an) to Z−in+1

(an) crosswise along In,in+1
and In,−in+1

. If we can

construct a quasiconformal mapping T of Zin+1
(sn)∪In,in+1

[σ] to Zin+1
(an)∪

In,in+1
[α] such that T is identity on their boundaries and

T (In,in+1
[σ]) = In,in+1

[α],

then it can be continued symmetrically to the mapping T of V [σ] to V [α]

with the dilatation less than a fixed constant K0 independent of γ[σ] and

γ[α].

Based upon the observation above we, hence, only have to show the

existence of a quaiconformal mapping w from the square Q = (0, 1)× (0, 1)

to itself fixing ∂Q such that w(I(1/2)) = I(an), where

I(1/2) := [1/4, 1/4 + 1/2] +
√
−1/2, I(an) := [1/4, 1/4 + an] +

√
−1/2

and the dilatation K is bounded by a constant K0 depending only on c.

For simplicity we set an =: d in this proof so that I(d) := I(an) and

0 < c ≤ d ≤ 1/2.

Consider a homeomorphic mapping w of Q onto itself given by

w(z) := u(z) +
√
−1y (z = x +

√
−1y),

where u(z) := x for 0 ≤ x ≤ 1/4, 2(ξ(y) − 1/4)(x − 1/4) + 1/4 for 1/4 ≤
x ≤ 3/4, and 4(1 − ξ(y))(x − 1) + 1 for 3/4 ≤ x ≤ 1, where

ξ(y) := (1 − 2d)|y − 1/2| + (1/4 + d),

which maps [0, 1] to [1/4 + d, 3/4]. Then wx = ux and wy = uy +
√
−1

and thus wz = (wx −
√
−1wy)/2 = (ux + 1 −

√
−1uy)/2 and wz = (wx +√

−1wy)/2 = (ux−1+
√
−1uy)/2 so that the candidate of complex dilatation

µ(z) := wz(z)/wz(z)
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satisfies |µ|2 = (P − p)/(P + p), where P := (u2
x + u2

y + 1)/2 and p := ux.

Since P ≤ P0 := 11/2 and p ≥ p0 := 2d, we have

|µ|2 =
P − p

P + p
≤ P0 − p0

P0 + p0
=

(
K − 1

K + 1

)2

or equivalently

|µ| ≤ K − 1

K + 1
,

where

K :=
11

4d
+

√
121

16d2
− 1 ≤ 11

4c
+

√
121

16c2
− 1 =: K0

and

K ≥ 11

4 · (1/2) +

√
121

16 · (1/2)2 − 1 =
11

2
+

√
1

4
+ 29 > 1.

Hence µ defined above is a measurable function on Q such that |µ| ≤
(K − 1)/(K + 1) on Q so that µ is eligible to be a complex dilatation

on Q. Clearly w : Q 7→ Q is a homeomorphism, the identity on ∂Q, ACL

on Q and w(I(1/2)) = I(d), and satisfies the Beltrami equation

wz(z) = µ(z)wz(z)

almost everywhere on Q, i.e. w is a generalized solution of the above Bel-

trami equation on Q. Therefore w is a required K-quasiconformal mapping

of Q to Q (cf. e.g. [3]) fixing ∂Q pointwise with K ≤ K0, a fixed constant

depending only upon c.

4.2. Exhausting regions with short boundaries

We are in the position to prove W [σ] 6∈ OG. We will do this by

contradiction so that we now make the erroneous assumption that W :=

W [σ] ∈ OG. Then there exists an Evans-Selberg potential h on W with

its pole at a ∈ W (cf. [4], see also [9] and [10]): h is a harmonic func-

tion on W \ a such that h has the negative logarithmic pole at a ∈ W ,

i.e. z 7→ h(z) + log(1/|z|) is harmonic at a for the local parameter z at a

with z(a) = 0, and h(z) → +∞ as z tends to the Alexandroff point of W .

We consider the polar coordinate re
√
−1θ on W constructed from h, where

r = eh and θ is the multivalued conjugate harmonic function of h on W \ a

so that dθ = ∗dh on W \ a. Using a branch θ of θ we can use re
√
−1θ as
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local parameters at each point of W except for an isolated set of points with

|∇h| = 0.

For each 0 < t < +∞ we set

R(t) := {z ∈ W : h(z) < log t} = {z ∈ W : r = r(z) < t}
so that a ∈ R(t) since r(a) = 0. Clearly R(t) is a relatively compact region

and its relative boundary Γ(t) := ∂R(t) consists of a finite number of Jordan

curves which may have common points at where ∗dh = 0. Except for these

points which are isolated in W the above Jordan curves are analytic. Hence

except for a countable number of 0 < t < +∞, R(t) is a regular region and

Γ(t) consists of a finite number of mutually disjoint analytic Jordan curves.

Clearly ∫

Γ(t)
dθ = 2π.

In the covering surface (W, Ĉ, π) we consider a (pseudo-)metric on W

induced from the spherical metric on Ĉ by the projection π. The area of

a set G ⊂ W is denoted by |G| and the length of a curve γ ⊂ W is also

denoted by |γ| in the above induced metric. Put A(t) := |R(t)|, i.e. the area

of R(t). By denoting π′(z) = dπ(z)/dz, we have

A(t) =

∫∫

R(t)

( |π′(z)|
1 + |π(z)|2

)2

r drdθ

=

∫ t

0

(∫

Γ(r)

( |π′(z)|
1 + |π(z)|2

)2

r dθ

)
dr (z = re

√
−1θ).

Clearly t 7→ A(t) is continuous and increasing, and

A(∞) :=

∫∫

W

( |π′(z)|
1 + |π(z)|2

)2

r drdθ

= µW

∫∫

F0

( |π′(z)|
1 + |π(z)|2

)2

r drdθ = +∞.

Hence we conclude that

(11) lim
t↑∞

A(t) = A(∞) = +∞.

Put L(t) := |Γ(t)|, the length of Γ(t) = ∂R(t), so that

L(t) =

∫

Γ(t)

|π′(z)|
1 + |π(z)|2 t dθ (z = re

√
−1θ),
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which is also continuous in t. Denoting by A′(t) = dA(t)/dt, we have

A′(t) =

∫

Γ(t)

( |π′(z)|
1 + |π(z)|2

)2

t dθ.

By the Schwarz inequality we see that

L(t)2 =

(∫

Γ(t)

|π′(z)|
1 + |π(z)|2 t dθ

)2

≤
(∫

Γ(t)

( |π′(z)|
1 + |π(z)|2

)2

t dθ

)
·
(∫

Γ(t)
t dθ

)
= 2πtA′(t)

and thus we have obtained the inequality

(12) L(t)2 ≤ 2πtA′(t).

Choose and then fix an arbitrary 1/2 < τ < 1. We consider

Ξ(s) := {t ∈ [s,∞) : L(t) ≥ A(t)τ},
which is closed in [s,∞). Choose an r0 > 0 such that R(r0) is a regular

region containing F 0 so that ∂R(r0) consists of at least four components.

Suppose that a sequence 0 < r0 < r1 < · · · < rn−1 for an n ∈ N, n > 1, has

been chosen such that L(rk) < A(rk)τ and R(rk) is regular for 1 ≤ k ≤ n−1.

Take an sn ∈ (max{n, rn−1},∞). Considering the logarithmic length

L(X) :=

∫

X

dt

t

for measurable subsets X ⊂ (0,∞), we observe that

L([sn,∞)) =

∫ ∞

sn

dt

t
= [log t]∞sn

= +∞.

Using 1/t ≤ 2πA′(t)/L(t)2 for t ∈ [sn,∞) as a consequence of (12) and

2πA′(t)/L(t)2 ≤ 2πA′(t)/A(t)2τ for t ∈ Ξ(sn), we deduce

L(Ξ(sn)) =

∫

Ξ(sn)

dt

t
≤ 2π

∫

Ξ(sn)

A′(t)
A(t)2τ

dt

≤ 2π

∫ ∞

sn

A′(t)
A(t)2τ

dt = 2π

∫ A(∞)

A(sn)

dA

A2τ

= 2π

[
1

1 − 2τ
A−2τ+1

]∞

A(sn)

=
2π

2τ − 1
A(sn)−2τ+1 < ∞.
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Hence L([sn,∞) \ Ξ(sn)) = ∞ − (2π/(2τ − 1))A(sn)−2τ+1 = +∞. This

shows that the set [sn,∞) \ Ξ(sn) 6= ∅ is open and a fortiori we can find

an rn ∈ (sn,∞) with rn 6∈ Ξ(sn), i.e. L(rn) < A(rn)τ , such that R(rn) is

regular. Since rn > sn > max{n, rn−1}, we have

0 < r0 < r1 < r2 < · · · < rn−1 < rn ↑ ∞.

Using this sequence we finally define

(13) Rn := R(rn), Γn = Γ(rn) = ∂R(rn) (n ≥ 0).

Then (Rn)n≥0 is a regular exhaustion of W and

|Γn|/|Rn| = L(rn)/A(rn) < A(rn)τ/A(rn) = A(rn)τ−1 ↓ 0 (n ↑ ∞).

Thus the boundaries Γn of the exhausting regions Rn of W are relatively

short in the sense that

(14) lim
n→∞

|Γn|
|Rn|

= 0.

4.3. Exhausting regions with long boundaries

As a consequence of W := W [σ] ∈ OG, we have seen in the preceding

Subsection 4.2 the existence of a regular exhaustion (Rn)n≥0 of W given in

(13) that the boundaries Γn = ∂Rn of Rn are so short as to satisfy (14).

We will see from a different view point that the same exhaustion (Rn)n≥0

satisfies

(15) lim inf
n→∞

|Γn|
|Rn|

> 0

as a consequence of W ∈ OG, which contradicts (14). Thus we should not

have assumed that W ∈ OG and the proof of W := W [σ] 6∈ OG will be over.

The proof of (15) goes as follows.

Besides the main covering surface (W, Ĉ, π) we have two other covering

surfaces (W,F, π1) and (F, Ĉ, π2) involved in (W, Ĉ, π) with the relation

π = π2 ◦ π1, where F is the closed surface of genus 2 obtained from F0

by pasting crosswise along I01 and I0,−1 and also along I02 and I0,−2. The

metric on F is the one induced from the spherical metric on Ĉ by π2 and

that on W is the one induced from that on F by π1, which is identical with

the one induced from the spherical metric on Ĉ by π already considered in
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the preceding Subsection 4.2. The area (length, resp.) of a set G (an arc γ,

resp.) is denoted as before by the same notation |G| (|γ|, resp.) on either

one of three surfaces (F, Ĉ, π2), (W,F, π1), and (W, Ĉ, π).

We denote by Φ(W ) (Φ(F ), resp.) the set of closed curves ϕ on W (F ,

resp.) which are not of homotop null. We maintain

(16) a(W ) := inf
ϕ∈Φ(W )

|ϕ| > 0.

For a proof observe first that (W,F, π1) is smooth and complete (so that

regular) and therefore the monodromy theorem assures that π1(ϕ) ∈ Φ(F )

if and only if ϕ ∈ Φ(W ) : π1(Φ(W ) = Φ(F ). Since the metric on W may be

viewed as induced from one on F by π1, we see that |ϕ| ≥ |π1(ϕ)|. Hence

a(W ) = inf
ϕ∈Φ(W )

|ϕ| ≥ inf
ϕ∈Φ(W )

|π1(ϕ)| = inf
ϕ∈π1(Φ(W ))

|ϕ| = inf
ϕ∈Φ(F )

|ϕ|,

by which we only have to prove

(17) a(F ) := inf
ϕ∈Φ(F )

|ϕ| > 0

to conclude (16), i.e. a(W ) ≥ a(F ) > 0. Fix an arbitrary p ∈ F and denote

by Φp(F ) the set of ϕ ∈ Φ(F ) passing through p and consider

f(p) := inf
ϕ∈Φp(F )

|ϕ|.

Then a(F ) = infp∈F f(p). We maintain that f(p) > 0. Contrary to the

assertion assume that f(p) = 0 for a p ∈ F . Choose an open parametric

disc B centered at p and let ε be the distance between p and F \B measured

by the induced spherical metric on F . Then f(p) = 0 implies that there is a

ϕ0 ∈ Φp(F ) such that |ϕ0| < ε so that ϕ0 ⊂ B, which is however impossible

since B is simply connected and ϕ0 is not homotop null. Otherwise every

ϕ ∈ Φp(F ) is not contained in B, i.e. ϕ ∩ (F \ B) 6= ∅, and a fortiori

|ϕ| ≥ ε, which leads to f(p) = infϕ∈Φp(F ) |ϕ| ≥ ε, contradicting the present

erroneous assumption f(p) = 0. Thus we have seen that f(p) > 0 for every

p ∈ F . Next choose an arbitrary pair (p, q) of points in F and an arc γ ⊂ F

connecting p and q. For any ϕ ∈ Φq(F ), we have γϕγ−1 ∈ Φp(F ) and

|γϕγ−1| ≤ |ϕ| + 2|γ|. Hence f(q) ≤ f(p) + 2dF (p, q), which implies the

(Lipschitz) continuity of f on F , i.e. |f(p)−f(q)| ≤ 2dF (p, q) for every pair

(p, q) of points in F , where dF (p, q) is the induced spherical distance on F .

Thus f ∈ C(F ) and f > 0 on F implies that infF f > 0, which proves (17).
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Concerning the particular exhaustion (Rn)n≥0 introduced in the pre-

ceding Subsection 4.2, we suppose the relative boundary ∂Rn =: Γn consists

of a finite number νn of components Γni (1 ≤ i ≤ νn) : Γn =
⋃

1≤i≤νn
Γni.

In view of the choice of R0 = R(r0) we have νn ≥ 4 (n ∈ N). Observe

that Γni is not homologue null. Otherwise Γni is the boundary of a rel-

atively closed region not containing a, which we denote by (Γni). Since

h = rn on ∂(Γni) = Γni, the maximum principle yields h ≡ rn on (Γni)

and thus h must be a constant rn on W , which is clearly a contradiction.

Since the homology group H(W ) of W is isomorphic to the factor group

F(W)/F (∞)(W) of the homotopy group F(W) of W by its commutator

subgroup F (∞)(W), being homotop null implies being homologue null for

any closed curve on W and thus we see that Γni ∈ Φ(W ) (1 ≤ i ≤ νn) so

that |Γn| =
∑

1≤i≤νn
Γni ≥

∑
1≤i≤νn

a(W ), i.e.

(18) |Γn| ≥ νna(W ) (n ∈ N).

We denote by ρ(Rn) (ρ(F ), resp.) the Euler characteristic of Rn (F ,

resp.) multiplied by −1. As a relatively compact subsurface of the planar

surface W , Rn is a planar surface bounded by νn Jordan curves Γni and a

fortiori ρ(Rn) = νn−2. Since the genus g(F ) of F is 2, i.e. g(F ) = 2, we see

that ρ(F ) = 2g(F ) − 2 = 2. Recall the main theorem of the Ahlfors theory

of covering surfaces (cf. [1], see also e.g. [7], [10]) applied to the covering

surface (Rn, F, π1):

(19) max{ρ(Rn), 0} ≥ ρ(F )
|Rn|
|F | − hF |Γn|,

where hF is a positive number depending only upon F and independent of

Rn. The inequality (18) implies |Γn|/a(W ) ≥ νn and the relation ρ(Rn) =

νn − 2 yields νn > ρ(Rn). Hemce |Γn|/a(W ) > ρ(Rn) holds. These with

ρ(F ) = 2 transform (19) into the following form:

|Γn|/a(W ) > 2|Rn|/|F | − hF |Γn|.

Rewriting the above inequality with b := 2a(W )/|F |(a(W )hF + 1) > 0, we

obtain the inequality |Γn|/|Rn| > b > 0 for every n ∈ N and thus we can

finally deduce (15): lim infn→∞ |Γn|/|Rn| ≥ b > 0.
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