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ZERO VARIETIES FOR THE NEVANLINNA CLASS

ON ALL CONVEX DOMAINS OF FINITE TYPE

KLAS DIEDERICH and EMMANUEL MAZZILLI

Abstract. It is shown, that the so-called Blaschke condition characterizes in
any bounded smooth convex domain of finite type exactly the divisors which are
zero sets of functions of the Nevanlinna class on the domain. The main tool is
a non-isotropic L

1 estimate for solutions of the Cauchy-Riemann equations on
such domains, which are obtained by estimating suitable kernels of Berndtsson-
Andersson type.

§1. Introduction and results

In their article [2] J. Bruna, Ph. Charpentier and Y. Dupain did a large

step towards a complete characterization of the zero sets of the Nevanlinna

class on all convex domains of finite type in Cn. The purpose of this article

is to complete their result.

For the convenience of the reader we recall at first briefly the following

definitions and facts:

If D ⊂⊂ Cn is a C∞- smoothly bounded domain and ρ a smooth defining

function for D, then the Nevanlinna class N(D) is

N(D) =

{

f ∈ O(D) : sup
ε

∫

∂Dε

|log |f(z)|| dσε(z) < +∞

}

.

Here ∂Dε = {z : ρ(z) = −ε} for ε > 0 small enough and dσε(z) denotes the

Euclidean surface measure on ∂Dε. Furthermore, if X ⊂ D is a complex

analytic hypersurface with irreducible decomposition

X =
⋃

k

Xk
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and nk ∈ IN are positive integers for each k, the divisor X̂ := {Xk, nk} is

said to satisfy the Blaschke condition if

∑

k

nk

∫

Xk

|ρ(z)| dµXk
(z) < ∞ .(1.1)

It is a well-known fact, that for any function f ∈ N(D) the zero divisor Xf

of f satisfies the Blaschke condition (1.1). And it is conjectured, that the

inverse also is always true.

For a survey of the partial positive answers to this conjecture known so-

far see [2]. The basic work for n > 1 was done independently by G. Henkin

in [7] and H. Skoda in [9] for the case of strictly pseudoconvex domains in

Cn.

In [2] the authors consider the class of bounded convex smooth domains

D ⊂⊂ Cn of finite type with the goal of showing, that condition (1.1)

characterizes precisely the zero divisors of the functions in N(D). A large

part of their work goes, in fact, through for all such domains. However, in

order to accomplish the final analytically most critical step of their method

of proof (which, actually, is the complete analogue of the method introduced

by H. Skoda), they need the following additional condition on the domains

D:

Definition 1.1. A smooth convex domain D ⊂⊂ Cn is called of strict

type if there is a constant c = c(D) such that for all ζ ∈ ∂D and all

v ∈ T 10
ζ ∂D with |v| = 1 and for all small t

c−1ρ(ζ + tv) ≤ ρ(ζ + tiv) ≤ cρ(ζ + tv) .

If D is in addition of finite type ≤ m, it is called of finite strict type ≤ m.

Altogether, J. Bruna, Ph. Charpentier and Y. Dupain showed in [2],

that any divisor X̂ on a bounded smooth convex domain D of finite strict

type in Cn satisfying the Blaschke condition comes from a function f ∈

N(D). The crucial analytic step, where the strict type condition is needed

in [2] is the construction of ∂ solutions with L1 estimates on the boundary

(see Theorem 1.3 below).

The analysis on domains D of finite strict type is much easier than on

other convex domains of finite type, since for such D the family T 10
ζ ∂D =
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{w ∈ Cn : 〈∂ρ(ζ), w − ζ〉 = 0} for ζ ∈ ∂D is a perfect family of holomor-

phic support functions which can be used in the construction of ∂-solving

integral kernels. The difference between smooth convex domains which are

of finite strict type and others which are just of finite type becomes clear,

if one compares among the standard model domains the so-called complex

pseudoellipsoids

D :=

{

z :
n
∑

k=1

|zk|
2mk < 1

}

with positive integers mk one of which being > 1, with the real ellipsoids

D̂ :=

{

z :

n
∑

k=1

(

x
2mk

k + y
2qk

k

)

< 1

}

where, of course, zk = xk+iyk, mk, qk are again positive integers, at least one

mk > 1 and the corresponding qk > mk. The domains D are of finite strict

type, whereas D̂ are only of finite type, but not of strict type. Concerning

the question, how to do analysis on convex domains of finite type which

are not of strict type, ∂-solving integral kernels for real pseudoellipsoids

were constructed and estimated in [6]. In continuation of this work, smooth

families of holomorphic support functions with best possible non-isotropic

estimates were constructed for all convex domains of finite type in [5]. In [4]

they were used for constructing ∂-solving integral kernels with best possible

Hölder estimates. Here we will now use them in order to show essentially

by Skoda’s method the following

Theorem 1.2. Let D ⊂⊂ Cn be a smooth convex domain of finite

type. Then there is a constant C > 0, such that there is for any smooth

(0, 1)-form ω on D with ∂ω = 0 a smooth function u on D such that ∂u = ω

and
∫

∂D
|u(z)| dσ(z) ≤ C

∫

D
‖ω(z)‖k dV (z) .(1.2)

Here the unisotropic norm ‖ · ‖k for (0, 1)-forms is defined by

‖ω(z)‖k = sup

{

|ω(z)(v)|

k(z, v)
: v ∈ Cn \ {0}

}

where k(z, v) is the usual weighted boundary distance of z in D in the di-

rection v (for details see for instance [2]).
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It was already shown in [2], that the following theorem is a consequence of

this:

Theorem 1.3. Let D be as in Theorem 1.2. Then there is for ev-

ery divisors X̂ = {Xk, nk} in D satisfying the Blaschke condition (1.1) a

function f ∈ N(D), such that X̂ is the zero divisor of f .

Remark 1.4. a) The article [3] of Anne Cumenge also contains this

theorem. She uses a different approach.

b) This article appeared as a preprint on November 26, 1998, and was

distributed as such among many colleagues.

Large parts of the following sections containing the proof of Theo-

rem 1.2 are based on the work done in [2]. However, our situation is more

complicated, such that at some stages a different approach has to be used.

We will almost always use the same notations as in [2].

§2. Integral kernels revisited

For proving Theorem 1.2 we want to use an integral kernel of the type

H. Skoda. In order to construct it we use the methods of [1]. For them a

good C∞-family S(z, ζ) of support functions on D, holomorphic in z ∈ D

and C∞ in ζ chosen in a suitable neighborhood of ∂D together with the

corresponding Leray section s(z, ζ) is needed. We obtain it from the family

S(z, ζ) constructed in [5]. The necessary estimates for S and s are contained

in [4].

More precisely, Proposition 4.1 from [4] says:

Proposition 2.1. Let D ⊂⊂ Cn be a smooth convex domain of finite

type m and ρ a convex defining function of D in a neighborhood U of ∂D.

Then the function S(z, ζ) ∈ C∞(D × U), holomorphic in z, constructed

in [5], has the following property :

Let, for ζ ∈ U , nζ denote the outer unit normal to the level set {ρ =

ρ(ζ)} and let v be any unit vector complex tangential to this level set at ζ.

Define

aαβ(ζ, v) :=
∂α+β

∂λα∂λ
β
ρ(ζ + λv)|λ=0 .
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Then there are constants K, c, d > 0, such that one has for all points z

written as z = ζ + µnζ + λv with µ, λ ∈ C the estimate

ReS(z, ζ) ≤ −

∣

∣

∣

∣

Reµ

2

∣

∣

∣

∣

−
K

2
(Imµ)2(2.1)

− c

m
∑

j=2

∑

α+β=j

|aαβ(ζ, v)||λ|j + d sup {0, ρ(z) − ρ(ζ)} .

Remark 2.2. In order to avoid that the constant d appears again and

again in the estimates of this article, we replace from now on the original

S(z, ζ) by 1
2dS(z, ζ) calling this new function again S(z, ζ).

In (5) and (6) of [4] C∞ functions Qj(z, ζ), j = 1, . . . , n, holomorphic

in z, were defined, such that

S(z, ζ) =

n
∑

j=1

Qj(z, ζ)(zj − ζj)(2.2)

for (z, ζ) ∈ D × U .

Let us now choose a number η0 > 0 such that U0 := {w : |ρ(w)| <

η0} ⊂ U and a C∞ cut-off function χ with χ(w) = 0 for ρ(w) ≥ −η0

2 and

χ(w) = 1 for ρ(w) ≤ −η0. We put for (ζ, z) ∈ D × D

s(ζ, z) := −ρ(z)
n
∑

i=1

(

ζi − zi

)

dζi + (1 − χ(z))S(ζ, z)
n
∑

i=1

Qi(ζ, z) dζi(2.3)

and

Q(ζ, z) :=
1

ρ(ζ)

[

(1 − χ(ζ))

n
∑

i=1

Qi(z, ζ) dζi + χ(ζ)

n
∑

i=1

∂ρ

∂ζi
(ζ) dζi

]

.(2.4)

For any compact subset A ⊂ D we obviously can find a constant K > 0

such that

|〈s(ζ, z), ζ − z〉| ≥ K‖ζ − z‖2(2.5)

for all ζ ∈ D and z ∈ A. Furthermore, s(ζ, z) is holomorphic in z for ζ ∈ D.
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Following the method of Berndtsson-Andersson [1], we define the kernel

K(ζ, z) :=(2.6)

cn

n−1
∑

k=0

ck
s ∧ (∂̄ζs)

n−1−k ∧ (∂̄ζQ)k

〈s(ζ, z), ζ − z〉n−k

×
(ρ(ζ))k+1

[ρ(ζ) + (1 − χ(ζ))S(z, ζ) + χ(ζ)
∑n

i=1
∂ρ

∂ζi

(ζ)(zi − ζi)]k+1
.

Observe, that because of Proposition 2.1 and the classical estimate for the

last sum in the denominator, the expression [· · ·] in the denominator does

not have zeros for ζ ∈ D and z ∈ D. Therefore, and because of (2.5), the

theorem of Berndtsson-Andersson says

Proposition 2.3. Let ω be a ∂-closed (0, 1)-form smooth on D, and

put

u(z) :=

∫

D
ω(ζ)K(ζ, z)(2.7)

for z ∈ D. Then ∂u = ω on D.

§3. Estimation of the solution to the ∂-equation

We would like to know at first, that for ω as in Proposition 2.3 the

function u from (2.7) is continuous up to ∂D and its boundary values are

given by the formula

u(z) = cn

∫

D
ω(ζ)K(ζ, z).(3.1)

According to the theorem of Skoda it suffices to prove for this that K(ζ, z)

is uniformly integrable with respect to ζ for z ∈ ∂D.

However, for these z we have

s(ζ, z) = S(ζ, z)

n
∑

i=1

Qi(ζ, z) dζi(3.2)

and Qi(ζ, z) is holomorphic in ζ. Hence

s ∧ ∂ζs = 0
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such that it suffices to use k = n − 1 in the definition of K(ζ, z) and we

obtain for z ∈ ∂D

K(ζ, z) =(3.3)

cn

∑n
i=1 Qi(ζ, z)dζi ∧ (∂̄ζQ)n−1[ρ(ζ)]n

S(ζ, z)
[

ρ(ζ) + (1 − χ(ζ))S(z, ζ) + χ(ζ)
∑n

i=1
∂ρ

∂ζi

(ζ)(zi − ζi)
]n .

Observe, that for z ∈ ∂D according to Proposition 2.3 the denominator be-

comes 0 only for ζ = z (if we would have used the classical support function

as used for instance in [2], then there could be whole pieces of real lines in

∂D as zeros of the denominator in the case of convex domains D of finite

type which are not of strict type). Therefore, the corresponding arguments

of Section 4 of Bruna-Charpentier-Dupain apply. Hence, for showing the

desired uniform integrability of K(ζ, z), it suffices according to (24) of [2]

to prove

Lemma 3.1. If m denotes the type of D, then one for ε > 0 sufficiently

small
∫

D∩Pε(z)
|K(ζ, z)| dV (ζ) = O

(

ε1/m
)

for all z ∈ ∂D. Here Pε(z) denotes the pseudoball at z with radius ε.

We will reduce the proof of this lemma to two other lemmas. We intro-

duce the notation
Q(ζ, z) :=

∑n
i=1 Qi(ζ, z) dζi

Q(z, ζ) :=
∑n

i=1 Qi(z, ζ) dζi.

Notice, that for ε > 0 small enough and z ∈ ∂D one has Pε(z) ⊂ U0. Hence,

χ(ζ) = 0 for ζ ∈ Pε(z) and the kernel K can be simplified in the following

way:

K(ζ, z) = K1(ζ, z) + K2(ζ, z)

with

K1(ζ, z) =
Q(ζ, z) ∧ ∂ρ(ζ) ∧ Q(z, ζ) ∧

(

∂ζQ(z, ζ)
)n−2

S(ζ, z)[ρ(ζ) + S(z, ζ)]n
(3.4)

=:
W1(ζ, z)

S(ζ, z)[ρ(ζ) + S(z, ζ)]n
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and

K2(ζ, z) =
Q(ζ, z) ∧

(

∂ζQ(z, ζ)
)n−1

ρ(ζ)

S(ζ, z)[ρ(ζ) + S(z, ζ)]n
=:

W2(ζ, z)

S(ζ, z)[ρ(ζ) + S(z, ζ)]n
.(3.5)

We want to show at first the following estimate

Lemma 3.2. We have uniformly in z ∈ ∂D and in ε > 0 (sufficiently

small)
∫

D∩Pε(z)
|Wi(ζ, z)| = O

(

ε1/m+n+1
)

for i = 1, 2.

Proof. We treat only the case i = 1, since the other case is similar. We

have

W1(ζ, z) = Q(ζ, z) ∧ Q(z, ζ) ∧ ∂ρ(ζ) ∧
[

∂ζQ(z, ζ)
]n−2

.

We choose ε-extremal coordinates w = (w1, . . . , wn) at z and transform the

forms Q(z, ζ) and Q(z, ζ) by pulling back the ζ-variable, obtaining

Q∗(w, z) :=

n
∑

i=1

Qi(ζ(w), z) dζi(w), Q∗(z,w) :=

n
∑

i=1

Qi(z, ζ(w)) dζi(w) .

We write

Q∗(w, z) =

n
∑

i=1

Q∗
i (w, z) dwi, Q∗(z,w) =

n
∑

i=1

Q∗
i (z,w) dwi .

We then can estimate |W1(ζ, z)| from above by the sum over all terms

of the form

∣

∣Q∗
i1(w, z)

∣

∣

∣

∣Q∗
i2(z,w)

∣

∣

∣

∣

∣

∣

∂ρ

∂wj2

∣

∣

∣

∣

n
∏

l=3

∣

∣

∣

∣

∂Q∗
il
(z,w)

∂wjl

∣

∣

∣

∣

(3.6)

where (i1, . . . , in) is a multiindex with values from {1, . . . , n} and il 6= ik for

k 6= l and (j2, . . . , jn) is a multiindex with values in {1, . . . , n} with jk 6= jl

for k 6= l.

Each single term in (3.6) can be estimated as in [4] using Proposition 3.1

from [4], which consists of material mostly collected from results of McNeal

from [8]. Namely, according to Proposition 3.1, iv) and vii) of [4] we have
∣

∣

∣

∣

∂ρ

∂wj2

(w)

∣

∣

∣

∣

.
ε

τj2(z, ε)
∀ζ(w) ∈ Pε(z)(3.7)
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and Lemma 5.1 of [4] gives
∣

∣

∣

∣

∂Q∗
il

∂wjl

(z,w)

∣

∣

∣

∣

.
ε

τil(z, ε)τjl
(z, ε)

∀ζ(w) ∈ Pε(z).(3.8)

Furthermore, the same lemma also contains

∣

∣Q∗
il
(z,w)

∣

∣ .
ε

τil(z, ε)
∀ζ(w) ∈ Pε(z).(3.9)

It remains to estimate the first factor in (3.6). This is a simplified version

of Lemma 5.4 of [4]. We have

|Q∗
k(w, z)| .

ε

τk(z, ε)
(3.10)

where the τk are always the weighted directional radii of the pseudoballs

also used in [2].

Altogether we get for each expression (3.6) the upper estimate by

ε

τi1(z, ε)

ε

τi2(z, ε)

ε

τj2(z, ε)

n
∏

l=3

ε

τil(z, ε)τjl
(z, ε)

.(3.11)

If we put this together into W1(ζ, z) we get

|W1(ζ, z)| . εn+1τn(z, ε)
n
∏

l=1

1

τ2
l (z, ε)

.(3.12)

The estimate of the lemma for i = 1 follows directly from this.

In order to formulate the next lemma, we choose a constant C1 > 0

such that C1Pε/2(z) ⊃ 1
2Pε(z) for all z, ε (see Proposition 3.1,ii) of [4]) and

put for positive integers i

P i
ε(z) := C1P2−iε(z) \ P2−iε(z).

Then the family {P i
ε(z)} is a covering of Pε(z), see (11) of [4].

Next we want to show

Lemma 3.3. One has

i) |S(ζ, z)| & 2−iε

ii) |ρ(ζ) + S(z, ζ)| & 2−iε

uniformly in z ∈ ∂D, ζ ∈ P i
ε(z) ∩ D and all i.
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Proof. For showing i) we write ζ = µnz + λv as in Proposition 2.1.

According to Proposition 3.1 iii) there is a uniform constant k1 such that

in either of the following cases

(1) |µ| ≤ k1τ(z, nz, 2
−iε),

(2) |λ| ≤ k1τ(z, v, 2−iε)

necessarily ζ ∈ 1
2P2−iε(z). In other words, for ζ 6∈ 1

2P2−iε(z), one has

|λ| ≥ k1τ
(

z, v, 2−iε
)

or |µ| ≥ k1τ
(

z, nz, 2
−iε
)

.

We now show at first that for any k0 < k1 the inequality |λ| ≥ k0τ(z, v, 2−iε)

implies i). Namely, we immediately get from Proposition 2.1 together with

Proposition 3.1 vi) of [4] the estimate

|S(ζ, z)| ≥ ckm
0

m
∑

j=2

∑

α+β=j

|aαβ(z, v)|τ j
(

z, v, 2−iε
)

& 2−iε.

If, on the other hand, |λ| ≤ k0τ(z, v, 2−iε), we must have |µ| ≥ k1τ(z, nz,

2−iε). Therefore, Proposition 2.1 and Lemma 4.2 of [4] give in this case

|S(ζ, z)| & −ReS(ζ, z) + | Im S(ζ, z)|

& −Reµ + 3| Im µ| − |2K Re µ Im µ| − c

m
∑

j=2

∑

α+β=j

|aαβ(z, v)| |λ|j

& |µ| − ck2
0

m
∑

j=2

∑

α+β=j

|aαβ(z, v)τ j(z, v, 2−iε)

& k1τ(z, nz, 2
−iε) − ck2

02
−iε ∼= 2−iε .

This finishes the proof of i). In order to show ii), we use that weget from

Proposition 3.1 of [4] the following implications: there are uniform constants

such that

ζ 6∈
1

2
P2−iε(z) ⇒ ζ 6∈ P2−icε(z)

⇒ d(ζ, z) ≥ Kc2−iε

⇒ d(z, ζ) ≥ KK ′c2−iε

⇒ z 6∈ Pt(ζ) ∀t ≤ K ′′KK ′c2−iε

⇒ z 6∈ PK02−iε(ζ)

⇒ z 6∈ K1P2−iε(ζ) .

(3.13)
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On the other hand, there exists a constant k1 > 0, such that for any point

of the form z′ = µ′nζ + λ′v’, the following two inequalities together
∣

∣µ′
∣

∣ ≤ k1τ
(

ζ, nζ , 2
−iε
)

and
∣

∣λ′
∣

∣ ≤ k1τ
(

ζ, v′, 2−iε
)

imply

z′ ∈ K1P2−iε(ζ) .

Hence, we have for a pair (z, ζ), z = µnζ +λv, chosen as in ii) of the lemma

necessarily

|µ| ≥ k1τ
(

ζ, nζ , 2
−iε
)

or |λ| ≥ k1τ
(

ζ, v, 2−iε
)

.

Let us again choose any k0 < k1 and suppose that |λ| ≥ k0τ(ζ, v, 2−iε).

Then we get from Proposition 2.1

|ρ(ζ) + S(z, ζ)|

& −ρ(ζ) − Re S(z, ζ)

&
|Re µ|

2
+

K

2
(Im µ)2 + c

m
∑

j=2

∑

α+β=j

|aαβ(ζ, v)| |λ|j .

(3.14)

From (3.14) together with Proposition 3.1 of [4] we get

|ρ(ζ) + S(z, ζ)| & 2−iε .(3.15)

We still have to consider the case |λ| ≤ k0τ(ζ, v, 2−iε). Hence, necessarily,

|µ| ≥ k1τ(ζ, nζ , 2
−iε). Therefore, we can estimate

|ρ(ζ) + S(z, ζ)| & −ρ(ζ) − Re S(z, ζ) + | Im S(z, ζ)|

&
|Re µ|

2
+ 3| Im µ| − |2K Re µ Im µ|

−c

m
∑

j=2

∑

α+β=j

|aαβ(ζ, v)| |λ|j

& |Re µ| + | Im µ| − ck2
02

−iε

& k12
−iε − ck2

02
−iε

& 2−iε .

This finishes the proof of the lemma.

With the aid off the last two lemmas we now can easily prove Lemma 3.1:



226 K. DIEDERICH AND E. MAZZILLI

Proof of Lamma 3.1. Since the family {P i
ε(z)}∞i=0 is a covering of Pε(z)

we get
∫

D∩Pε(z)
|K(ζ, z)|dV (ζ)

≤

∞
∑

i=0

(

∫

D∩P i
ε(z)

|W1(ζ, z)|

|S(ζ, z)| |ρ(ζ) + S(z, ζ)|n
dV (ζ)

+

∫

D∩P i
ε(z)

|W2(ζ, z)|

|S(ζ, z)| |ρ(ζ) + S(z, ζ)|n
dV (ζ)

)

.

Together with Lemma 3.3, parts i) and ii) this gives
∫

D∩Pε(z)
|K(ζ, z)|dV (ζ)

≤
∞
∑

i=0

(

1

(2−iε)n+1

∫

D∩C1P
2−iε

(z)
|W1(ζ, z)|dV (ζ)

+
1

(2−iε)n+1

∫

D∩C1P
2−iε

(z)
|W2(ζ, z)|dV (ζ)

)

.

According to Lemma 3.2 applied to ζ ∈ C1P2−iε(z) ⊂ Pc2−iε(z) we can

continue this estimate as follows
∫

D∩Pε(z)
|K(ζ, z)|dV (ζ) .

∞
∑

i=0

1

(2−iε)n+1
(c2−iε)1/m+n+1

.

∞
∑

i=0

ε1/m2−i/m ∼= ε1/m.

This proves Lemma 3.1.

§4. Proof of Theorem 1.2

Comparing what we have done so-far with [2], we can observe, that our

Lemma 3.1 says, that the equation (24) from [2] still holds for all smooth

convex domains of finite type. Furthermore, our Lemma 3.2 is the general-

ization of Lemma 4.3 of [2]. However, the rest of the proof of Theorem 1.2

is for us now very easy. The reader just has to convince himself, that the

complete subsection 4.4 of [2] is only based on there equation (24) and there

Lemma 4.3. Together with our Lemmas 3.1 and 3.2 it carries over literally

to our more general situation. We do not repeat it here.



ZERO VARIETIES FOR THE NEVANLINNA CLASS 227

References

[1] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors,

Ann. Inst. Fourier, 32 (1982), 91–110.

[2] J. Bruna, P. Charpentier and Y. Dupain, Zero varieties for the Nevanlinna class in

convex domains of finite type in Cn, Ann. Math. 147 (1998), 391–415.

[3] A. Cumenge, Zero sets of functions in the Nevanlinna and Nevanlinna-Drjbachian

classes in convex domains of finite type, To appear in Pacific J. Math.

[4] K. Diederich, B. Fischer and J. E. Fornæss, Hölder estimates on convex domains of
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Département de Mathématiques
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