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HOMOLOGY AND RESIDUES OF ADIABATIC

PSEUDODIFFERENTIAL OPERATORS

SERGIU MOROIANU

Abstract. We compute the Hochschild homology groups of the adiabatic alge-
bra Ψa(X), a deformation of the algebra of pseudodifferential operators Ψ(X)
when X is the total space of a fibration of closed manifolds. We deduce the
existence and uniqueness of traces on Ψa(X) and some of its ideals and quo-
tients, in the spirit of the noncommutative residue of Wodzicki and Guillemin.
We introduce certain higher homological versions of the residue trace. When
the base of the fibration is S1, these functionals are related to the η function
of Atiyah-Patodi-Singer.

§1. Introduction

The interplay between analytic properties of manifolds and algebras as-

sociated to them is a fruitful topic of current research. Indeed, appropriate

algebraic constructions lead to various analytical objects like de Rham co-

homology [7], the index of elliptic operators, [17], [11], the residue trace [17]

and the η-invariant [18]. One may even speculate that analysis on manifolds

could in principle be reduced to “formal” analysis in the spirit of [22].

In the present paper we study algebraic properties of the algebra Ψa(X)

of adiabatic pseudodifferential operators associated to a fibration X → M

of closed manifolds, in particular we compute its (topological) Hochschild

homology groups. Mazzeo and Melrose [13] have used this algebra in their

study of adiabatic families of Riemannian metrics, i.e., time-dependent fam-

ilies of metrics on the total space X such that the base directions blow up

at t = 0:

gt = dv2 +
dh2

t2
.

The algebra Ψa(X) can also be obtained from the methods of [24]. In

particular, if X has a spin structure and M = S1, it turns out that the
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family Dt of Dirac operators corresponding to the metric gt is an adiabatic

family of differential operators. In [20], [21] we use the adiabatic algebra and

some results of this paper to study adiabatic limits of the eta functions of

any elliptic adiabatic family of first order differential operators, extending

the holonomy formula of Witten [27] and Bismut-Freed [3], whose proof

only holds for Dirac operators.

The definition of the algebra Ψa(X) is lengthy (see Section 2) so let

us try to give in this introduction the simple idea behind it. Let t be a

parameter in R+ =: [0,∞), x local coordinates on the base M , y local

coordinates on the fiber F . Intuitively, the algebra Ψa(X) associated to

the fibration X → M is made of pseudodifferential operators of the form

a(t, x, y, tDx, Dy), where a is a classical symbol in the last two variables,

smooth in the parameters t, x, y for t ≥ 0. For fixed t > 0 we recover

the usual algebra of classical pseudodifferential operators on X. The adi-

abatic family of Dirac operators discussed above is of this form, and one

hopes (as it is indeed the case) that one can reasonably invert it inside the

adiabatic algebra. The main point is that D0 is no longer elliptic, hence

classical elliptic analysis fails. Therefore, the adiabatic algebra gives a bet-

ter understanding of families of (pseudo)differential operators like Dt in the

degenerate limit t→ 0.

For reasons explained below, we adjoin the inverse of t to the algebra,

thus admitting Laurent expansions in t at t = 0. We will denote by Ψi,j
a (X)

the space of adiabatic operators of order i and vanishing at least to order

−j at t = 0. The second index will be omitted when it is not restricted or

it is clear from the context. Thus for instance, Ψ−∞
a (X) denotes the ideal

of those adiabatic operators which are smoothing for each t > 0.

To give an outline of this work, recall first the description by Mel-

rose and Nistor [17] of the Fredholm index map as the boundary map in

Hochschild homology arising from the short exact sequence

0 → Ψ−∞(X) → Ψ(X) → S(T ∗X) → 0,

where Ψ(X) is the algebra of classical pseudodifferential operators on X,

and S(X) is defined by this sequence. More precisely, HH(Ψ−∞(X)) is

concentrated in dimension 0 and isomorphic to C through the trace map.

Given an elliptic operator A, they constructed a class in HH 1(S(X)) which

maps through the boundary map to the index of A.

We consider the analogous short exact sequence in the adiabatic setting

(1) 0 → Ψ−∞
a (X) → Ψa(X) → Aσ(X) → 0.
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In Section 4 we compute the Hochschild homology of the total symbol alge-

bra Aσ := Ψa(X)/Ψ−∞
a (X), by using the spectral sequence argument from

[5]. The principal symbols of adiabatic operators live naturally on a mod-

ified cotangent bundle aT ∗X → X × R+. There is a natural map φa from

T ∗X × R+ to aT ∗X which is an isomorphism for t > 0 but fails to be an

isomorphism at t = 0. To compute the first differential d1 in the spectral

sequence, we replace the symplectic duality operator ∗ of Brylinski [4] by

a (non-canonical) duality ∗a on differential forms on aT ∗X, obtained from

φ−1
a

∗
∗φ∗a by means of a connection ∇ in X →M . A completely non-obvious

result is the convergence of the spectral sequence.

Theorem 1.1. The homology groups of the total symbol algebra Aσ(X)
are

HHk(Aσ(X)) ∼=
(

H2N−k(S∗X × S1) ⊕H2N+1−k(S∗X × S1)
)

⊗ C∞(R+)[t−1].

This result is similar to that of Brylinski and Getzler [5]. Note that the

theorem would fail if we did not adjoin t−1, since the operator ∗a involves

negative powers of t. In particular, the residue trace for positive t extends

to Aσ(X) as a trace functional singular in t at t = 0.

A remarkable difference from the case of the algebra Ψ(X) is that

now the “smoothing” ideal Ψ−∞
a (X) has homology in dimensions from 0

to n+ 1. In dimension 0, the homology of Ψ−∞
a (X) is 1-dimensional as a

C∞(R+)[t−1]-module. In higher dimensions it is concentrated near t = 0, in

other words it is inherited from the quotient I∂(X) := Ψ−∞
a (X)/Ψ−∞,−∞

a (X).

This quotient is a L-vector space, where L is the field C[[t, t−1] of formal

Laurent series. The homology of I∂(X) is computed in Sections 5 and 6 by

using the spectral sequence ∂E with respect to the filtration by the powers

of t.

Theorem 1.2. The homology of I∂(X) = Ψ−∞
a (X)/Ψ−∞,−∞

a (X) is

HHk(I∂(X)) ∼=
(

Hn−k(M,OM) ⊕Hn−k+1(M,OM)
)

⊗L

where OM is the orientation bundle of M . Moreover,

HHk(Ψ
−∞
a (X)) ∼=











HHk(I∂(X)) if k ≥ 2,

Hn−1(M,OM) ⊗L⊕ C∞(R+)[t−1] if k = 1,

C∞(R+)[t−1] if k = 0,
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and the map induced in homology by the quotient map Ψ−∞
a (X) → I∂(X)

is the obvious surjection.

The first isomorphism is realized by the map ∗aχa, where χa is a noncom-

mutative analog of the Hochschild-Kostant-Rosenberg map χ defined on

Hochschild chains by:

(2) c0 ⊗ . . .⊗ ck
χa
7→ TrV(ĉ0∇

tĉ1 ∧ . . . ∧∇tĉk).

The right-hand side will be explained in Section 6; for the moment, let us

only say that TrV is the fiberwise trace applied to a family of suspended

operators in the sense of Melrose [16], ∇t is a ”covariant derivative” which

differentiates suspended operators in horizontal directions, and the output

is a (2n−k)-form on T ∗M whose coefficients are Schwartz along the fibers.

We deduce the existence of a unique continuous trace on I∂(X) (up to

multiplication by L), which moreover extends the usual operator trace on

Ψ−∞
a (X) for t > 0.

The ideal Ψ−∞
a is H-unital in the sense of [28]. This technical condi-

tion is actually fulfilled by all the ideals arising in this paper and we will

not mention it further; a detailed proof of this fact is given in [19]. The

interested reader should also consult [2] for more on this subject. Thus,

there exists a long exact sequence of Hochschild homology groups induced

from the short exact sequence (1) and in particular of boundary maps

δ : HHk(Aσ(X)) → HHk−1(Ψ
−∞
a (X)).

Section 7 contains the second type of results of this paper, based on the

homological computations from the previous sections. We first describe the

boundary maps δ in terms of our identifications of Hochschild homology.

Theorem 1.3. The composition

HHk(Aσ(X))
δ
→ HHk−1(Ψ

−∞
a (X)) → HHk−1(I∂(X))

is given in terms of the isomorphisms from Theorems 1.1 and 1.2 by inte-
gration along the fibers of S∗X →M in the first factor, and by the Laurent
expansion map C∞(R+)[t−1] → L in the second factor.

To prove this, we introduce certain higher analogs of the residue trace, with

values in Λ∗(M,OM). Namely, let c = c0⊗ . . .⊗ck ∈ Ck(Ψa(X)) and define

(3) R(c) = Resz=0

∫

aT ∗M|t=0/M
∗aχa(Q

zc)
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where Q is a positive adiabatic operator of order 1. We prove that R is

the first component (in the filtration by the order of vanishing at t = 0) of

some Hochschild cochain. This means that while we restrict the order of

vanishing, we allow arbitrary operator orders in c, as in the zeta-function

definition of the residue trace.

Theorem 1.4. The map

R : Ck(Ψa(X)) → Λn−k(M,OM)

descends to Ck(Ψa(X)/Ψ−∞
a (X)) and has the following properties:

(1) If c ∈ Ck(Ψa(X)/Ψ−∞
a (X)) is Hochschild exact, then R(c) is de Rham

exact.

(2) If c ∈ Ck(Ψa(X)/Ψ−∞
a (X)) is Hochschild closed, then R(c) is de

Rham closed.

Therefore R descends to Hochschild homology, with values in the de

Rham cohomology of the base M . For comparison, the only such explicit

cochain known in Ψ(X) is the residue trace, in dimension 0. If M = {∗}

then Ψa(X) ∼= C∞(R+,Ψ(X)), and our residues are only defined in di-

mensions 0 and 1. In that case both of them are variants of the residue

trace.

Finally, in Section 8 we examine the action of our functionals on the

Melrose-Nistor cycle tr(A⊗B), whereA ∈ Ψa(X) is elliptic, B is a parametrix

of A and tr is the generalized trace functional [12]. We recover essentially

the residue of the eta function of a self-adjoint pseudodifferential operator

on a closed manifold (this residue is known to vanish by the results of [1] and

[8]). Thus the residues R encode highly non-trivial analytic information,

and will hopefully find other interesting applications.

Notation. All symbols in this paper are classical (i.e., one-step poly-
homogeneous) of possibly complex order. We denote by Scl(V ) the clas-
sical symbols, by S(V ) the Schwartz (rapidly vanishing) functions, and by
S(V ) := Scl(V )/S(V ) the formal symbols on the total space of a vector
bundle V → X. The superscript i in a filtered algebra denotes objects in
filtration order i, while [i] denotes homogeneous degree i in the associated
graded algebra. For instance,

Sz(V ) ∼=
∏

j∈N

S[z−j](V ),
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the space of formal sums of homogeneous functions of homogeneity bounded
above on the complement of the zero-section.

The field C[[t, t−1] of formal Laurent series is denoted by L.

Acknowledgements. This paper is based on my Ph.D. dissertation
[19] supervised by Professor Richard B. Melrose. I wish to thank him for
teaching me about the adiabatic algebra and for his inspiring guidance. I
am also indebted to Gustavo Granja, Colin Ingalls, Robert Lauter, Andrei
Moroianu, Victor Nistor and Ioanid Roşu for their help, and to the referee
for careful remarks.

§2. Overview of the adiabatic algebra

2.1. The adiabatic algebra

The construction of the adiabatic algebra is based on the general for-

malism from [15]. It is a particular case of an algebra constructed in [13],

and can also be defined as in [24]. For simplicity we describe it in the scalar

case, noting that it extends easily to operators between sections of vector

bundles.

Let Xm+n π
→ Mn be a fibration of compact manifolds. The adiabatic

limit of this geometric data means exploding the base while keeping the

fibers fixed, so that the points in the base become disconnected, at least

in a first approximation. From this point of view, the underlying space of

the adiabatic limit as t → 0 is the product X × R+. The central idea in

Melrose’s approach is that the limiting value t = 0, where the interesting

phenomena occur, is of the same nature as the positive values of t, provided

one works in the appropriate ”adiabatic category”.

Denote by TX/M the vertical sub-bundle of TX. A smooth family v :

R+ → Γ(X,TX) of vector fields is called adiabatic if v(0) ∈ Γ(X,TX/M).

Thus, an adiabatic vector field is a family of vector fields on X which in the

limit does not “see” the base. Mazzeo and Melrose [13] remarked that the

adiabatic vector fields are the sections of a vector bundle over X×R+, called
aTX. If X = F ×M → M is a trivial fibration, then aTX is canonically

isomorphic to TX ×R+. In general, the vector bundles TX ×R+ and aTX

are non-canonically isomorphic as bundles over X ×R+. When X = M we

denote by aTM the adiabatic tangent bundle of the identity fibration.

Definition 2.1. Let φa : aTX → TX × R+ be the tautological map
of vector bundles which transforms a section of aTX into itself, viewed as
a time-dependent section of TX.
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Denote by φa : T ∗X × R+ → aT ∗X the dual map.

Following [15], [13] we construct an algebra of pseudodifferential op-

erators in which the adiabatic vector fields are the differential operators

of order exactly 1. This algebra is a space of conormal distributions on a

radial blow-up of X × X × R+. More precisely, let X ×M X be the fiber

diagonal in X×X. Let S+ be the positive half-sphere of the normal bundle

N(X ×M X × {0}) inside X2 × R+.

Definition 2.2. Let

X2
a = [X2 × R+;X ×M X × {0}].

As a set, this is (X2 × R+ \ X ×M X × {0}) ∪ S+. The front face of the

blow-up, denoted ff, is just S+. The set X2
a has a natural C∞ structure,

defined by gluing the two parts along the normal geodesic flow of some Rie-

mannian metric. As manifold with corners, it has one boundary component

of codimension 1 if n = 0, three if n = 1 and two otherwise.

There exists a natural blow-down map β : X2
a → X2 × R+. Let ∆ be

the diagonal in X2. We define ∆a, the lifted diagonal, to be the closure

in X2
a of β−1(∆ × (0,∞)). Note that ∆a is transversal to ff. Let 2X2

a be

the double of X2
a across the front face. By definition, a distribution on

X2
a , conormal to the lifted diagonal, is smooth to the front face if it is the

restriction of a distribution on 2X2
a , conormal to 2∆a.

Let Ωa → X2
a be the pull-back via πR ◦ β of the density bundle Ω =

Ωm+n(aT ∗X), where πR : X2 → X is the projection on the second factor.

The set of adiabatic differential operators (defined as compositions

of adiabatic vector fields and multiplication operators) corresponds via

Schwartz’s kernel theorem to the space of Ωa-valued distributions on X2
a

which are supported on the lifted diagonal and extendible across the front

face. In light of this fact, let Ψi,0
a (X) be the space of those Ωa-valued distri-

butions on X2
a which are classical (i.e., 1-step poly-homogeneous) conormal

to ∆a of order i, vanish rapidly to the boundary faces of X 2
a other than ff,

and are extendible across ff. This space forms a module over C∞(R+). For

j ∈ C, i ∈ R define further Ψi,j
a (X) := t−jΨi,0

a (X).

Definition 2.3. The adiabatic algebra of X →M is defined by

ΨZ,Z
a (X) :=

⋃

i,j∈Z

Ψi,j
a (X).
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The fiber of the natural projection X2
a → R+ for t > 0 is just X2, hence

transverse to ∆a and therefore the restriction of adiabatic operators to such

a fiber is well-defined. Clearly, such a restriction gives the Schwartz kernel

of a classical pseudodifferential operator on X. Thus for all t > 0 we get a

map from ΨZ,Z
a (X) into ΨZ(X).

The algebra structure on ΨZ,Z
a (X) is given by the following theorem.

Theorem 2.4. The space ΨZ,Z
a (X) has a C∞(R+)[t−1]-algebra struc-

ture which induces the usual algebra structure on ΨZ(X) for every fixed
t > 0.

Proof. The composition rule is defined by constructing a triple blow-
up space X3

a , such that there exist three maps πL, πC , πR to X2
a which are

b-submersions [15]. This space is defined as the iterated blow-up

X3
a := [X3 × R+;∆3 × {0}, D1,2 × {0}, D1,3 × {0}, D2,3 × {0}]

where ∆3 is the triple diagonal, and Da,b is the fiber-diagonal in X3 in the
components a, b ∈ {1, 2, 3}. Using the properties of conormal distributions,
set

(4) A ◦ B := (πC)∗((π
∗
RA)(π∗LB)).

Associativity follows from the action of ΨZ,Z
a (X) on C∞(X × R+). Alter-

nately, it also follows from the associativity of multiplication on ΨZ(X).

For E ,F vector bundles over X, define Ψi,j
a (X, E ,F) by considering

distributional kernels as above with values in Ωa ⊗ E � F . This is again

an algebra if E = F . By Morita equivalence, for homology purposes it is

enough to consider scalar operators.

2.2. Ideals, quotients and filtrations

The algebra ΨZ,Z
a (X) has two increasing filtrations. The first super-

script specifies the order of singularity at the lifted diagonal. The ideal

Ψ−∞,Z
a (X) is called the smoothing ideal by abuse of notation; an operator in

this ideal has smooth Schwartz kernel and is actually smoothing for fixed t >

0 as an operator on X. while the quotient Aσ(X) := ΨZ,Z
a (X)/Ψ−∞,Z

a (X)

is called the adiabatic symbol algebra.

The second superscript denotes the negative of the order of vanishing at

t = 0, so both filtrations are increasing. Let A∂(X) := ΨZ,Z
a (X)/ΨZ,−∞

a (X)

be the boundary algebra.
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We will use the notation Fi for the first filtration, and Tj for the second.

Let I∂(X) := Ψ−∞,Z
a (X)/Ψ−∞,−∞

a (X) be the boundary ideal. Let

A∂,σ(X) := ΨZ,Z
a (X)/(Ψ−∞,Z

a (X) + ΨZ,−∞
a (X)) be the boundary symbol

algebra. The following diagram summarizes the different ideals and quo-

tients:

(5) 0

��

0

��

0

��

0 // Ψ−∞,−∞
a (X) //

��

ΨZ,−∞
a (X) //

��

Iσ //

��

0

0 // Ψ−∞,Z
a (X) //

��

Ψa(X) //

��

Aσ(X) //

��

0

0 // I∂(X) //

��

A∂(X) //

��

A∂,σ(X) //

��

0

0 0 0

The horizontal and vertical sequences are exact.

2.3. The description of the product

Proposition 2.5. The adiabatic structure map φa induces a canonical
splitting

aTX |t=0
∼= TX/M ⊕ π∗aTM|t=0.

Proof. There exists a tautological inclusion map TX/M ×R+ → aTX,
which views a time-dependent family of vertical vector fields as an adiabatic
family. Hence TX/M is a subspace of aTX |t=0. The null-space of φa

|t=0,
π∗TM and π∗aTM|t=0 are canonically isomorphic, and form a complement
of TX/M in aTX |t=0.

Hence, aT ∗X|t=0 is canonically isomorphic to (TX/M)∗ ⊕ π∗aT ∗M|t=0.

From the definition of the blow-up, it follows immediately that the

normal bundle to the lifted diagonal in X2
a is canonically isomorphic to

aTX. In other words, X2
a resolves the degeneracy of adiabatic vector fields.

Proposition 2.6. The interior of ff is naturally diffeomorphic to the
lift of aTM to X ×M X.
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Proof. By definition, ff◦ → X×M X is a fiber bundle with contractible
fibers. Define the 0-section as the class of the tangent vector ∂t on X2

a . Take
an adiabatic vector field v which lives in aTM at t = 0 (see Proposition 2.5)
and lift it via πR ◦ β to X2

a . The restriction of the lift ṽ to the front face is
tangent to the fibers of ff and depends only on the restriction of v at t = 0.
Integrating such vector fields gives the desired identification.

Thus ff◦ has a natural vector bundle structure over X ×M X.

The product structure on Ψa(X) is given by (4), which is rather inex-

plicit. We have more explicit descriptions of the product on Aσ(X), I∂(X)

and Ψ−∞,−∞
a (X). First, Ψ−∞,−∞

a (X) is isomorphic to the space of rapidly

vanishing families of smoothing operators on X endowed with the standard

product.

Let A
[i],Z
σ := Ai,Z

σ /Ai−1,Z
σ be the filtration quotients of Aσ(X). As in

the standard case, the associated graded algebra A
[Z],Z
σ is isomorphic to the

algebra of homogeneous symbols on the adiabatic cotangent bundle aT ∗X.

Let us fix an adiabatic quantization, i.e., a diffeomorphism from an open

subset of the radial compactification aTX to a subset of X2
a , which

(1) extends the diffeomorphism from the zero section to the lifted diago-

nal;

(2) induces the identity map between the normal bundle to the zero sec-

tion and the normal bundle to ∆a (they are both canonically isomor-

phic to aTX);

(3) extends the natural diffeomorphism from π∗TM|t=0 to ff◦ff∩∆a
;

(4) induces the identity map on the normal bundle to these two spaces

(they are both canonically isomorphic to TX/M).

This choice allows us to find a vector space isomorphism called total symbol

map

(6) Aσ(X) → S(aT ∗X)[t−1]

in the following way: take an adiabatic operator, cut it off near ff∪π∗TM|t=0,

pull it back via the quantization and apply Fourier transform in the fibers

of aTX. Only the leading component of the resulting symbol is independent

of the choices made.

Let us define the adiabatic Poisson bracket { , }t as the push-forward

of the Poisson bracket on T ∗X under the canonical map φa.
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Proposition 2.7. For any choice of adiabatic quantization, the iso-
morphism (6) induces the canonical isomorphism of graded algebras

A[Z],Z
σ (X) ∼= S[Z](aT ∗X)[t−1].

Moreover, the product induced on S(aT ∗X)[t−1] by the map (6) is a smooth
t-dependent star product, i.e., it is given by a series of bi-differential oper-
ators

(7) ∗ =
∑

i≥0

Pi(t)

such that P0(t)(a, b) = ab, P1(t)(a, b) − P1(t)(b, a) = {a, b}t, and Pi is of
homogeneity −i in the cotangent fibers.

Proof. The first claim follows directly from the construction of the total
symbol map, which starts with the principal symbol. The product structure
on Ψa(X) is local in t since C∞(R+)[t−1] is central. Therefore, for any t > 0
the statement follows from the corresponding result for ΨZ(X). Since for
every i, the product map Ψi,i

a ⊗ Ψi,i
a → Ψ2i,2i

a is continuous, it follows that
Pi(t) extends down to t = 0 as a smooth differential operator, and that the
identities hold down to t = 0.

Consider now the case where X = M . Adiabatic limits in this setting

are called semi-classical limits. Let L = C[[t]][t−1] denote the field of formal

Laurent series in the variable t. An adiabatic quantization map gives now

vector space isomorphisms

A∂(M) ∼= Scl(
aTM|t=0)⊗̂L I∂(M) ∼= S(aTM|t=0)⊗̂L(8)

(the hat means that we allow infinite sums of tensors, provided that they are

finite, or equivalently convergent, in each degree). The first isomorphism

from (8) is compatible with (6) in the following sense: for an operator

A ∈ Ψa(M), we get a formal symbols with Laurent coefficients over R+

from (6), and a Laurent series of classical symbols from (8); these two

objects must map to the same formal series in S(aT ∗M|t=0)⊗̂L. One may

ask how this compatibility translates in terms of the product. The answer

is given below.

Proposition 2.8. Let M →M be the identity fibration. The product
induced on Scl(

aTM|t=0)⊗̂L by (8) is given by the same formula as the
product (7) on formal symbols, specialized to the case X = M .



182 S. MOROIANU

Proof. In the semi-classical limit algebra, unlike the general adiabatic
case, it is not hard to see that the product on A∂(M) is local, hence given
by a star-product. The induced product on formal symbols is by defini-
tion (7); moreover the bi-differential operators appearing in the product
have polynomial coefficients, thus we can recover them from their action on
formal symbols.

In general, the ideal I∂(X) is a module over I∂(M), generated by the

algebra of smoothing operators in the fibers of X →M .

A Taylor coefficient at t = 0 of an element in Ψa(X) becomes, after

Fourier transform in the fibers of aTM|t=0, a classical symbol on aT ∗M|t=0

taking values in the space of classical pseudodifferential operators on the

fibers of X. Note however that adiabatic operators have joint symbolic

behavior in the fibers and in the base. Then the product on Laurent series

at t = 0 is a combination of a star-product on aT ∗M and of the usual

convolution product in the fibers.

Let Ψ
Z,[0]
a (X) be the vertical algebra of Ψa(X),

ΨZ,[0]
a (X) := ΨZ,0

a (X)/ΨZ,1
a (X).

The algebra Ψ
Z,[0]
a (X) is a fibered version of the suspended algebra [16], [18].

Let Ψ
−∞,[0]
a (X) := IZ,0

∂ (X)/IZ,1
∂ (X) ↪→ Ψ

Z,[0]
a (X) be the vertical smoothing

ideal associated to I∂(X). An element in Ψ
−∞,[0]
a (X) is the restriction to

the front face of the Schwartz kernel of a non-singular smoothing adiabatic

operator. On ff, the density bundle Ωa decomposes as ΩR ⊗Ω(aTX), where

ΩR is the bundle of densities in the second F factor. We identify such a

restriction with its Fourier transform in the fibers of aTM|t=0. Hence by

Fourier transform,

Ψ−∞,[0]
a (X)

∼=
→ S(X ×M X ×M

aT ∗X,ΩR).

Note that the isomorphisms (8) induce, by passage to the associated

graded objects, canonical isomorphisms

ΨZ,[0]
a (M) ∼= Scl(

aT ∗M),

Ψ−∞,[0]
a (M) ∼= S(aT ∗M),

Ψ[Z],[0]
a (M) ∼= S[Z](aT ∗M).
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§3. Hochschild homology and derivations

3.1. Hochschild Homology

Let A be an unital algebra over C. Let Ci(A) = A⊗i+1 be the space of

Hochschild chains. For j = 0, . . . , i, define bj : Ci(A) → Ci−1(A) by

a0 ⊗ . . .⊗ aj ⊗ aj+1 ⊗ . . .⊗ ai
bj
7→ a0 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ ai

a0 ⊗ . . .⊗ ai
bi7→ aia0 ⊗ . . .⊗ ai−1.

Define the Hochschild boundary map by b =
∑i

j=0(−1)jbj. The homology

of the complex (C∗, b) is the Hochschild homology of the algebra A (relative

to A).

If A is not unital, let Ā be the augmented algebra A⊕C. We define the

chain spaces of A by Ck(A) = ker(Ā⊗k+1 → C⊗k+1). This definition, ap-

plied to an unital algebra, gives different chain spaces from the ones above.

Nevertheless, there are canonical chain maps which induce isomorphisms

on homology.

Benameur-Nistor [2] defined the Hochschild chains for a large class

of algebras with topology. We use these chain spaces for the adiabatic

algebra. Like the usual algebra of pseudodifferential operators, this is not a

topological algebra, in the sense that the product is not jointly continuous.

This is however only a minor problem. For every j1, j2, k1, k2 ∈ C∪ {−∞},

the multiplication map

Ψj1,k1
a (X) ⊗ Ψj2,k2

a (X) → Ψj1+j2,k1+k2
a (X)

is continuous with respect to natural Fréchet topologies.

The two filtrations by the order, respectively by the negative of the

vanishing order at t = 0, are compatible with multiplication in Ψa(X).

They induce filtrations on the Hochschild chain spaces in the following way:

a pure tensor a0⊗. . .⊗ak is said to belong to C i,j;l
k if a0 ∈ Ψi0,j0

a (X), . . . , ak ∈

Ψik,jk
a (X), i0+. . .+ik = i, j0+. . .+jk = j and iα < l, jα < l for α = 1, . . . , k.

Then C i,j;l
k is defined as the closure of the linear span of pure tensors with

respect to the projective tensor product topology in C i,j;l
k , and we define

Ck :=
⋃

i,j,l∈Z

Ci,j;l
k .

See [2] for more comments on this issue.
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The boundary map b is compatible with these two filtrations, hence

we get filtrations on the Hochschild complexes of Ψa(X), Ψ−∞
a (X), Aσ(X),

etc. We will denote the associated spectral sequences by σE, respectively
∂E, or simply by E when no confusion can arise.

Note that although A∂(X) is an L–vector space, our definition of

Hochschild homology involves only tensors over C.

Let us recall the Hochschild-Kostant-Rosenberg map [10]. Let A be a

commutative C-algebra. Define

χ : Ck(A) → Ωk
A/C

a0 ⊗ . . .⊗ ak 7→ a0da1 ∧ . . . ∧ dak.(9)

Proposition 3.1. Let Y be a compact manifold, possibly with bound-
ary. The map χ induces isomorphisms

HHk(C
∞(Y )) ∼= Λk(Y ) HHk(Ċ

∞(Y )) ∼= Λ̇k(Y ),

where the dot denotes rapid vanishing to the boundary of Y .

This result is known as the Hochschild-Kostant-Rosenberg theorem, and it

was proved in [7] for the algebra C∞(Y ) when Y is a closed manifold. The

other cases follow from this one, by considering for instance the double

of a manifold with boundary, and the H-unital ideals of rapidly vanishing

functions.

3.2. The action of derivations on Hochschild Homology

Let d be a derivation on an algebra A. We define the inner product,

respectively the Lie derivative with respect to d on HH(A) by the following

chain maps [12]:

Definition 3.2.

a0 ⊗ a1 ⊗ . . .⊗ ak
ed7→ (−1)k+1d(ak)a0 ⊗ . . . ⊗ ak−1;

a0 ⊗ a1 ⊗ . . .⊗ ak
Ld7→
∑

i

a0 ⊗ . . . ⊗ d(ai) ⊗ . . .⊗ ak.

If d is an inner derivation, then ed and Ld both vanish on HH(A) [12].

Proposition 3.3.

(1) [Ld1 , ed2 ] = e[d1,d2].
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(2) ed1ed2 = −ed2ed1 .

Proof. The first statement is true at chain level [25]. For the second,
we note that d1⊗d2 = −d2⊗d1 in the graded commutative ring HH∗(A,A).
The claim follows from the action of this ring on HH ∗(A).

If d is continuous, then ed and Ld extend to the topological chain spaces

and to topological Hochschild homology.

3.3. The derivative with respect to t

If we restrict adiabatic operators to t > 0, we remark a canonical deriva-

tion preserving the filtrations, namely D := t d
dt . In the blow-up picture, it

is given by the Lie derivative in the direction of the lift of the vector field

t d
dt to the interior of X2

a through the blow-down map. This vector field

vanishes on the fiber–diagonal at t = 0, hence its lift extends to ff as a

(non-degenerate) vector field, tangent to the fibers of ff◦. In light of Propo-

sition 2.5, we can identify it with the radial vector field in π∗aTM . We can

therefore extend the action D to the whole algebra Ψa(X); by continuity,

it will stay a derivation.

Let us choose a connection in X → M . It induces an extension of the

splitting aT ∗X|t=0
∼= (TX/M)∗⊕π∗aT ∗M|t=0 to aT ∗X over R+, and defines a

splitting T ∗X ∼= (TX/M)∗⊕π∗T ∗M . Recall that aT ∗M and T ∗M ×R+ are

canonically isomorphic. Then the map φa (Definition 2.1) takes the form

(10) φa =

[

1 0
0 t

]

Let RM be the radial vector field in π∗T ∗M . We can lift RM to aT ∗X

by using the connection.

Proposition 3.4. On A
[Z],Z
σ and A

Z,[Z]
∂ , the derivation D takes the

following form:

(11) D = t
d

dt
+ RM .

Proof. From the above expression of φa,

(12) (φa)∗

(

d

dt

)

=
d

dt
+ t−1RM .
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In any quantization independent of t for t > t0 > 0, the action of t d
dt on

symbols is just the action of the vector field t d
dt on functions. The blow-

down map β induces the isomorphism φa : T ∗X × (0,∞) → aT ∗X |t>0.
The relation between principal symbols is simply pull-back via φa, hence

the induced derivation on A
[Z],Z
σ for t > 0 is φa∗(t

d
dt ) = t d

dt + RM . By
continuity, this is valid down to t = 0.

We have implicitly proved that the partial Fourier transform in the
horizontal fibers of the operator Lβ∗(t d

dt
) equals Lt d

dt
+RM

. This implies the

result for A
Z,[Z]
∂ .

We note that (11) is a sum of two well-defined terms on the front face,

while in the interior they depend on the connection. Their sum is of course

independent of this choice.

Remark that D preserves all ideals like I∂(X),Ψ−∞
a (X), etc. As in

Definition 3.2, we get an action eD on the Hochschild homology of these

algebras. Moreover, D preserves the two algebra filtrations, hence it induces

maps of spectral sequences for the Hochschild complexes.

3.4. The conjugation by logQ

Let Q ∈ Ψ1,0
a (X) be a positive elliptic adiabatic operator of order 1

acting on the sections of a vector bundle over X. Then the complex powers

Qz, z ∈ C, are adiabatic operators of complex order z. Indeed, by the result

of Seeley [26], for any fixed t > 0 the complex powers of the restriction Qt are

classical pseudodifferential operators. Using the method of Bucicovschi [6]

extending a proof by Guillemin [9], one can construct the complex powers of

the images of Q in A∂(X), respectively in Aσ(X). Moreover, these families

are unique. Patching them together gives the family {Qz}z∈C.

We choose Q with σ1(Q) = r where r : aT ∗X → R is the length function

of some non-degenerate metric on aTX .

Let Dz(a) := (Q−zaQz − a)/z, and let DQ be the following derivation

on Ψa(X):

(13) DQ(a) := lim
z→0

Dz(a)|z=0
=

d

dz

(

Q−zaQz
)

|z=0
.

Proposition 3.5. [DQ, D] is an inner derivation.

Proof. Follows easily from the fact that

d

dz
(DQz)|z=0

∈ Ψa(X).
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Lemma 3.6. DQ decreases the order by 1. If A is an operator of order
j, then

σj−1(DQA) =
1

ir
{r, σj(A)}t,

where {, }t is the adiabatic Poisson bracket.

Proof. The symbol of Qz is rz. The result follows from Proposition
2.7.

§4. The homology of the algebra of adiabatic symbols

In this section we compute HH∗(Aσ(X)) with the spectral sequence
σE. Let N = m+ n = dimX. Recall that all operators in this paper have

classical (i.e., 1-step, polyhomogeneous) symbols.

4.1. The E2 term

Recall that the subscript [i] denotes homogeneity i in radial directions.

We first compute the E1 term.

Proposition 4.1. The first term in σE(C∗(Aσ(X))) is given by

Ei,k
1 (Aσ(X)) ' Λi+k

[i] (aT ∗X \ {0})[t−1].

Proof. From Proposition 2.7, the associated graded algebra GAσ(X) ∼=
S(aT ∗X)[t−1] is the graded commutative algebra of formal symbols on aT ∗X ,

with t−1 adjoined. This implies that E i,k
1 (Aσ(X)) is the component of

homogeneity i of HH i+k(S(aT ∗X)[t−1])). By Proposition 3.1,

HHk(S(aT ∗X)[t−1]) = Λk
S(aT ∗X)[t−1].

The isomorphism is given by the map χ.

Consider the following inclusions of algebras

ΨZ,−∞
a (X) ↪→ C∞(R+,Ψ

Z(X)(14)

ΨZ,−∞
a (X) ↪→ Ψa(X).(15)

The second map is induced by the blow-down map β. Let us examine the

induced map on the spectral sequences of the symbol algebras. Note that
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all the terms of these spectral sequences are HH ∗(C
∞(R+)[t−1])–modules,

hence local in t. As in Proposition 4.1, we see that

Ei,k
1 (AZ,−∞

σ (X)) ∼= Λ̇i+k
[i] (aT ∗X \ {0})[t−1];

Ei,k
1 (C∞(R+, S(X))) ∼= Λi+k

[i] (R+ × T ∗X \ {0})[t−1]

where the dot denotes rapid vanishing at t = 0.

For t > 0, the canonical map φa : T ∗X×R+ → aT ∗X is an isomorphism.

Then the map induced by (14), respectively (15) on E0 and E1 terms is the

inclusion, respectively the pull-back by φa. The point of this argument is

that we already know the differential d1 for the algebra of families of sym-

bols, by the results of [5]. Denote the differential in the spectral sequence

of Aσ(X) by a superscript a. For t > 0 we get

(16) da
1 = (φ∗a)

−1d1φ
∗
a.

We will extend (16) by continuity down to t = 0. Choose a connection in

X →M as in Section 3.3. Let dv = d−dt⊗L d
dt

be the de Rham differential

in the vertical directions in a product decomposition of aT ∗X. Let ∗ be the

symplectic duality operator on Λ(T ∗X) introduced by Brylinski [4]. Let ∗φ

be the conjugation of ∗ by φa:

∗φ = φ∗a
−1 ∗ φ∗a.

Proposition 4.2. For t > 0, the differential da
1 can be written (up to

sign) in terms of the product structure on aT ∗X as

(17) da
1 = ∗φ(dv − t−1dt⊗LRM

) ∗φ .

Proof. The differential d1 for the algebra S(X) = ΨZ(X)/Ψ−∞(X) was
computed in [4], [5]. Up to sign, which is irrelevant for homology, it equals
∗d∗, where d is the de Rham differential on T ∗X \ 0. Hence, in the spectral
sequence of the families algebra C∞(R+, S(X)), we get d1 = ∗(d−dt⊗ ∂

∂t)∗.
From (16) and (12), it follows that

da
1 = ∗φ(φ∗−1

a (d− dt⊗L d
dt

)φ∗a)∗φ

= ∗φ(d− dt⊗Lφa∗( d
dt

))∗φ

= ∗φ(d− dt⊗ (
∂

∂t
+ t−1LRM

)) ∗φ .

(we have used the invariance by pull-back of d).
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Let vΛk
[i] denote the space ı d

dt

Λk
[i](

aT ∗X \ {0})[t−1] of forms that do not

contain dt.

Proposition 4.3. The involution ∗φ extends to Λ∗(aT ∗X)[t−1]. Its

restriction to vΛi+j
[i] acts as follows:

(18) vΛi+j
[i]

∗φ
→ vΛ2N−i−j

[N−j] ⊕ dt ∧ vΛ2N−i−j−1
[N−j] ⊕ dt ∧ vΛ2N−i−j+1

[N−j+1] .

Proof. Follows from the following observations: First, the operator ∗
commutes with dt and, as noted in [4], it maps Λi+j

[i] (T ∗X) to Λ2N−i−j
[N−j] (T ∗X).

Secondly, φ∗a maps vΛk
[i] onto (1+ t−1dt⊗ ıRM

)Λk
[i], and φ∗−1 maps Λk

[i] onto

(1 − t−1dt⊗ ıRM
)vΛk

[i].

As a corollary, the identity (17) holds by continuity down to t = 0.

Definition 4.4. Fix a product structure on aT ∗X . Define the adia-
batic duality operator ∗a on Λ∗(aT ∗X) by

(19) ∗a := (1 + t−1dt⊗ ıRM
)∗φ.

From the definition, ∗a is an isomorphism with inverse ∗φ(1− t−1dt⊗ ıRM
).

Also, it is clear that ∗a consists of the first and third terms of ∗φ from the

decomposition (18).

Proposition 4.5. The first differential d1
a is conjugated to the vertical

de Rham differential:

∗ad
a
1∗

−1
a = dv.

Proof. Direct computation, using (17) and the definition (19).

Hence da
1 : Ei,j

1 (Aσ(X)) → Ei−1,j
1 (Aσ(X)) is conjugated via ∗a to

(20) vΛ2N−i−j
[N−j] ⊕ dt⊗ vΛ2N−i−j+1

[N−j+1]

dv→ vΛ2N−i−j+1
[N−j] ⊕ dt⊗ vΛ2N−i−j+2

[N−j+1]

Let aS∗X → R+ be the sphere bundle of aT ∗X viewed as a bundle over

R+. Denote by C∞(R+,H
∗
v (aS∗X)) the space of sections in the (trivial)

fiber cohomology bundle.
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Theorem 4.6. At the E2 level, the spectral sequence with respect to
the total operator degree filtration of the Hochschild complex of the formal
symbol algebra is isomorphic to a family of de Rham cohomology spaces
indexed by R+:

Ei,j
2 (Aσ(X)) ∼=











C∞(R+,H
N−i
v (aS∗X × S1))[t−1] if j = N,

C∞(R+,H
N−i
v (aS∗X × S1))[t−1]dt if j = N + 1,

0 otherwise.

Proof. We have seen that Ei,j
2 (Aσ(X)) is isomorphic to the homology

of the complex (20). Since dv preserves homogeneity and commutes with
dt∧, this complex splits. We claim that

(21) H∗(Λ
∗
[k](

aT ∗X \ {0})[t−1], dv) = 0 for k 6= 0.

Indeed, let R be the radial vector field on aT ∗X. Then, for ν ∈ Λ∗
[k](

aT ∗X \

{0}[t−1]), we have LRν = kν. Assume ν is dv-closed. Since d/dt is defined
using a product decomposition of aT ∗X , we have

(22)

[

R,
d

dt

]

= 0.

Thus
kν = LRν = dıRν + ıRdν = dvıRν + ıRdvν = dv(ıRν).

Hence if k 6= 0 it follows that ν is exact.
On the other hand, it is straightforward to check that

Hj(Λ
∗
[0](

aT ∗X \ {0})[t−1], dv) ∼= C∞(R+,H
j
v(aS∗X × S1))[t−1].

By the homotopy invariance of cohomology, the isomorphisms from

Theorem 4.6 are independent of the choices made.

4.2. Action of derivations and degeneracy

The derivation D introduced in (11) acts by eD on C∗(Aσ(X)). Since

it commutes with b and preserves the filtration Fi, this action descends to

the spectral sequence.

Proposition 4.7. The effect of eD on ∗aE1(Aσ(X)), and hence on
E∞(Aσ(X)), is contraction by the vector field t d

dt .
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Proof. The following commutations hold trivially on E1(Ψ(0,∞)):

χet d
dt

= ıt d
dt
χ ∗ ıt d

dt
= ıt d

dt
∗ .

Since χ is invariant by pull-backs, we can pull it back via the map φa. It
follows that

χeD = ı(φa)∗(t d
dt

)χ ∗φı(φa)∗t d
dt

= ı(φa)∗t d
dt
∗φ,

which implies ∗φχ eD = ıφ∗(t d
dt

) ∗φ χ, and so

(1 + t−1dt⊗ ıRM
) ∗φ χeD = (1 + t−1dt⊗ ıRM

)(ıt d
dt

+ ıRM
) ∗φ χ(23)

= ıt d
dt

(1 + t−1dt⊗ ıRM
) ∗φ χ.

This identity extends by continuity down to t = 0.

Hence the map eD is injective on E∗,m+n+1
2 (Aσ(X)) and vanishes on

the rest of E2(Aσ(X)). This implies that the spectral sequence σE(Aσ(X))

degenerates at E2.

Proposition 4.8. The effect of LD on [a] ∈ E∞(Aσ(X)) is the Lie
derivative Lt d

dt
[a] applied to the cohomology class [a] representing a at E2 =

E∞ in the presentation of Theorem 4.6. In particular, if a is a class of
homogeneity k in t, then LD(a) = ka.

Proof. From the definitions, χ ◦ LD = L(φa)∗(t d
dt

)χ, i.e LD acts as the

Lie derivative L(φa)∗(t d
dt

) on E1, i.e., on forms. This Lie derivative commutes

with ∗φ and with (1 + t−1dt⊗ ıRM
). Finally, LRM

= 0 on cohomology.

Let t−1dt∧ be the following operation on C∗(Ψa(X)):

a0 ⊗ . . .⊗ an
t−1dt∧
7−→

n
∑

i=0

(−1)it−1a0 ⊗ . . .⊗ ai ⊗ t.⊗ . . . ⊗ an,

Since t belongs to the center of Ψa(X), t−1dt∧ is a chain map.

Proposition 4.9. Set α := eDt
−1dt∧, β := t−1dt∧ eD. The following

identities hold on homology:

(1) (t−1dt∧)2 = 0.
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(2) eDt
−1dt ∧ +t−1dt ∧ eD = 1.

(3) C∗(Aσ(X)) and HH(Aσ(X)) split as im(eDt
−1dt∧)⊕ im(t−1dt∧ eD).

Proof. The first two statements follow by direct computation. From
part (4.9), αβ = 0. Then part (4.9) implies that α = α(α + β) = α2 and
β = (α + β)β = β2, so α and β are idempotents. Since 1 = α + β =
(α+ β)2 = α+ β + βα, we get also βα = 0. This proves part (4.9).

Let r−1dr be the generator of H1(S1) in Theorem 4.6.

Proposition 4.10. After identification of E2 with de Rham cohomol-
ogy, the derivation DQ acts as an exterior product:

eDQ
= r−1dr ∪ .

Proof. First, by Propositions 3.5 and 3.3, eDQ
commutes with t−1dt∧

and with eD. This implies that eDQ
preserves the spaces of 0 and 1-forms

in t. Let a ∈ Ei,m+n
2 be a representative for a homology class with no dt.

Then, by Theorem 4.6, eDQ
(a) is determined by its part in homogeneity

i− 1.

From Lemma 3.6, it follows that χ(σ(eDQ
(a))) = dr

r ∧ χ(a), which im-
plies the desired formula after applying the conjugation (1+t−1dt⊗ıRM

)∗φ.
The case where the class of a is a multiple of dt follows by multiplication
with t−1dt.

4.3. Convergence of the spectral sequence

This section is unavoidably technical because of the crucial role played

by the two filtrations Fi and Tj in the definition of the topological chain

spaces for Ψa(X).

Theorem 4.11. The spectral sequence for Aσ(X) is convergent, in the
sense that there exists an isomorphism

HHk(Aσ(X)) ∼= Ek−N,N
2 ⊕Ek−N−1,N+1

2 .

compatible with the filtration {Ti}i∈Z, where the E2 spaces are given in
Theorem 4.6.
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A homology class is said to belong to Fi if it has a representative in Fi.

Thus Theorem 4.11 contains what is usually meant by convergence:

Fi/Fi−1(HHk(Aσ(X))) ∼=











Ek−N,N
2 if i = k −N

Ek−N−1,N+1
2 if i = k −N − 1

0 otherwise

but also something more: first, the “residual” homology

⋂

i∈Z

Fi(HHk(Aσ(X)))

vanishes; secondly, there exists a (natural) splitting of HHk(Aσ(X)) as the

direct sum of its filtration quotients, as C∞(R+)[t−1]-modules.

One can construct abstractly a formal extension of any element in E∞

to a closed “chain”. The issue is finding asymptotically summable exten-

sions, i.e., bounding from above the T -order in accordance with the defini-

tion of the topological chain spaces (by definition, the T -order of a chain

a0 ⊗ . . .⊗ ak with respect to a increasing filtration Ti is at most l if aj ∈ Tl

for all j). We claim that we can achieve this, and moreover we can find such

an extension of the same boundary filtration order as the starting element

in E∞.

The proof uses some results and ideas from [18].

We identify elements in Ψ
Z,[0]
a with the Fourier transform of their

Schwartz kernel. The algebra of polynomial functions on aT ∗M is central in

Ψ
Z,[0]
a . Let A

Z,[0]
σ be the symbol algebra of Ψ

Z,[0]
a .

Proposition 4.12. The spectral sequence σE(A
Z,[0]
σ ) degenerates at E2.

Proof. Let B(sus) ⊂ A
Z,[0]
σ be the ideal consisting of the symbols that

vanish rapidly at the vertical sub-bundle of aT ∗X . Let F(sus) denote the

quotient A
Z,[0]
σ /B(sus). These algebras are filtered by the operator order,

thus we get spectral sequences for each of the three Hochschild complexes.
Since the polynomial functions on aT ∗M commute with these algebras,

we can define the following two types of natural operations on the spectral
sequences: contractions by vector fields with polynomial coefficients, and
exterior multiplication by forms with polynomial coefficients. These opera-
tions define splittings of the homologies and of the spectral sequences, which
are preserved by the differentials. We can also consider the action of the
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Lie derivative in the direction of RM , the radial vector field in aT ∗M . This
replaces the dilation argument from [18]. The different spectral sequences
split as eigenspaces of this action. By computing the eigenvalues, one can
prove as in [18, Propositions 6 and 7 and Lemma 7] that the spectral se-
quences E(F(sus)) and E(B(sus)) degenerate at E2. The same argument
shows that the long exact sequence in homology is determined at E2, hence
implying the proposition.

The convergence of these sequences follows from the fact that the chain

spaces are defined as inverse limits, and the following lemma:

Lemma 4.13. Let a ∈ Ck(C
∞(Y ) ⊗ L) be a boundary of T -order l.

Then there exists c ∈ Ck+1(C
∞(Y ) ⊗ L) of T -order max{0, l} such that

a = b(c).

Proof. If Y is 0-dimensional, the statement follows directly. This and
the proof of the Eilenberg-Zilber Theorem imply the result for arbitrary Y .

Note that there is no analog of the index map for the suspended algebra

([18], Lemma 8). Namely, the short exact sequence

0 → Ψ−∞,[0]
a → ΨZ,[0]

a → AZ,[0]
σ → 0

induces a long exact sequence in homology (by H-unitality) which actually

splits into short exact sequences. See also Proposition 7.15.

Consider now the graded algebra A
Z,[Z]
∂ (X). It is canonically isomorphic

to Ψ
Z,[0]
a ⊗L. In the statements above, we can replace the algebras by their

tensor product with L. A careful analysis of the T -orders shows that the

spectral sequences are still convergent.

We have proved

Proposition 4.14. Let a ∈ C j,i;l
k (Ψa(X)) be a chain of order j, such

that aj,[i] survives at σEj,k−j
2 (Ψ

Z,[Z]
a ). Then there exists A ∈ C

j,i;max{l,0}
k (Ψa(X))

such that A− a ∈ Cj,i−1
k (Ψa(X)) and b(A) ∈ Cj−1,i−1

k (Ψa(X)).

Proposition 4.15. If a ∈ C j,i;l
k (Ψa(X)) survives at Ej,k−j

2 (Aσ(X))

and k − j 6= N,N + 1 then there exists x ∈ C j+1,i+1
k+1 (Ψa(X)) such that

bx − a ∈ Cj−1,i
k (Ψa(X)) and moreover the T -order of x is at most

max{T−order(a), 0}.
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Proof. Let ν be the form corresponding to a in Ej,k−j
2 (Aσ(X)), so that

dv(ν) = 0. From (21), it follows that

ν = C−1dv(ıRν)

where C = k− j−N −1 or k− j−N , depending on whether ν does or does
not contain dt. The assumption on k − j means exactly that C 6= 0. The
passage between E1 and E2 is done via the isomorphism (1+t−1dt⊗ıRM

)∗φ

(Proposition 4.5). Then ıRν corresponds to

c = C−1∗φ(1 − t−1dt⊗ ıRM
)ıRν = C−1R#φ ∧ ∗φ(1 − t−1dt⊗ ıRM

)ν,

where R#φ is the 1-form dual to R under ωφ. We see that this 1-form is in
T1, since (φa)

−1
∗ R = R, R# = α, the canonical 1-form, and (φa)∗α ∈ T1.

Now find a chain x0 in C
j+1,i+1;max{l,0}
k+1 representing the class c at

E1(Aσ(X)). By Proposition 4.14, one can find the desired x.

Proof of Theorem 4.11. By applying Proposition 4.15 repeatedly, it fol-
lows that Fk−N−1HHk(Aσ(X)) = 0. We must still prove that the edge map

FiHHk(Aσ(X)) → Ei,k−i
2 is surjective. Start with a ∈ TjFiCk so that σ(a)

represents a class in Ei,N
2 (Aσ(X)), hence assuming that a contains no dt.

This means that we can change the sub-principal symbol of a in Tj so that
b(a) ∈ Fi−2.

From Proposition 4.14, there exists A ∈ TjCk(Ψa(X)), σ(A) = a, such
that b(A) ∈ Tj−1. Observe that we can assume that the sub-principal
symbols of A and a agree up to a chain µ ∈ TjFi−1 with the property
b(µ) ∈ Fi−2. This follows from the proof of Proposition 4.14. Now b(A)
represents a form which is the zero element in E i−2,N+1

2 (Aσ(X)). We can
assume that this form contains no dt (if not, project onto the no-dt part). As
in Proposition 4.15, it follows that there exists x ∈ TjFi−1 such that b(A)−
b(x1) ∈ TjFi−3 and T − order(x) ≤ max{ord(a), 0}. Repeated applications
of Proposition 4.15 will yield an infinite sequence xp ∈ Fi−p of chains of
uniformly bounded orders and of t-degree j. Due to the decreasing operator
orders and bounded T -orders, such a sequence is asymptotically summable
in the sense of our definition of chain spaces. It follows that b(A−

∑

xp) = 0.
The case where the class a contains dt is similar.

Corollary 4.16. The group HH(A∂,σ(X)) splits into eigenspaces of
the LD action with integer eigenvalues.



196 S. MOROIANU

Proof. First, note that the spectral sequence associated to A∂,σ(X) also
degenerates at E2 and is convergent, by the same argument as above. Since
α and β commute with b and LD, the splitting form Proposition 4.9 is inher-
ited by Hochschild homology and is preserved by LD. Via the edge inclusion,
Ek−N−1,N+1

2 (A∂,σ(X)) is a subspace of HHk(A∂,σ(X)). By Proposition 4.7,
β acts the identity and α acts as 0 on this subspace, which therefore coin-
cides with im(β). Then the inclusion im(α) → HHk(A∂,σ(X)), followed by

the edge surjection HHk(A∂,σ(X)) → Ek−N,N
2 (A∂,σ(X)), is an isomorphism

which commutes with LD. Now use Proposition 4.8.

§5. The semi-classical limit algebra

Consider the case where X = M , i.e., the fiber of the fibration X →M

is just one point. In this case, the adiabatic algebra is called the semi-

classical limit algebra. Consider the short exact sequence

(24) 0 → I∂(M)
ı
↪→ A∂(M)

p
→ A∂,σ(M) → 0.

This sequence is compatible with the filtration Tj, hence it induces a short

exact sequence of the associated graded algebras

(25)

0 → S(aT ∗M|t=0) ⊗L
ı
↪→ Scl(

aT ∗M|t=0) ⊗L
p
→ S(aT ∗M|t=0 \ {0}) ⊗L → 0.

In this section, ∂E stands for the spectral sequences with respect to the

filtration Tj of the Hochschild complexes of I∂(M), A∂(M) and A∂,σ(M).

The following Proposition is entirely similar to Proposition 4.1. We have

kept the powers of t and dt in order to keep track of the filtration.

Proposition 5.1. Let ∂E denote the spectral sequence of the Hochschild
complex with respect to the filtration Ti. Then the E1 terms of the semi-
classical algebras are:

∂E
i,j
1 (I∂(M)) ∼= Ei,j

1 (S(aT ∗M|t=0)⊗̂L)

∼= t−iΛi+j
S

(aT ∗M|t=0) ⊕ Λi−j−1
S

(aT ∗M|t=0)t
−i−1dt;

∂E
i,j
1 (A∂(M)) ∼= Ei,j

1 (Scl(
aT ∗M|t=0)⊗̂L)

∼= t−iΛi+j
Scl

(aT ∗M|t=0) ⊕ Λi−j−1
Scl

(aT ∗M|t=0)t
−i−1dt;

∂E
i,j
1 (A∂,σ(M)) ∼= Ei,j

1 (S(aT ∗M|t=0)⊗̂L)

∼= t−iΛi+j
S (aT ∗M|t=0) ⊕ Λi−j−1

S (aT ∗M|t=0)t
−i−1dt.
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Proof. The subscripts S, Scl and S stand for forms with Schwartz,
classical symbol, respectively homogeneous symbol coefficients The first
isomorphism for each space follows from the fact that the induced product

on A
Z,[Z]
∂ (M) is the usual commutative product on functions (Proposition

2.8). The second isomorphism for each space is realized by the Hochschild-
Kostant-Rosenberg map χ (Definition 9).

Let d1 be the first differential in the above spectral sequences.

Proposition 5.2. In the spectral sequences E(I∂(M)), E(A∂(M)) and
E(A∂,σ(M)), the first differential takes the form

(26) d1 = (∗a)
−1dv ∗a .

Proof. We first prove the assertion for the algebra A∂,σ(M). Let a ∈

C
[s],[i]
i+j (A∂,σ(M)) be a chain of pure homogeneity s in the fibers of aT ∗M ,

which survives at ∂Ei,j
1 . Then a also survives at σEs,i+j−s

1 (A∂,σ(M)). The
identification of both ∂E1 and σE1 with forms on aT ∗M is realized by the
map χ. From the definition, d1[a] = χ([b(a)][i−1]) is represented by the part
of b(a) of degree [−i + 1] in t. From the structure of the product on the
boundary algebras, this is exactly the part of pure homogeneity s − 1 of
b(a), i.e., it is equal to da

1[a]. The claim follows from Proposition 4.5.

Note that d1 and (∗a)
−1dv∗a are operators with polynomial coefficients

in the fibers of aT ∗M|t=0. We claim that we can recover d1 from its action

on homogeneous forms, i.e., ∂Ei,j
1 (A∂,σ(M)). Indeed, we can retrieve the

coefficients of a differential operator with polynomial coefficients from its
action on polynomials.

We can describe the homogeneity with respect to t of the operator ∗a

as follows:

(27) t−iΛk(aT ∗M|t=0) ⊕ t−idt ∧ Λk−1(aT ∗M|t=0)
∗a→ t−i+k−nΛ2n−k(aT ∗M|t=0) ⊕ t−i+k−n−2dt ∧ Λ2n−k+1(aT ∗M|t=0).

The following Proposition is a consequence of (27) and Proposition 5.2.
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Proposition 5.3. Conjugation by ∗M
a on ∂E1 induces the following

identifications for the E2 terms:

∂E
i,k
2 (I∂(M)) ∼= tk−nH2n−i−k

S
(aT ∗M|t=0)(28)

⊕ tk−n−2dt⊗H2n−i−k+1
S

(aT ∗M|t=0);

∂E
i,k
2 (A∂(M)) ∼= tk−nH2n−i−k

S (aT ∗M|t=0)

⊕ tk−n−2dt⊗H2n−i−k+1
S (aT ∗M|t=0);

∂E
i,k
2 (A∂,σ(M)) ∼= tk−nH2n−i−k(aS∗M|t=0 × S1)(29)

⊕ tk−n−2dt⊗H2n−i−k+1(aS∗M|t=0 × S1);

We can now compute the effect of derivations on these E2 terms. As

in Proposition 4.7, the operator eD acts on E2(I∂(M)), E2(A∂,σ(M)) and

E2(A∂(M)) by contraction with the vector field t d
dt . Hence the splitting

from Proposition 5.3 is given by the null-space and image of eD.

Proposition 5.4. At the level of E i,k
2 , the operator LD equals k − n

on ker(eD) and k − n− 1 on im(eD).

Proof. Imitate the proof of Proposition 4.8 to obtain that LD acts as
the Lie derivative LRM+t d

dt

. Hence, eD has eigenvalues k− n and k− n− 1

on Ei,k
2 , corresponding to the splitting from Proposition 5.3. This splitting

is given by the image and null-space of eD.

Corollary 5.5. The spectral sequences from Proposition 5.3 degen-
erate at E2.

Proof. By naturality, the boundary maps in the spectral sequences
commute with the maps eD and LD. In particular, they preserve the null-

space and the image of eD. On ker(eD) ∩ ∂E
i,k
2 , LD acts as multiplication

by k − n. This shows that for s ≥ 2, the map ds : ker(eD) ∩ ∂E
i,k
2 →

ker(eD) ∩ ∂E
i+s−1,k−s
2 must vanish. Similarly, ds vanishes on the image of

eD.

Corollary 5.6. Let OM denote the orientation bundle of M . Then

HHk(I∂(M)) ∼=
(

Hn−k(M,OM) ⊕Hn−k+1(M,OM)
)

⊗L.
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Proof. The convergence in the sense of Section 4.3 of the spectral se-
quence is easy, since there is only one filtration to control. In particular
there is no residual homology (i.e., in filtration −∞). Since we deal with
vector spaces over L, we see that HHk(I∂(M)) is isomorphic to the di-
rect sum of its filtration quotients, which by Corollary 5.5 are just the E2

terms computed in Proposition 5.3. In fact, the isomorphism is canonical,
corresponding to the splitting in eigenvalues for LD. Finally, we use the
Thom isomorphism to integrate the cohomology along the fibers, picking
up coefficients in the orientation bundle along the way.

§6. The homology of the boundary ideal

In this section, E(I∂(X)) will represent the spectral sequence with re-

spect to the filtration Tj of the Hochschild complex of I∂(X). We define

an algebra map φ : Ψ−∞
a (M)→Ψ−∞

a (X), and show that it induces an iso-

morphism E1(I∂(M)) ∼= E1(I∂(X)). This will imply that φ induces an

isomorphism in Hochschild homology.

There exists a natural fibration X2
a

π
→M2

a . The fibers of this fibration

are F × F , where F is the fiber of X →M . Choose a smooth family dv of

densities of volume 1 in each fiber of X →M .

Definition 6.1. Define φ : Ψ−∞
a (M) → Ψ−∞

a (X) by

A 7→ (π∗A) ⊗ dvR,

where dvR is the density dv in the second term of the fiber F × F .

It is immediate that φ is a map of algebras, from the structure of the

triple spaces. Indeed, X3
a fibers naturally over M 3

a , with fiber F 3 and the

assertion follows from (4).

6.1. A connection on the vertical algebra

Consider the following diagram of fibrations:

(30) X

π

��

π∗(aT ∗M|t=0)

π

��

p
oo

M
aT ∗M|t=0

p
oo

Fix a connection in X → M and lift it through p to a connection

in π∗(aT ∗M|t=0) → aT ∗M|t=0. Over a point x ∈ M , the restricted fi-

bration p−1π−1(x) → p−1(x) is canonically isomorphic to the product
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Xx × aT ∗
xM|t=0, and the induced connection is the canonical trivial con-

nection on the product.

Let ΓScl
(Λ1(aT ∗M|t=0)) denote the space of 1-forms on aT ∗M|t=0 with

symbolic coefficients in the fibers. The connection defines a derivation

S(π∗(aT ∗M|t=0))
∇
→ ΓScl

(Λ1(aT ∗M|t=0)) ⊗ S(π∗(aT ∗M|t=0)).

Recall the identification of Ψ
−∞,[0]
a (X), via Fourier transform, with S(X×M

X ×M
aT ∗M|t=0,ΩR). Let

πR, πL : X ×M X ×M
aT ∗M|t=0 → X ×M

aT ∗M|t=0

be the projections on the first, respectively the second X factor. The action

of Ψ
Z,[0]
a on Ψ

−∞,[0]
a is π∗L(C∞(X))-linear. After Fourier transform, Ψ

Z,[0]
a

acts S(aT ∗M|t=0)-linearly on S(X ×M
aT ∗M|t=0):

ΨZ,[0]
a ⊗ S(X ×M

aT ∗M|t=0) 3 (A, f) 7→ πR∗(Aπ
∗
L(f)) ∈ S(X ×M

aT ∗M|t=0).

This action is faithful. We extend by duality the derivation ∇ to Ψ
Z,[0]
a :

(∇A)(f) = ∇(Af) −A(∇(f)).

In local coordinates, one sees easily that ∇ preserves Ψ
−∞,[0]
a .

Let ∇t = ∇ + ∂
∂tdt be the extension of ∇ to Ψ

Z,[Z]
a (X). Then ∇t

commutes with multiplication by S(aT ∗M|t=0) ⊗ L, in the following sense:

Let A ∈ Ψ
Z,[Z]
a (X), V ∈ ΓS(T (aT ∗M|t=0)) ⊗ L ⊕ S(aT ∗M|t=0) ⊗ L ∂

∂t and

g ∈ S(aT ∗M|t=0) ⊗L. Then

(31) ∇t
gV (A) = g∇t

V (A).

By duality, ∇t is a derivation on Ψ
Z,[0]
a ⊗L.

6.2. The analog of χ

The product in I∂(X) is a deformation of the vertical product. It follows

that E0(I∂(X)) ∼= E0(Ψ
−∞,[Z]
a (X)). Moreover, this isomorphism commutes

with d0. By using the Künneth formula for continuous Hochschild homology

[18], we obtain

Ei,j
1 (I∂(X)) ∼= Ei,j

1 (Ψ−∞,[Z]
a (X))

= HH i+j(Ψ
−∞,[Z]
a (X))[i]

= t−i ⊗HH i+j(Ψ
−∞,[0]
a ) ⊕ t−i+1dt⊗HH i+j−1(Ψ

−∞,[0]
a ).
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There exists a S(aT ∗M|t=0)–valued trace functional on the vertical ideal

Ψ
−∞,[0]
a , defined by push-forward under the projection map π of the re-

striction to the diagonal of each fiber of kernels in Ψ
−∞,[0]
a . Actually, TrV

extends to Ψ−m−ε,Z
a (X) for ε > 0:

A
TrV7→

∫

∆×M
aT ∗M|t=0/aT ∗M|t=0

A|∆×M
aT∗M|t=0

.

Let A = A0⊗A1⊗ . . .⊗Ak ∈ Ck(Ψ
−∞,[Z]
a (X)). The following definition

was inspired by [18]. Define χa : Ck(Ψ
−∞,[0]
a ⊗L) → ΛS(

aT ∗M|t=0)⊗ΛL by

(32) χa(A) := TrV(A0∇
tA1 ∧ . . . ∧∇tAk).

For V1, . . . , Vk ∈ ΓS(T (aT ∗M|t=0)) ⊗L⊕ Scl(
aT ∗M|t=0) ⊗L ∂

∂t , we have

χa(A)(V1, . . . , Vk) = TrV





∑

σ∈Sk

A0∇
t
Vσ(1)

(A1) . . .∇
t
Vσ(k)

(Ak)



 .

Note that χa(A) can be defined for any A = A0 ⊗ A1 ⊗ . . . ⊗ Ak ∈

(Ψ
Z,[Z]
a (X))⊗k+1, such that the real part of the order of A0∇

tA1∧ . . .∧∇tAk

is strictly less than −m.

Proposition 6.2. If A ∈ F−m−k−εCk(Ψ
Z,[Z]
a (X)), then χa ◦ bA = 0.

Proof. From the Leibniz identity for ∇t, it follows that

χa(b(A)) = (−1)k TrV[AkA0∇
tA1 ∧ . . . ∧∇tAk−1

−A0∇
tA1 ∧ . . . ∧∇t(Ak−1)Ak].

Now use the fact that TrV vanishes on commutators of operators of total
order less than −m− ε.

In particular, χa descends to the Hochschild homology of the vertical

ideal I∂(X).

Proposition 6.3. For A,B ∈ Ψ
−∞,[0]
a (M) ⊗L,

∇t(φ(A))φ(B) = φ(d(A)B).

Proof. Straightforward; however, it is not true that ∇t(φ(A)) = φ(d(A))!
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Proposition 6.4. The map χa is related to χ through χa ◦ φ = χ.
Hence, χa is surjective.

Proof. Let A = A0 ⊗A1 ⊗ . . .⊗Ak ∈ Ck(Ψ
−∞,[0]
a (M) ⊗L). Then

χa(φ(A)) = TrV[φ(A0)∇
tφ(A1) ∧ . . . ∧∇tφ(Ak)]

= TrV[∇tφ(A1) ∧ . . . ∧ (∇tφ(Ak))φ(A0)]

= TrV[∇tφ(A1) ∧ . . . ∧∇tφ(Ak−1) ∧ φ(d(Ak)A0)]

= . . . = TrV[φ(d(A1) ∧ . . . ∧ d(Ak)A0)]

= d(A1) ∧ . . . ∧ d(Ak)A0

= χ(A).

We have used Proposition 6.3 and commutativity of the trace.

6.3. The E1 term

Since χ is an isomorphism on Hochschild homology [7], by Proposition

6.4, χa must be surjective. In order to prove that χa is an isomorphism at

E1 we need to prove injectivity. Recall the decomposition b =
∑k

i=0(−1)ibi
of the Hochschild differential on Ck.

Let g be a metric on M and rg the injectivity radius of (M, g). Let ψ be

a cut-off function supported inside (−rg, rg) with ψ(0) = 1. For two points

x1, x2 in M at distance less than rg, let τx1
x2

denote the parallel transport

along the shortest geodesic from x1 to x2 in X → M , with respect to the

connection ∇, and also in aT ∗M|t=0 →M with respect to ∇LC . Fix again a

vertical density dv on the fibers of X →M .

Let Pi = (ξi, ui, vi) denote a typical point in aT ∗M|t=0 ×M X ×M X

over a base point xi ∈ M , i = 0, . . . , k.h The topological chain space

Ck(Ψ
−∞,[Z]
a (X)) is just

S((aT ∗M|t=0 ×M X ×M X)k+1) ⊗L(t0, . . . , tk) ⊗ dv0 ⊗ . . . ⊗ dvk.

Let a be a cycle in Ck(Ψ
−∞,[0]
a ⊗L),

a = A(t0, ξ0, u0, v0, . . . , tk, ξk, uk, vk)dv0 ⊗ . . . ⊗ dvk.

For l ∈ {0, . . . , k+1}, we say that a satisfies the property Pl if the following

two conditions are satisfied:

1. bj(a) = 0 for j = 0, . . . , l − 1.
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2. The function A is independent of v0, . . . , vl−1.

Proposition 6.5. If a satisfies Pl, then it is homologous to another
cycle a′, which satisfies Pl+1.

Proof. Define hl : Ck(Ψ
−∞,[0]
a ⊗L) → Ck+1(Ψ

−∞,[0]
a ⊗L) by

hl(a)(t0, P0, . . . , tk+1, Pk+1)

= ψ(d(xl, xl+1))e
−‖τ

xl+1
xl

ξl+1−ξl‖
2
dvl

⊗ a(t0, P0, . . . , tl, ξl, ul, τ
xl+1
xl

vl+1, . . . , tk+1, Pk+1).

Note that hl(a) has Schwartz behavior in both ξl and ξl+1 − ξl, therefore
also in ξl+1. Let a′ be defined by the following equation:

b(hl(a))

= (−1)la+ (−1)l+1ψ(d(xl, xl+1))e
−‖τ

xl+1
xl

ξl+1−ξl‖
2
dvl

⊗

(

∫

Xxl+1

A(t0, P0, . . . , tl, ξl, ul, τ
xl+1
xl

z, tl+1, ξl+1, z, vl+1, . . .)dz

−

∫

Xxl+1

A(t0, P0, . . . , tl, ξl, ul, z, tl, ξl, z, τ
xl+1
xl

vl+1, . . . , )dz

)

− hl(b(a))

= (−1)l(a− a′).

Since, by hypothesis, b(a) = 0, we have hl(b(a)) = 0. In addition, a′ satisfies
Pl since a does. Thus bl(a

′) = 0 and a′ does not depend on vl, hence a′

satisfies Pl+1.

By induction, every cycle a ∈ Ck(Ψ
−∞,[0]
a ⊗L) is homologous to a cycle

which satisfies Pk.

Definition 6.6. Let a be a cycle in Ck(Ψ
−∞,[0]
a ⊗ L), which satisfies

Pk. For l ∈ {0, . . . , k + 1}, we say that a satisfies Rl if the the function A
is independent of u0, . . . , ul−1.

Proposition 6.7. If a satisfies Rl, then it is homologous to another
cycle a′ which satisfies Rl+1.
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Proof. Define ql : Ck(Ψ
−∞,[Z]
a (X)) → Ck+1(Ψ

−∞,[Z]
a (X)) by

ql(a)(t0, P0, . . . , tk+1, Pk+1)

:= ψ(d(xl, xl+1))e
−‖τ

xl+1
xl

ξl+1−ξl‖
2
dvl

⊗ a(t0, P0, . . . , tl, ξl, τ
xl+1
xl

ul+1, . . . , tk+1, Pk+1).

As above, ql(a) is well defined. Since a satisfies Pk, it follows that

b(ql(a))

= (−1)la− (−1)lψ(d(xl, xl+1))e
−‖τ

xl+1
xl

ξl+1−ξl‖
2
dvl

⊗

(

∫

Xxl+1

A(t0, P0, . . . , tl, ξl, τ
xl+1
xl

ul+1, tl+1, ξl+1, z, . . .)dz

)

= (−1)l(a− a′),

where the last equality is the definition of a′. Note that a′ satisfies Pk

and Rl since a does, and moreover it is independent of ul.

Therefore, every cycle a ∈ Ck(Ψ
−∞,[0]
a ⊗ L) is homologous to a cycle

which satisfies Pk and Rk+1.

Corollary 6.8. If a ∈ Ck(Ψ
−∞,[0]
a ⊗ L) is a cycle, then χa(a) is in-

dependent of ∇.

Proof. We have seen above that a is homologous to some a′ which
lies in the image of the map φ, i.e a′ = φ(c). By Proposition 6.2, we have
χa(a) = χa(a

′). Finally, by Proposition 6.4, it follows that χa(a
′) = χ(c),

hence χa(a) is independent of ∇.

Proposition 6.9. The map

χa : E1(I∂(X)) ∼= HH∗(Ψ
−∞,[Z]
a (X)) → ΛS(aT ∗M|t=0) ⊗ ΛL

is injective. Together with Proposition 6.4, this implies that χa is an iso-
morphism.

Proof. Let a be a cycle in Ck(Ψ
−∞,[0]
a ⊗ L) so that [a] ∈ ker(χa). We

can assume that a satisfies Pk and Rk+1. This means that

a ∈ im(φ : Ck(Ψ
−∞,[0]
a (M) ⊗L) → Ck(Ψ

−∞,[0]
a (X) ⊗L).
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Say a = φ(ā). Then, by Proposition 6.4, we have

0 = χa(a) = χa(φ(ā)) = χ(ā).

Since χ is an isomorphism, it follows that ā is exact in C∗(Ψ
−∞,[0]
a (M)⊗L).

As φ is an algebra map, it commutes with the Hochschild differential, and
so a is also exact.

Theorem 6.10. The map φ induces an isomorphism between the ho-
mology groups of the semi-classical and adiabatic smoothing ideals (see Sub-
section 2.2 and Section 5):

HH∗(I∂(M))
φ
∼= HH∗(I∂(X))

∼=
(

Hn−k(M,OM) ⊕Hn−k+1(M,OM)
)

⊗L.

Proof. Propositions 6.4 and 6.9 imply that χa is an isomorphism, hence
the map φ induces an isomorphism between E1(I∂(M)) andE1(I∂(X)). The
result follows using a general property of spectral sequences [14]. We only
need to notice that the two spectral sequences are (almost tautologically)
convergent.

The map φ and the derivation D commute. From Theorem 6.10 and

the similar properties of I∂(M), it follows that eD acts on E∞(I∂(X)) by

contraction with the vector field t d
dt . The space E∞(I∂(X)) splits as the

direct sum of the null-space and the image of eD. The effect of LD on

ker(eD) ∩ ∂E
i,k
∞ (I∂(X)), respectively on im(eD) ∩ ∂E

i,k
∞ (I∂(X)), is multipli-

cation by k − n, respectively k − n− 1.

Notice that HH0(I∂(X)) is always a 1-dimensional L-vector space.

Thus there exists essentially a unique trace functional on I∂(X). In Subsec-

tion 7.3 we will show that this trace extends to a trace on Ψ−∞
a (X) which

for positive t is simply the operator trace.

§7. The residue functional

7.1. Definition of the residue

Since Qz ∈ Ψz,0
a (X), multiplication by Qz descends to Ψ

Z,[0]
a and ex-

tends to chains in C∗(Ψ
Z,[Z]
a (X)) by Qz(a0 ⊗ . . .⊗ ah) = (Qza0) ⊗ . . .⊗ ah.

We denote by ∗M
a the operator ∗a on aT ∗M . Let OM be the orientation

bundle of M .
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Definition 7.1. For z ∈ C, <(z) sufficiently negative, define

F (z) : Ch(ΨZ,[Z]
a (X)) → Λn−h(M,OM) ⊗L⊕ Λn−h+1(M,OM) ⊗Ldt

A 7→

∫

aT ∗M|t=0/M
∗M

a (χa(Q
zA)).

Proposition 7.2. For <(z) < h−N−i, the dt-free part, ı d
dt

dt∧F (z),

of F (z) is well-defined and holomorphic on FiCh(Ψ
Z,[Z]
a (X)). For <(z) <

h−N − i− 1 the dt part, ı d
dt
F (z), of F (z) is well-defined and holomorphic

on FiCh(Ψ
Z,[Z]
a (X)).

Proof. From the definition, for V ⊂ U open sets in M and V relatively
compact in U , F (z)(A)|V depends only on A|(π−1(U))h+1 . Hence F (z) is local
in M .

Lemma 7.3. The operator F (z) is independent of ∇.

Proof. Work over a coordinate patch U ⊂ M . Let (xi, ξj), (xi, ξ̃j) be
local coordinates adapted to the cotangent structure in T ∗M and aT ∗M|t=0

over U . The map φa takes the form (xi, ξj) 7→ (xi, tξj). Let Id be the local
isomorphism (xi, ξj) 7→ (xi, ξj). Let ∗M be Brylinski’s duality operator on
Λ(T ∗M). We denote by ∗U the conjugate of ∗M by Id. On h-forms,

(33) ı d
dt

dt ∧ (∗U
φ + t−1dt⊗ ıRM

∗U
φ ) = th−n ∗U ı d

dt

dt ∧ .

Using this and the fact that the integral along the fiber vanishes on forms
that are not multiples of dξ1 ∧ . . . dξn, we get

ı d
dt
dt ∧ F (z)(A) =

∫

U×Rn/U
th−n ∗U ı d

dt
dt ∧ χa(Q

zA)

= th−n

∫

U×Rn/U
∗U TrV(Q̂za0∇ξâ1 ∧ . . . ∧∇ξâh),

(34)

where ∇ξ =
∑

∇∂ξi
dξi. Recall that we Fourier-transform the kernels in

the horizontal tangent directions. Since the connection is lifted to X ×M

X ×M
aT ∗M → aT ∗M from X ×M X → M , it follows that ∇∂ξi

is actually
independent of ∇. This proves that the dt-free part of F (z) is independent
of ∇. The other case follows by replacing formula (33) with (36).
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Using Lemma 7.3, we can assume that we work in local coordinates and
that formula (34) holds. From the properties of symbols, the assumption
on the order of A, and the assumption <(z) + i− h < −N , it follows that

(35) Q̂za0∇ξâ1 ∧ . . . ∧∇ξâh ∈ dξhFz+i−hΨZ,[Z]
a (X)

and hence is of trace class (recall that all operators of order less than −m
are of vertical trace class). Taking the trace increases homogeneity by m,
hence

TrV(Q̂za0∇ξâ1 ∧ . . . ∧∇ξâh) ∈ dξhSz+i−h+m(aT ∗M|t=0) ⊗L

and so

∗M TrV(Q̂za0∇ξâ1 ∧ . . . ∧∇ξâh) ∈ Λ2n−h
[z+i−h+N ](

aT ∗M|t=0) ⊗L.

Hence for <(z) + i− h +N < 0, this form is of negative homogeneity and
therefore integrable along the fibers of aT ∗M|t=0/M . This proves the first
assertion. The other one is similar and uses the identity

(36) ı d
dt

(∗U
φ + t−1dt⊗ ıRM

∗U
φ ) = th−n−1 ∗U ı d

dt

+ th−n−2α ∧ ∗U ı d
dt

dt∧

instead of (33). Here α is the pull-back via Id−1 of the canonical form on
T ∗M , and has homogeneity 1.

Remark 7.4. From (34), we see that ı d
dt
dt∧F (z) shifts the t-degree by

h− n on h-chains.

Proposition 7.5. Let Az ∈ FiCh(Ψ
Z,[Z]
a (X)) be an entire family of h-

chains in filtration i. Then F (z)(Az) is meromorphic, with at most simple
poles at the real integers.

Proof. Denote by H(B) the holomorphic functions in the band B =
{−1 < <(z) < 1}. We shall show that F (z)(Az) has at most a simple pole
at 0 in the band B. Fix a total symbol map for adiabatic operators, i.e.,
a map q : Ψa(X) → S(aT ∗X)[t−1], which extends the symbol map. Let

Aj
z be the component of order z + j of q(Q̂za0(z) ⊗ â1(z) . . . ⊗ âh(z)). By

Proposition 7.2, only a finite number of Aj
z’s are significant for the poles of

F (z)(Az) in B. Fix a metric |r| = |(ξ, η)| on aT ∗X. Choose Bj
z such that

q(Bj
z) = Aj

z. Let ψ be a cut-off function, ψ(r) ≡ 0 for small r, ψ(r) ≡ 1 for
r ≥ 1.



208 S. MOROIANU

Lemma 7.6. The following identity holds modulo a holomorphic family
of forms on ΛS(aT ∗M):

∫

aT ∗M|t=0/M
∗M

a TrV(χa(B
j
z)) ≡

∫

aT ∗X|t=0/M
∗X

a ψ(ξ, η)χ(Aj
z).

Proof. Both terms are local, so we can prove the statement in local
coordinates. The left-hand side is independent of the connection. We claim
that the part in ∗X

a χ(Aj
z) which is a multiple of the fiber volume form dV

of aT ∗X|t=0/M , is also independent of ∇. Indeed,

∗X
a = (1 + t−1dt⊗ ıRM

)φ∗a
−1 ∗ φ∗a,

where φa is given by (10). Let µ denote a monomial form in local coor-
dinates. First, if µ does not contain a multiple of dV , then neither does
(1 + t−1dt ⊗ ıRM

)φ∗a
−1µ. Secondly, if µ contains any dx, dη, dy, then ∗µ

does not contain multiples of dV [4]. Finally, if µ contains some dx, dη, dy,
then so do all monomials in φ∗aµ. Therefore, only those µ that contain only
dξ’s survive in

∫

aT ∗X|t=0/M ψ(ξ, η) ∗X
a µ. Moreover, the result is seen to be

independent of the map A in (10), which can therefore be assumed of the
form A(x, y, ξ, η) = ξ. Then, modulo H(C,ΛS(

aT ∗M)), we have

TrV(χa(B
j
z)) =

∫

aT ∗X|t=0/aT ∗M|t=0

ψ(ξ, η)χ(Aj
z)ω

m
X/M .

Lemma 7.7. Let µj(z) ∈ Λ[j](
aT ∗X \ 0) be entire in z. Then

∫

aT ∗X|t=0/M
ψ(r)rzµj(z)

has only one simple pole at z = −j, and

Resz=−j

∫

aT ∗X|t=0/M
ψ(r)rzµj(z) = −

∫

aS∗X|t=0/M
ıRµj(0).

Proof. Let R be the radial vector field on aT ∗X . In polar coordinates,
∫

aT ∗X|t=0/M
ψ(r)rzµj(z) =

∫ ∞

0
ψ(r)rz+j−1dr

∫

aS∗X|t=0/M
ıRµj(z).

The first factor equals − 1
z+j (mod H(C)). The second one is entire.
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From Lemma 7.6, F (z)(A) has the same poles in B as a finite sum

∑

j

∫

aT ∗X|t=0/M
ψ(r)rzµj(z),

where µj(z) is entire in z and of homogeneity j in the fibers of aT ∗X|t=0.
By Lemma 7.7, the proposition follows.

Definition 7.8. For A ∈ Ch(Ψ
Z,[Z]
a (X)), define

R(A) = Resz=0(F (z)(A)).

Definition 7.9. Let A = A0 ⊗ . . .⊗Ak ∈ Ck(Ψ
Z,[0]
a ⊗L). Define

eQz(A) = (−1)nzQz

(

Q−zAkQ
z −Ak

z

)

A0 ⊗A1 ⊗ . . . ⊗Ak−1.

If A ∈ Ck(Ψa(X)), define eQz(A) by the same expression, where now

all products are in Ψa(X). Note that eQz = (−1)nzQzeDz (see (13)). By

direct computation, the following identity holds on C∗(Ψ
Z,[0]
a ⊗ L) and on

C∗(Ψa(X)).

(37) Qzb = bQz + zQzeDz .

Proposition 7.10. The identity R ◦ b = 0 holds on Ck(Ψ
Z,[0]
a ⊗L).

Proof. Using Lemma 37,

R(b(A)) = Resz=0

∫

aT ∗M|t=0/M
∗M

a TrV(χa(b(Q
zA)))

+ Resz=0(zF (z)(eQz (A))).

(38)

Note that eQz(A) is holomorphic, including at z = 0. By Proposi-
tion 7.5, the second term vanishes. By Proposition 6.2, the first integrand
vanishes for small <(z), so it extends to be identically zero by analytic
continuation.

It follows that R induces a map

(39) R : HHk(Ψ
Z,[Z]
a (X))→Λ(M,OM) ⊗ ΛL.
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We claim that on this space, R ◦ eD = ıt d
dt

R. Indeed, Ψ
Z,[Z]
a (X) is a mod-

ule over L ⊗ Polyn(aT ∗M), and hence HHk(Ψ
Z,[Z]
a (X)) is a module over

HHk(L ⊗ Polyn(aT ∗M)), i.e., over the ring of differential forms with poly-

nomial coefficients. Then, by exactly the same reasoning as in Chapter 4,

we can prove that formula (23) holds with χ replaced by χa. Note that the

claim is false at chain level.

This observation shows that the map (39) takes im(α), im(β) onto

forms without dt, respectively multiples of dt.

Proposition 7.11. Let A ∈ Fh−NHHh(Ψ
Z,[Z]
a (X)) ∩ im(α). Then

R(A) = ı d
dt
dt ∧R(A) = −

∫

aS∗X|t=0/M
ıR ∗X

a χ(σ(A)).

Let A ∈ Fh−N−1Ch(Ψ
Z,[Z]
a (X)). Then R(A) is a multiple of dt and

R(A) = −

∫

aS∗X|t=0/M
ıR ∗X

a χ(σ(A)).

Proof. We know that in the first case, R(A) does not contain dt. Apply
Proposition 7.2 with i = h−N − 1, respectively i = h−N − 2. It follows
that ı d

dt

dt∧F (z), respectively F (z), is holomorphic for such chains around

z = 0, which implies that ı d
dt

dt ∧ R(A), respectively R(A) depend only on

σ(A). The result follows from Lemmas 7.6 and 7.7.

Remark 7.12. This Proposition implies that we can improve Remark
7.4 as follows: The map (39) shifts t-degree by h − n when applied to

HHh(Ψ
Z,[Z]
a (X))∩im(α), and by h−n−1 when applied to HHh(Ψ

Z,[Z]
a (X))∩

im(β).

From Proposition 7.2, it follows that R vanishes on Ψ
−∞,[Z]
a (X), so we

think about it as being defined on symbols, with a natural extension to

vertical operators. Using the projection TjAσ(X) → Ψ
Z,[0]
a , we can extend

the definition of R to C∗(Aσ(X)).

Proposition 7.13. Let A ∈ Fh−NCh(Aσ(X)) or Fh−N−1Ch(Aσ(X))
represent a class [A] in HHh(Aσ(X)). Then R(A) is de Rham closed in M .
If A is Hochschild exact, then R(A) is de Rham exact.
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Proof. We have seen in Theorem 4.6 that the differential form

[A]E2 = ∗X
a χ(σ(A))

is closed and of homogeneity 0. Hence LR[A]E2 = 0. Using (22), this
implies (ıRdv + dvıR)[A]E2 = 0, hence ıR[A]E2 is closed. Proposition 7.11
shows that

dvR(a) = dv

∫

aS∗X|t=0/M
ıR[A]E2 =

∫

aS∗X|t=0/M
dvıR[A]E2 = 0.

If [A] = 0, then [A]E2 = dvβ is exact, and, since dv preserves homogeneity,
we can assume that β is also homogeneous of homogeneity 0. Therefore
LRβ = 0. This implies ıR[A]E2 = ıRdvβ = −dvıRβ, and so

R(a) =

∫

aS∗X|t=0/M
ıR[A]E2 = −dv

∫

aS∗X|t=0/M
ıRβ.

7.2. The boundary map

Let b0 denote the differential map in C∗(Ψ
Z,[Z]
a (X)). We will derive a

formula for the boundary map δ of the short exact sequence (1) in terms

of the presentations found in Chapters 4 and 5 for Hochschild homology

as de Rham cohomology groups. As with all spectral sequences, we can in

principle observe only the top part, say δ0 : HH(Aσ(X))[i] → HH(I∂(X))[i],

of δ. This might be zero on some element even though δ itself does not

vanish on that element.

Remark 7.14. The boundary map commutes with eD, LD, t−1dt∧, α
and β, since these operations are maps of complexes on C∗(Ψa(X), b).

This means that δ preserves the dt and dt-free parts, and the t-homogeneity

in the presentation by cohomology spaces.

Proposition 7.15. If dimM 6= 0 then δ0 = 0.

Proof. If M = {pt}, then the adiabatic algebra becomes isomorphic to
the algebra ΨR+(X) of one-parameter families of pseudodifferential opera-
tors. In that case, δ = δ0 since t is a “flat” parameter. If dimM 6= 0, we
claim that the vertical boundary map vanishes. This is essentially Lemma 8
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from [18]. For convenience, we reproduce the proof. Let A ∈ Ck(I
Z,[Z]
σ (X))

be a cycle. Let Ã ∈ Ck(Ψ
Z,[Z]
a (X)) be an extension to the full vertical

algebra. Then, using Proposition 6.9,

δ0(A) =

∫

aT ∗M|t=0/M
∗M

a χa(b0Ã).

From Corollary 6.8, this is independent of ∇. The vector fields tangent to

the fibers of aT ∗M|t=0 →M are outer derivations on the algebra Ψ
Z,[Z]
a (X).

By naturality, the boundary map commutes with the action LV of such
a vector field: [δ0, LV ] = 0. But LV (A) has order 1 less than A. After
repeated applications, the order of LV1 . . . LVsÃ will be less than −m−k−1,
so, by Proposition 6.2, χa(b(LV1 . . . LVsÃ)) = 0. Hence, LV1 . . . LVsδ0(A) =
0. Since V1, . . . , Vs were arbitrary and δ0(A) is a Schwartz form on aT ∗M|t=0,
the proposition follows.

Therefore, the first significant part of δ is

δ1 : HH(Aσ(X))[i] → HH(I∂(X))[i−1],

which decreases the t-filtration by 1.

Theorem 7.16. The leading part of the boundary map is essentially
integration along the fibers,

δ1 = i

∫

aS∗X|t=0/M
.

Proof. From Remark 7.14, it is enough to prove the claim for a class
[a] represented by some a ∈ TjHHk(Aσ(X)) ∩ im(α). Such a class can be
represented by a chain A ∈ TjFk−n−mCk(Aσ(X)). By H-unitality, we can
find Ã ∈ TjCk(Ψa(X)) a pre-image of A, such that bÃ ∈ Ck−1(I∂(X)).
Since δ0(a) = 0, it follows that there exists γ ∈ TjCk(I∂(X)) such that
bÃ − bγ ∈ Tj−1. By replacing Ã with Ã − γ, we can assume that δ(a) =
[bÃ] is represented by a chain in Tj−1. We use now a choice of a vector

space isomorphism between Aσ(X)/Iσ(X) and its graded algebra Ψ
Z,[Z]
a (X).

Let A[j], A[j−1] be the components of Ã in Ck(Ψ
Z,[Z]
a (X))[j], respectively

Ck(Ψ
Z,[Z]
a (X))[j−1], where the subscript denotes the negative of the t-degree.



HOMOLOGY AND RESIDUES OF ADIABATIC OPERATORS 213

Using (37), we see that

δ1(a) =

∫

aT ∗M|t=0/M
∗M

a χa(bÃ)[j−1]

=

(

∫

aT ∗M|t=0/M
∗M

a χa(Q
zbÃ)[j−1]

)

|z=0

=

(

∫

aT ∗M|t=0/M
∗M

a χa(bQ
zÃ)[j−1]

)

|z=0

(40)

+

(

∫

aT ∗M|t=0/M
∗M

a χa(zQ
zeDzÃ)[j−1]

)

|z=0

.(41)

We shall prove that (40) vanishes and (41) equals the desired expression. In
(40), we can replace Ã by A[j] +A[j−1] since we are looking only at the part
of degree j− 1 in t. Let b = b0 + b1 + . . . be the expansion of b according to
the t-degree. By Proposition 6.2, χa(b0Q

zA[j−1]) vanishes for small <(z),
so the analytic continuation of the corresponding part in (40) is 0 at z = 0.

Proposition 7.17. The identity b0(A
j) = 0 implies that

(42)

∫

aT ∗M|t=0/M
∗M

a χa(b1Q
zA[j])

− dv

∫

aT ∗M|t=0/M
∗M

a (χa(Q
zA[j])) ∈ zH(B)

thus
∫

aT ∗M|t=0/M ∗M
a χa(b1Q

zA[j]) tends to 0 in Λ2n−k+1(M)/dΛ2n−k(M) as

z → 0.

Proof. This would be clear if we knew that b0(Q
zA[j]) = 0. Indeed, in

this case, for <(z) < 0,

(43) χa(b1Q
zA[j]) = dv(χa(Q

zA[j]))

(compare with Proposition 5.2). In the semi-classical limit case, this con-

dition holds by commutativity of the vertical algebra Ψ
Z,[0]
a (M). The proof

in the general case consists of following an explicit proof of (43) and noting
that whenever we have to commute Qz, we get an error term in zH(B).
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Lemma 7.18. Let C ∈ TjFk−NCk(Ψa(X)). If A[j] = b0C, then
∫

aT ∗M|t=0/M
∗M

a χa(b1Q
zA[j])[j−1]

vanishes at z = 0.

Proof. Notice that

χa(b1Q
zA[j])[j−1] = χa(b1Q

zb0C)[j−1]

= χa(b1b0Q
zC + b1zQ

zeDzC).

The last term belongs to Fk−N−2+zCh−1 and is a multiple of z, hence like
in Proposition 7.2, its integral vanishes at z = 0. From b2 = 0, we deduce
b1b0 = −b0b1. Since b1Q

zC ∈ Tj−1, it follows from Proposition 6.2 that
∫

aT ∗M|t=0/M ∗M
a χa(b0b1Q

zC)[j−1] vanishes for <(z) sufficiently small, hence

it is identically zero.

Note that the term (41) is by definition Rj−1(eDQ
Ã). From Remark

7.12, this is a dt-free form of t-degree −j + k − n. From Propositions 4.10
and 7.11,

R(eDQ
Ã) = i

∫

aS∗X|t=0/M
ıR(r−1dr ∧ [a]E2) = i

∫

aS∗X|t=0/M
[a]E2 .

We have assumed that a ∈ Tj . We can also ask that [a]E2 be of
pure homogeneity with respect to LD. This homogeneity must be at least
−j + k − n, and if it is bigger, then [a]E2 is the class of some a′ ∈ Tj−1. So
we can also assume that [a]E2 has homogeneity −j + k − n. Using again
Remark 7.12, we conclude that Rj−1(eDQ

Ã) = R(eDQ
Ã) = R(eDQ

a). This
ends the proof of Theorem 7.16.

Recall the decomposition of Ti/T−∞HHk(Aσ(X)) as eigenspaces of LD.

Let a be of pure type with respect to this decomposition. Assume a is dt-

free. Since ∗φ increases the t degree at most by k − n, it follows that [a]

belongs to Tn+i−hH
2N−k(S∗X × S1) with h ≤ k Hence L d

dt
acts on [a] as

multiplication with h−i−n. Assume that δ1(a) = 0. This means that δ(a) ∈

Ti−sHHk−1(I∂(X)) for some s ≥ 2 minimal with this property. Let δ(a)s

be the image of δ(a) in Ti−s/Ti−s−1HHk−1(I∂(X)) ∼= Ei+s,k−1−i−s
2 (I∂(X)).

L d
dt

acts as multiplication with s + k − i − 1 − n on this space. But from

h ≤ k and s ≥ 2 we get h − i − n < s + k − i − 1 − n. Since δ and L d
dt

commute, we deduce



HOMOLOGY AND RESIDUES OF ADIABATIC OPERATORS 215

Proposition 7.19. Let a ∈ TiHHk(Aσ(X)). If δ1(a) = 0, then there
exists some ã with a− ã ∈ Ti−1HHk(Aσ(X)) and δ(ã) = 0.

Theorem 7.16 and Proposition 7.19 completely characterize the bound-

ary map

δ : HH(A∂(X)) → HH(I∂(X)).

7.3. Traces on the adiabatic algebras

From the long exact sequence derived from the short exact sequence

(44) 0 → Ψ−∞,−∞
a (X) ↪→ Ψ−∞

a (X) → I∂(X) → 0,

the ideals I∂(X) and Ψ−∞
a (X) have the same homology, except in dimen-

sions 0 and 1. Consider the following map:

Tr : Ψ−∞
a (X) → C∞(R+)[t−1], A 7→

∫

∆a/R+

A|∆a
.

Lemma 7.20. The map Tr generates HH0(Ψ−∞,Z
a (X)) as a module

over C∞(R+)[t−1].

Proof. Let first A ∈ Ċ∞(R+,Ψ
−∞(X)) ∼= Ψ−∞,−∞

a (X) be a rapidly
vanishing family of smoothing operators. For any t > 0, the map A 7→
Tr(A)(t) is a trace. Choose any local embedding of TX in X 2. Cut A off
near the diagonal and pull it back to TX as a compactly supported section
in the fiber density bundle. The pull-back of the fiber density bundle to
the 0-section of TX is just the density bundle Ω(TX). In local coordinates,
and pulling back via the canonical map φa, we get

Tr(A) =
1

(2π)n

∫

T ∗X
ÂωN =

1

(2π)n

∫

aT ∗X
ÂωN

a ,

where ω, ωa are the symplectic form, respectively the adiabatic symplectic
form. This formula extends to Ψ−∞

a (X), and is an extension of the map

I∂(X) 3 A 7→
1

(2π)n

∫

aT ∗M|t=0

TrV(Â)(ωM
a )n

=
1

(2π)n

∫

aT ∗M|t=0

∗aχa(A) ∈ L,

which, by Theorem 6.10 and Propositions 6.9 and 5.3, is a generator over
L of HH0(I∂(X)). This implies that the boundary map

HH1(I∂(X)) → HH0(Ψ
−∞,−∞
a (X))

vanishes.
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Recall that eD is an isomorphism from im(β) ⊂ HH1(I∂(X)) toHH0(I∂(X)).

A similar statement is valid for Ψ−∞,−∞
a (X). From this, it follows that

Tr ◦eD is a Hochschild cochain which generates im(β) ⊂ HH 1(Ψ
−∞
a (X)),

and that the other boundary map of (44) also vanishes.

Since we have the explicit C∞(R+)[t−1]-valued cochain Tr on Ψ−∞
a (X),

we can imitate the construction of the residue trace to get explicit cocycles

on Ψa(X). Namely, we claim that the maps

Ψa(X) → C∞(R+)[t−1] A 7→ Resz=0 Tr(QzA)

C1(Ψa(X)) → C∞(R+)[t−1] A⊗B 7→ Resz=0 Tr(QzD(B)A)

are cocycles on Ψa(X). Since eD is a map on homology, it is enough to prove

the claim for the first map. We have seen that the residue is well-defined.

We want to show that it vanishes on commutators. We have

Resz=0 Tr(Qz[A,B]) = Resz=0 Tr([QzA,B] + zQzQ
−zBQz −B

z
A) = 0,

since the first term vanishes for small <(z), and the second term has no

residue at zero by Proposition 7.5.

For t > 0, the first map is just Wodzicki’s residue trace on X, hence it

equals
∫

aS∗X(Â−N )ıRω
N
a . By continuity, this holds down to t = 0. We note

here that for t > 0, ωN
a = (φ−1

a )∗(ωN ) belongs to T−nΛ2(aT ∗X). Indeed,

from (10), det(φa) = tn. Therefore, the residue trace of a smooth adiabatic

operator is a Laurent function in t of degree −n.

7.4. Properties of the residue functional

We can extend Proposition 7.13 to arbitrary orders. We first treat the

semi-classical limit case. Recall that the subscript i means taking the part

in Ti/Ti−1, i.e., the coefficient of t−i in the Laurent expansion at t = 0.

Proposition 7.21. If A ∈ TiCk(Aσ(M)) is a boundary, then Ri(A)
is dv-exact.

Proof. The spectral sequence ∂E2, which computes HH(Aσ(M)) using
the Ti filtration, degenerates at E2, so we can assume A = b(P ) with P ∈
Ti−1Ck+1(Aσ(M)). The semi-classical limit vertical algebra is commutative
so (QzP )i−1 is b-closed (this is not true in the general adiabatic setting).
The projection Ψa → Sa is surjective; let P̃ be a pre-image of P . Using
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(37), we get:

Ri(A) = Ri(bP )

= Resz=0

∫

aT ∗M|t=0/M
∗M

a (χa(Q
zbP̃ ))i

= Resz=0

∫

aT ∗M|t=0/M
∗M

a (χa(b(Q
zP̃ ))i

+ Resz=0

∫

aT ∗M|t=0/M
∗M

a (χa(zQ
zeQz P̃ ))i.

By Proposition 7.5 and because of the z factor, the last term vanishes
since eQz P̃ ∈ Ti is entire. As for the first term, we claim it is exact.

Lemma 7.22. For <(z) sufficiently small, we have

(45)

∫

aT ∗M|t=0/M
∗M

a χa(b(Q
zP ))i = dv

(

∫

aT ∗M|t=0/M
∗M

a (χa(Q
zP ))i−1

)

.

Proof. We notice that QzP survives at ∂Ei,k−i
1 (Ψz+Z

a (M)) Then (45) is
the computation of d1[Q

zP ] in the spectral sequence of the symbol algebra
of order z + Z. The identity d1 = ∗−1

a dv∗a (see (26)) holds in this context.
The proof of Proposition 7.17 applies to prove the result.

By the de Rham theorem, the space of exact forms is closed. A mero-
morphic family of forms, which takes exact values for z in an open set, must
have exact residues. This finishes the proof of Proposition 7.21.

From Theorem 4.6 and Proposition 7.13 it follows that every Hochschild

class in TiHH(Aσ(X)) has a representative a such that Ri(a) is closed.

Together with Proposition 7.21, this proves:

Corollary 7.23. The residue Ri descends as a map

R : TiHHk(Aσ(M))→Hn−k+j(M) ⊗ ΛjL.

Proposition 7.21 is a model for the general case. The main difference

is that multiplication by Qz destroys the cycle property.

Proposition 7.24. Let A ∈ TiCk(Ψa(X)). If bA ∈ Ti−1Ck−1(Ψa(X)),
then Ri−1(bA) = dRi(A), where d is the de Rham differential on M .
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Proof. QzAi is not a cycle in the vertical algebra, but, since b(Ai) = 0,
it has the property that b0(Q

zAi) is a holomorphic multiple of z. The proof
of Proposition 7.17 goes through, with the following modification: replace
congruences (mod zH(B)) by equalities of residues at z = 0.

It follows that if A ∈ TiCk(Ψa(X)) is Hochschild closed, then Ri(A) is

de Rham closed. Let now A ∈ TiFjCk(Aσ(X)) ∩ im(α). Assume that A is

b-exact and that j > k−N . Then, there exists some P ∈ Ti−1Ck+1(Aσ(X))

such that bP − A ∈ TiFj−1Ck(Aσ(X)). This is a restatement of Proposi-

tion 4.15. By Proposition 7.24, Ri(A) = Ri(A − bP ) modulo exact forms.

Inductively, Ri(A) = Ri(A
′), where A′ ∈ TiFk−NCk(Ψa(X)). From Propo-

sition 7.13, Ri(A
′) is exact. As a consequence, we get the main result of

this section:

Theorem 7.25. The residue Ri descends as a map on the Hochschild
homology of adiabatic symbols with values in the cohomology of M (with
twisted coefficients):

TiHHk(Aσ(X))
Ri→ Hn−k(M,OM)ti+k−n ⊕Hn−k+1(M,OM)ti+k−n−2dt.

On chains A = A0 ⊗ . . . ⊗ Ak ∈ TiCk(Ψa(X)), Ri is given by the explicit
formula

Ri(A) = Resz=0

∫

aT ∗M|t=0/M
∗M

a (χa(Q
zA[i])).

§8. An example

Consider a fibrationX → S1 and let A ∈ Ψa(X) be an elliptic adiabatic

operator. Choose an inverse b of a modulo Ψ−∞
a (X), then the Hochschild

1-chain a ⊗ b defines a cycle in C1(Ψa(X)/Ψ−∞
a (X)). This cycle was in-

troduced by Melrose and Nistor in [17]. The t-degree of this cycle is 0, in

other words a⊗ b ∈ T0C1(Aσ(X)).

We can therefore apply the functional R0 to this cycle. We examine

below the dt-free component f(A) ∈ H0(M) of R0(tr(a⊗ b)).

Let x, ξ be local coordinates in aT ∗M|t=0 (this bundle is canonically

trivial in our case). The adiabatic symplectic form has the form ωa =

t−1dξ ∧ dx. Let α, β be the images of a, b in the suspended algebra of the

fibers with parameters in the circle M = S1 (i.e., in the graded algebra of

Ψa(X) associated to the filtration Tj). Following the definition, we get

f(A) =

[

Resz=0

∫

R

TrV(Qzα∂ξβ)dξ ∈ Λ0(S1)

]

H0(S1)

.
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Since we proved in Theorem 7.25 that R0(tr(a ⊗ b)) is exact as a form on

M , it follows that Resz=0

∫

Rξ
TrV(Qzα∂ξβ)dξ ∈ Λ0(S1) is constant as a

function of x ∈ S1. This constant equals TrR(α(x)∂ξβ(x)) for all x ∈ S1,

where TrR = Resz=0 Tr ◦ Qz is the residue trace on the suspended algebra

defined in [23]. This motivates the following definition:

Definition 8.1. Let Y be a closed manifold. Let α ∈ Ψsus(1)(Y, E ,F)
be an elliptic suspended operator in the sense of Melrose [16]. Define

f(α) = TrR

(

α
∂β

∂ξ

)

,

where β is an inverse of α modulo Ψ−∞
sus(1)(Y ).

It is straightforward to see that f has the following properties:

1. f(α) is homotopy invariant inside elliptic suspended operators.

2. f(α1α2) = f(α1) + f(α2).

3. When α = D+iξ, whereD is a positive first-order differential operator

on Y , then f(α) equals the residue at the origin of the meromorphic

function η(D, s). From [1], this residue vanishes so f(D + iξ) = 0

4. If α is differential, or more generally has even symbol in the sense of

Gilkey [8], and dim(Y ) is even, then f(α) = 0.

The first two properties show that f depends only on the class in

K0(T ∗
sus(1)Y ) = K1(T ∗Y ) of the principal symbol of α. For dim(Y ) odd,

this K group is generated rationally by the symbols of twisted signature

operators, for which f was seen to vanish. Thus f is identically zero when

dim(Y ) is odd.

On even dimensional manifolds, Gilkey [8] has shown that K 0(S∗Y )

is generated rationally by self-adjoint polynomial symbols of even degree

with values in GL. To such a symbol p of degree k we associate the class

p+ iξ(p2 + ξ2k)
2k−1
2k ∈ K1(T ∗Y ); in fact these classes generate K1(T ∗Y,Q).

Let A ∈ Ψk
sus(1)(Y ) be the suspended operator defined by

A := P + iξ(P 2 + ξ2k)
2k−1
2k

where P is an invertible self-adjoint differential operator on Y with symbol

p (such an operator exists since we can add a small real constant to remove
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the possible eigenvalue 0). We set Q := (A∗A)
1
2 and B := A−1. The

operator A is not differential, nor is its symbol even, so we cannot conclude

directly that f(A) = 0. However, for each fixed ξ ∈ R, the operators A, Q

and ∂ξA preserve the eigenspaces of P . We decompose the trace defining

f(B) over these eigenspaces; we get
∫

R

TrV(Q−zB∂ξA)dξ = η(P, z)h(z)

where η(P, z) is the APS eta function of P , and h(z) is the integral on R of

a smooth function in ξ, depending holomorphically on z, which grows like

ξ−2−
z(k+1)

2 as |ξ| → ∞. This integrand can be made explicit, but we only

need to notice that h(z) is regular at z = 0. Together with the regularity

of the eta function shown by Gilkey [8], this implies that f(B), and so also

f(A), vanish when dim(Y ) is even.

Therefore in this example the invariant f vanishes identically. Nev-

ertheless, this vanishing is highly non-trivial. This fact suggests that the

homological residues Rj introduced above may lead to subtle geometric and

analytic properties of elliptic operators.
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