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EQUIVALENCE RELATIONS AMONG
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Dedicated to Professor Kichisuke Saito.

Abstract. We will consider some inequalities on operator means for more than

three operators, for instance, ALM and BMP geometric means will be consid-

ered. Moreover, log-Euclidean and logarithmic means for several operators will be

treated.

1. Introduction

Let H be a complex Hilbert space, and B(H) be the algebra of all bounded linear

operators on H. An operator A is said to be positive semi-definite (resp. positive

definite) if and only if ⟨Ax, x⟩ ≥ 0 for all x ∈ H (resp. ⟨Ax, x⟩ > 0 for all non-

zero x ∈ H). We denote positive semi-definite operator A ∈ B(H) by A ≥ 0. Let

B(H)+ and B(H)sa be the sets of all positive definite and self-adjoint operators,

respectively. We can consider the order among B(H)sa, i.e., for A,B ∈ B(H)sa,

A ≤ B if and only if 0 ≤ B − A.

A real valued function f on an interval J ⊂ R is called an operator monotone

function if and only if

A ≤ B implies f(A) ≤ f(B)

for all A,B ∈ B(H)sa whose spectra are contained in J .

For two positive definite operators, the operator mean is important in the operator

theory.

Definition 1 (Operator mean [6]). A binary operation σ : B(H)2+ → B(H)+ is

called an operator mean if and only if the following conditions are satisfied.
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(1) If A ≤ C and B ≤ D, then AσB ≤ CσD,

(2) X∗(AσB)X ≤ (X∗AX)σ(X∗BX) for X ∈ B(H),

(3) AnσBn ↓ AσB when An ↓ A and Bn ↓ B in the strong operator topology,

(4) IσI = I, where I means the identity operator on H.

We notice that operator means can be defined for positive semi-definite operators

by (3) in Definition 1. Kubo-Ando [6] have shown the following important result:

Theorem A ([6]). For each operator mean σ, there exists the unique operator mono-

tone function f : (0,∞) −→ (0,∞) such that f(1) = 1 and

f(t)I = Iσ(tI) for all t ∈ (0,∞).

Moreover for A ∈ B(H)+ and B ≥ 0, the formula

AσB = A
1
2f(A

−1
2 BA

−1
2 )A

1
2

holds, where the right hand side is defined via the analytic functional calculus. An

operator monotone function f is called the representing function of σ.

Typical examples of operator means are weighted harmonic, geometric and arith-

metic means denoted by !w, ♯w and ∇w for w ∈ [0, 1], respectively. Their repre-

senting functions are [(1 − w) + wt−1]−1, tw and 1 − w + wt, respectively. In fact,

we can define A!wB = [(1 − w)A−1 + wB−1]−1, A♯wB = A
1
2 (A

−1
2 BA

−1
2 )wA

1
2 and

A∇wB = (1− w)A+ wB.

Extending Kubo-Ando theory to the theory for three or more operators was a long

standing problem, in particular, we did not have any nice definition of geometric

mean for three operators. Recently, Ando-Li-Mathias have given a nice definition of

geometric mean for n-tuples of positive definite matrices in [1]. Then many authors

study about operator means for n-tuples of positive definite operators, and now

we have three definitions of geometric means which are called ALM, BMP and the

Karcher means. Moreover, we have an extension of the Karcher mean which is called

the power mean.

M. Uchiyama and one of the authors have obtained equivalence relations be-

tween inequalities for the power and arithmetic means as extensions of a converse

of Loewner-Heinz inequality [13].

In this paper, we shall investigate the previous research [13] to other operator

means for n-tuples of operators. In fact, we shall treat ALM and BMP means,

moreover we shall discuss some types of logarithmic means of several operators.

This paper is organized as follows. In Section 2, we will introduce some definitions

and notations which will be used in this paper. Then we shall consider weighted

operator means in the view point of their representing functions in Section 3. In

Section 4, we shall consider generalizations of the results by M. Uchiyama and one
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of the authors [13]. Especially, we shall consider the log-Euclidean mean which is a

kind of geometric mean for n-tuples of positive definite operators. In the last section,

we shall introduce some properties of the M -logarithmic mean which is generated

from an arbitrary operator mean via an integration.

2. Preliminaries

Let OM be the set of all operator monotone functions on (0,∞), and let OM1 =

{f ∈ OM : f(1) = 1}. For f ∈ OM1, there exists an operator mean σf such that

AσfB = A
1
2f(A

−1
2 BA

−1
2 )A

1
2

for A,B ∈ B(H)+. It is well known that for w ∈ [0, 1], if

A!wB ≤ AσfB ≤ A∇wB

holds for all A,B ∈ B(H)+, then[
(1− w) + wt−1

]−1 ≤ f(t) ≤ (1− w) + wt

holds for all t > 0.

Let A,B ∈ B(H)+. The Thompson metric d(A,B) is defined by

d(A,B) = max{logM(A/B), logM(B/A)},

where M(A/B) = inf{α > 0 | B ≤ αA}. It is known that a cone of positive definite

operators is a complete metric space for the Thompson metric. In what follows,

we will consider “limit” of operator sequences or “continuous” of operator valued

functions in the Thompson metric without any explanation.

For n-tuples of positive definite operators, the ALM and BMP (geometric) means

are defined as follows.

Theorem B (ALM mean [1]). For A = (A1, A2) ∈ B(H)2+, the ALM (geometric)

mean GALM(A) of A is defined by GALM(A) = A1♯1/2A2. Assume that the ALM

(geometric) mean GALM(·) on B(H)n−1
+ is defined. Let A = (A1, . . . , An) ∈ B(H)n+

and {A(r)
i }∞r=0 (i = 1, ..., n) be the sequences of positive definite operators defined by

A
(0)
i = Ai and A

(r+1)
i = GALM

(
(A

(r)
j )j ̸=i

)
,

where (A
(r)
j )j ̸=i = (A

(r)
1 , ..., A

(r)
i−1, A

(r)
i+1, ..., A

(r)
n ). Then there exists limr→∞ A

(r)
i (i =

1, ..., n) and it does not depend on i. The ALM (geometric) mean GALM(A) for

n-tuples of positive definite operators A ∈ B(H)n+ is defined by limr→∞A
(r)
i .

A vector ω = (w1, ..., wn) ∈ (0, 1)n is said to be a probability vector if and only if∑
k wk = 1. Let ∆n be the set of all probability vectors in (0, 1)n.
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Theorem C (BMP mean [3, 5, 9]). For A = (A1, A2) ∈ B(H)2+ and ω = (1−w,w) ∈
∆2, the BMP (geometric) mean GBMP (ω;A) of A is defined by GBMP (ω;A) =

A1♯wA2. Assume that the BMP (geometric) mean GBMP (·; ·) on ∆n−1 × B(H)n−1
+

is defined. Let A = (A1, . . . , An) ∈ B(H)n+ and ω = (w1, ..., wn) ∈ ∆n. Define the

sequences of positive definite operators {A(r)
i }∞r=0 (i = 1, ..., n) by

A
(0)
i = Ai and A

(r+1)
i = GBMP

(
ω̂ ̸=i; (A

(r)
j )j ̸=i

)
♯wi

A
(r)
i ,

where ω̂ ̸=i =
1∑

j ̸=i wj
(wj)j ̸=i. Then there exists limr→∞ A

(r)
i (i = 1, ..., n) and it does

not depend on i. The BMP (geometric) mean GBMP (ω;A) for n-tuples of positive

definite operators A ∈ B(H)n+ is defined by limr→∞ A
(r)
i .

We remark that it is not known any weighted ALMmean. Let A = (A1, ..., An),B =

(B1, ..., Bn) ∈ B(H)n+ and ω = (w1, ..., wn) ∈ ∆n. Here we denote the above geomet-

ric means of A for the weight ω by G(ω;A), and they have at least 10 basic properties

[1, 3, 5, 9] as follows (in the ALM mean case, we consider just only ω = ( 1
n
, ..., 1

n
)

case).

(P1) If A1, ..., An commute with each other, then

G(ω;A) =
n∏

k=1

Awk
k .

(P2) For positive numbers a1, ..., an,

G(ω; a1A1, ..., anAn) = G(ω; a1, ..., an)G(ω;A) =

(
n∏

k=1

awk
k

)
G(ω;A).

(P3) For any permutation σ on {1, 2, ..., n},

G(wσ(1), ..., wσ(n);Aσ(1), ..., Aσ(n)) = G(ω;A).

(P4) If Ai ≤ Bi for i = 1, ..., n, then G(ω;A) ≤ G(ω;B).
(P5) G(ω; ·) is continuous on each operators. Especially,

d(G(ω;A),G(ω;B)) ≤
n∑

i=1

wid(Ai, Bi).

(P6) For each t ∈ [0, 1], (1− t)G(ω;A) + tG(ω;B) ≤ G(ω; (1− t)A+ tB).
(P7) For any invertible X ∈ B(H), G(ω;X∗A1X, ..., X∗AnX) = X∗G(ω;A)X.

(P8) G(ω;A−1)−1 = G(ω;A), where A−1 = (A−1
1 , ..., A−1

n ).

(P9) If every Ai is a positive definite matrix, then detG(ω;A) =
∏n

i=1 detA
wi
i .

(P10) [
n∑

i=1

wiA
−1
i

]−1

≤ G(ω;A) ≤
n∑

i=1

wiAi.
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3. Operator means of two variables

In this section, we shall consider the weighted operator means in the view point of

their weight.

Theorem 1. Let Φ, f ∈ OM1 be non-constant, and let σ be an operator mean whose

representing function is Φ. If Φ′(1) = w ∈ (0, 1), then for A,B ∈ B(H)sa, they are

mutually equivalent:

(1) (1− w)A ≤ wB,

(2) f(λA+ I)σf(−λB + I) ≤ I holds for all sufficiently small λ ≥ 0.

Theorem 1 is an extension of the following Theorem D in [13] by Lemma 2 intro-

duced in the below. It was shown as a converse of Loewner-Heinz inequality.

Theorem D ([13]). Let f(t) ∈ OM1 be non-constant, and let A,B ∈ B(H)sa. Let

σ be an operator mean satisfying !1/2 ≤ σ ≤ ∇1/2. Then A ≤ B if and only if

f(λA+ I)σf(−λB + I) ≤ I for all sufficiently small λ ≥ 0.

To prove Theorem 1, we need the following lemma.

Lemma 2. Let Φ ∈ OM1. Then for each w ∈ (0, 1), they are mutually equivalent:

(1) Φ′(1) = w,

(2) [(1− w) + wt−1]−1 ≤ Φ(t) ≤ (1− w) + wt for all t ∈ (0,∞).

Proof. Proof of (1) =⇒ (2) has been given in [12, Lemma 2.2]. But we shall introduce

its proof for the reader’s convenience. Since every operator monotone function is

operator concave, Φ is a concave function. We have

Φ(t) ≤ Φ(1) + Φ′(1)(t− 1) = (1− w) + wt.

On the other hand, t
Φ(t)

is also an operator monotone function, and

d

dt

t

Φ(t)

∣∣∣∣
t=1

= 1− w.

Then by the same argument as above, we have

t

Φ(t)
≤ w + (1− w)t,

that is,

[(1− w) + wt−1]−1 ≤ Φ(t).

Conversely, we shall prove (2) =⇒ (1). Since the tangent line of f(t) = [(1−w)+

wt−1]−1 at t = 1 is y = (1 − w) + wt, Φ(t) has the same tangent line as that of

[(1− w) + wt−1]−1 at t = 1. Therefore Φ′(1) = w. □
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Before proving Theorem 1, we introduce the following formulas. For any differ-

ential function f on 1 satisfying f(1) = 1 and w ∈ (0, 1), the following hold in the

norm topology.

lim
λ→0

f(λA+ I)
1
λ = ef

′(1)A for A ∈ B(H)sa, (3.1)

lim
p→0

[(1− w)Ap + wBp]
1
p = exp [(1− w) logA+ w logB] for A,B ∈ B(H)+, (3.2)

where (3.1) can be obtained by limλ→0 f(λa + 1)
1
λ = ef

′(1)a for a ∈ R, and (3.2) is

introduced in [11, (2.4)], for example.

Proof of Theorem 1. By Lemma 2, Φ′(1) = w is equivalent to

[(1− w) + wt−1]−1 ≤ Φ(t) ≤ (1− w) + wt for all t > 0. (3.3)

We shall prove (1) =⇒ (2). If (1 − w)A ≤ wB, then it is equivalent to (1 −
w)(λA+ I)+w(−λB+ I) ≤ I for all λ ≥ 0. Since f is an operator concave function

with f(1) = 1, we have

I = f(I) ≥ f ((1− w)(λA+ I) + w(−λB + I))

≥ (1− w)f(λA+ I) + wf(−λB + I)

≥ f(λA+ I)σf(−λB + I),

where the last inequality holds by (3.3).

Conversely, assume that f(λA + I)σf(−λB + I) ≤ I for all sufficiently small

λ ≥ 0. By (3.3), we have

I ≥ f(λA+ I)σf(−λB + I)

≥
[
(1− w)f(λA+ I)−1 + wf(−λB + I)−1

]−1

≥
[
(1− w)f(λA+ I)

−p
λ + wf(−λB + I)

−p
λ

]−λ
p

for all 0 < λ ≤ p, where the last inequality follows from the operator concavity of

tα for α ∈ [0, 1]. Then we have[
(1− w)f(λA+ I)

−p
λ + wf(−λB + I)

−p
λ

]−1
p ≤ I.

By letting λ → 0 and (3.1), we have[
(1− w)e−pf ′(1)A + wepf

′(1)B
]−1

p ≤ I,

and p → 0, we have

exp (−(1− w)f ′(1)A+ wf ′(1)B) ≥ I

by (3.2). It is equivalent to (1− w)A ≤ wB. □
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A kind of a converse of Theorem 1 can be considered as follows.

Proposition 3. Let Φ, f ∈ OM1 be non-constant, and let σ be an operator mean

whose representing function is Φ. For A,B ∈ B(H)sa and w ∈ (0, 1), if f(λA +

I)σf(−λB+ I) ≤ I holds for all sufficiently small λ ≥ 0 whenever (1−w)A ≤ wB.

Then Φ′(1) = w.

Proof. We may assume f ′(1) > 0. Let A = wtI and B = (1 − w)tI for a real

number t. Then we have (1 − w)A ≤ wB. By the assumption, we have f(λtw +

1)σf(−λt(1− w) + 1) ≤ 1 holds for all sufficiently small λ ≥ 0. It is equivalent to

Φ

(
f(−λt(1− w) + 1)

f(λtw + 1)

)
≤ 1

f(λtw + 1)
.

For each λ > 0, we have

Φ
(

f(−λ(1−w)t+1)
f(λtw+1)

)
− 1

λ
≤

1
f(λwt+1)

− 1

λ
.

Letting λ → 0, the right-hand side of the above inequality converges to

∂

∂λ

1

f(λwt+ 1)

∣∣∣∣
λ=0

=
−wtf ′(λwt+ 1)

f(λwt+ 1)2

∣∣∣∣
λ=0

= −wtf ′(1)

by the assumption f(1) = 1. On the other hand, the left-hand side is

∂

∂λ
Φ

(
f(−λ(1− w)t+ 1)

f(λtw + 1)

) ∣∣∣∣
λ=0

= −tΦ′(1)f ′(1)

by the assumption f(1) = 1. Hence we have tΦ′(1) ≥ wt for all real number t.

Hence we have Φ′(1) = w. □

4. More than three operators case

Let A = (A1, ..., An) ∈ B(H)n+ and ω = (w1, ..., wn) ∈ ∆n. Define

A(ω;A) =
n∑

i=1

wiAi and H(ω;A) =

(
n∑

i=1

wiA
−1
i

)−1

.

As an extension of the Karcher mean, the power mean is given by Lim-Páifia [10]

as follows. Let A = (A1, ..., An) ∈ B(H)n+ and ω = (w1, ..., wn) ∈ ∆n. For t ∈ (0, 1],

the power mean Pt(ω;A) is defined by the unique positive definite solution of

X =
n∑

k=1

wkX♯tAk,

and for t ∈ [−1, 0), the power mean Pt(ω;A) is defined by Pt(ω;A) = P−t(ω;A−1)−1

(see also [8]). We remark that Pt(ω;A) converges to the Karcher mean Λ(ω;A)
as t → 0, strongly. So we can consider P0(ω;A) as Λ(ω;A). It is known that the

— 7 —



Karcher mean also satisfies all properties (P1) – (P10) in Section 2 (cf. [2, 7, 8]). It is

easy to see that P1(ω;A) = A(ω;A) and P−1(ω;A) = H(ω;A). Moreover Pt(ω;A) is
increasing on t ∈ [−1, 1]. Hence the power mean interpolates arithmetic-geometric-

harmonic means. In [13], we had a generalization of Theorem D as follows.

Theorem E ([13]). Let T1, ..., Tn be Hermitian matrices, and ω = (w1, ..., wn) ∈ ∆n.

Let f ∈ OM1 be non-constant. Then the following assertions are equivalent:

(1)
n∑

i=1

wiTi ≤ 0,

(2) P1(ω; f(λT1 + I), ..., f(λTn + I)) =
n∑

i=1

wif(λTi + I) ≤ I for all sufficiently

small λ ≥ 0,

(3) for each t ∈ [−1, 1], Pt(ω; f(λT1 + I), ..., f(λTn + I)) ≤ I for all sufficiently

small λ ≥ 0.

Here we shall generalize the above result into the following Theorem 4.

Theorem 4. Let f ∈ OM1 be non-constant, and let Φ : ∆n × B(H)n+ ×H → R+

satisfying

∥H(ω;A)∥ ≤ sup
∥x∥=1

Φ(ω;A;x) ≤ ∥A(ω;A)∥ (4.1)

for all A ∈ B(H)n+ and ω ∈ ∆n. Then for T = (T1, ..., Tn) ∈ B(H)nsa and ω =

(w1, ..., wn) ∈ ∆n, they are mutually equivalent:

(1)
n∑

i=1

wiTi ≤ 0,

(2) Φ(ω; f(λT1+ I), ..., f(λTn+ I); x) ≤ 1 for all sufficiently small λ ≥ 0 and all

unit vector x ∈ H.

In fact, we obtain Theorem E by putting Φ(ω;A;x) = ⟨Pt(ω;A)x, x⟩ in Theorem

4.

Proof of Theorem 4. First of all, we may assume f ′(1) > 0. Firstly, we shall prove

(1) =⇒ (2). For each λ > 0, (1) is equivalent to
n∑

i=1

wi(λTi + I) ≤ I.

Since operator concavity of f and f(1) = 1, we have

I = f(I) ≥ f

(
n∑

i=1

wi(λTi + I)

)

≥
n∑

i=1

wif(λTi + I) = A(ω; f(λT1 + I), ..., f(λTn + I)).
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Here by (4.1),

1 ≥ ∥A(ω; f(λT1 + I), ..., f(λTn + I))∥
≥ sup

∥x∥=1

Φ(ω; f(λT1 + I), ..., f(λTn + I); x),

we have

1 ≥ Φ(ω; f(λT1 + I), ..., f(λTn + I); x)

for all unit vector x ∈ H, i.e., (2).

Conversely, we shall prove (2) =⇒ (1). By (4.1), we have

1 ≥ sup
∥x∥=1

Φ(ω; f(λT1 + I), ..., f(λTn + I);x)

≥ ∥H(ω; f(λT1 + I), ..., f(λTn + I))∥.

Then

I ≥ H(ω; f(λT1 + I), ..., f(λTn + I))

=

[
n∑

i=1

wif(λTi + I)−1

]−1

≥

[
n∑

i=1

wif(λTi + I)
−p
λ

]−λ
p

for all 0 < λ ≤ p since tα is operator concave for α ∈ [0, 1]. Hence we have[
n∑

i=1

wif(λTi + I)
−p
λ

]−1
p

≤ I.

By letting λ → 0 and (3.1), we obtain[
n∑

i=1

wie
−pf ′(1)Ti

]−1
p

≤ I,

and p → 0, we have f ′(1)
∑n

i=1wiTi ≤ 0, that is, (1). □

Corollary 5. Let f ∈ OM1 be non-constant. Then for T = (T1, ..., Tn) ∈ B(H)nsa
and ω = (w1, ..., wn) ∈ ∆n, they are mutually equivalent:

(1)
n∑

i=1

wiTi ≤ 0,

(2)
n∏

i=1

∥f(λTi + I)
1
2x∥wi ≤ 1 for all sufficiently small λ > 0 and all unit vector

x ∈ H.

Proof. For A = (A1, ..., An) ∈ B(H)n+, let Φ(ω;A;x) =
∏n

i=1 ∥A
1
2
i x∥2wi . We shall

only check

∥H(ω;A)∥ ≤ sup
∥x∥=1

n∏
i=1

∥A
1
2
i x∥2wi ≤ ∥A(ω;A)∥
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for all A = (A1, ..., An) ∈ B(H)n+ and ω = (w1, ..., wn) ∈ ∆n. Firstly, we shall show

sup∥x∥=1

∏n
i=1 ∥A

1
2
i x∥2wi ≤ ∥A(ω;A)∥.

n∏
i=1

∥A
1
2
i x∥2wi =

n∏
i=1

⟨Aix, x⟩wi ≤
n∑

i=1

wi⟨Aix, x⟩ = ⟨A(ω;A)x, x⟩.

Hence, we have sup∥x∥=1

∏n
i=1 ∥A

1
2
i x∥2wi ≤ ∥A(ω;A)∥.

Next, we shall prove ∥H(ω;A)∥ ≤ sup∥x∥=1

∏n
i=1 ∥A

1
2
i x∥2wi .

n∏
i=1

∥A
1
2
i x∥2wi =

n∏
i=1

⟨Aix, x⟩wi

≥ ⟨Λ(ω;A)x, x⟩ (by [14])

≥ ⟨H(ω;A)x, x⟩.

Therefore the proof is completed by Theorem 4. □

Corollary 5 is an extension of a part of the following result:

Theorem F ([13]). Let T1, ..., Tn be Hermitian matrices, and let f ∈ OM1 be non-

constant. Then the following are equivalent:

(1)
n∑

i=1

Ti ≤ 0,

(2) ∥x∥n ≤
n∏

i=1

∥f(λTi + I)
−1
2 x∥ for all sufficiently small λ ≥ 0 and all x ∈ H.

In fact, we can obtain the assertion (1) =⇒ (2) of Theorem F as follows: If∑n
i=1 Ti ≤ 0, then we have

n∏
i=1

∥f(λTi + I)
1
2x∥

1
n ≤ 1

for all sufficiently small λ > 0 and all unit vector x ∈ H by Corollary 5 and putting

ω = ( 1
n
, ..., 1

n
). Then we have

1 ≤
n∏

i=1

∥f(λTi + I)
1
2x∥

−1
n

=
n∏

i=1

⟨f(λTi + I)x, x⟩
−1
2n

≤
n∏

i=1

⟨f(λTi + I)−1x, x⟩
1
2n (by the Hölder-McCarthy inequality)

=
n∏

i=1

∥f(λTi + I)
−1
2 x∥

1
n .
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By replacing x into x
∥x∥ , we have (2) of Theorem F.

From here we shall consider another geometric mean for n-tuples of positive defi-

nite operators which is called the log-Euclidean meanGE(ω;A) for A = (A1, ..., An) ∈
B(H)n+ and ω = (w1, ..., wn) ∈ ∆n. It is defined by

GE(ω;A) = exp

(
n∑

i=1

wi logAi

)
.

Log-Euclidean mean satisfies some of properties (P1)–(P10) in Section 2. However,

log-Euclidean mean does not satisfy important properties (P4) and (P10).

Corollary 6. Let f ∈ OM1 be non-constant. For A ∈ B(H)n+ and ω ∈ ∆n, let

M(ω;A) be ALM or weighted BMP or log-Euclidean mean (in the ALM mean case, ω

should be ω = ( 1
n
, ..., 1

n
)). Then for T = (T1, ..., Tn) ∈ B(H)nsa and ω = (w1, ..., wn) ∈

∆n, the following assertions are equivalent:

(1)
n∑

i=1

wiTi ≤ 0,

(2) M(ω; f(λT1 + I), ..., f(λTn + I)) ≤ I for all sufficiently small λ ≥ 0.

Proof. The cases of ALM and BMP means. Put Φ(ω;A; x) = ⟨M(ω;A)x, x⟩. Then
by (P10), Φ(ω;A;x) satisfies the condition (4.1). So that we can prove the cases of

ALM and BMP means by Theorem 4.

By the way, log-Euclidean mean satisfies

logH(ω;A) ≤ logGE(ω;A) ≤ logA(ω;A) (4.2)

for A ∈ B(H)n+ and ω ∈ ∆n. In fact, by the operator concavity of log t, we have

logGE(ω;A) = log

[
exp

(
n∑

i=1

wi logAi

)]

=
n∑

i=1

wi logAi

≤ log

(
n∑

i=1

wiAi

)
= logA(ω;A).

On the other hand, we have

logH(ω;A) = logA(ω;A−1)−1

= − logA(ω;A−1)

≤ − logGE(ω;A−1)

= logGE(ω;A).
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Hence we have (4.2). We remark that if logA ≤ logB for A,B ∈ B(H)+, then for

each p > 0, there is a unitary operator Up such that Ap ≤ U∗
pB

pUp in [4]. Hence we

have ∥A∥ ≤ ∥B∥. By using this fact to (4.2), we have

∥H(ω;A)∥ ≤ ∥GE(ω;A)∥ ≤ ∥A(ω;A)∥.

Hence we can prove Corollary 6 by putting Φ(ω;A;x) = ⟨GE(ω;A)x, x⟩ in Theorem

4. □

5. Logarithmic means

We shall consider some logarithmic means for n-tuples of positive definite operators.

Since the representing function of logarithmic mean is t−1
log t

, logarithmic mean AλB

of A,B ∈ B(H)+ can be considered as

AλB =

∫ 1

0

A♯tBdt.

So it is quite natural to consider the similar type of integrated means as follows.

Definition 2 (M -logarithmic mean). Let M : ∆n × B(H)n+ → B(H)+. Then for

A ∈ B(H)n+, the M-logarithmic mean L(M)(A) of A ∈ B(H)n+ is defined by

L(M)(A) :=
∫
∆n

M(ω;A)dp(ω)

if there exists, where dp(ω) means an arbitrary probability measure on ∆n.

In what follows, we consider the case of dp(ω) = (n− 1)!dω.

Proposition 7. Let M : ∆n × B(H)n+ → B(H)+ satisfying (P3), (P7), (P8) and

(P10). Then M-logarithmic mean

L(M)(A) = (n− 1)!

∫
∆n

M(ω;A)dω

satisfies (P3) and (P7) for ω = ( 1
n
, ..., 1

n
) if it exists. Especially, L(M) satisfies

(P10), i.e.,

H(A) ≤ L(M)(A) ≤ A(A),
where H(A) = H(ω;A) and A(A) = A(ω;A) for ω = ( 1

n
, ..., 1

n
).

We remark that L(A)(A) = A(A). As for the preparation, we define some no-

tations. Let S be the cyclic shift operator on Cn and let S be also the cyclic shift

operator on B(H)n; namely,

S(w1, w2, ..., wn) = (w2, w3, ..., wn, w1).

S(A1, A2, ..., An) = (A2, A3, ..., An, A1).

We claim that if M satisfies (P3), then M(Sω;A) = M(ω; S∗A).
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Proof of Proposition 7. It is clear that L(M) satisfies (P3) and (P7). The remain

is to show (P10). Let M be the set of all maps M : ∆n × B(H)n+ → B(H)+. It is

easy to show that L is a linear map on M, and L(M)(A) ≥ 0 for all A ∈ B(H)n+ if

M ∈ M. Hence for N1,M,N2 ∈ M, if N1(ω;A) ≤ M(ω;A) ≤ N2(ω;A) holds for all
ω ∈ ∆n and A ∈ B(H)n+, then

L(N1)(A) ≤ L(M)(A) ≤ L(N2)(A)

holds for all A ∈ B(H)n+. Since M(ω;A) satisfies (P10), we have

L(M)(A) = (n− 1)!

∫
∆n

M(ω;A)dω

≤ (n− 1)!

∫
∆n

A(ω;A)dω

= L(A)(A) = A(A).

On the other hand, we have

H(A) = A(A−1)−1

≤ {L(M)(A−1)}−1

=

(
(n− 1)!

∫
∆n

M(ω;A−1)dω

)−1

=

(
(n− 1)!

∫
∆n

M(ω;A)−1dω

)−1

by (P8)

≤ (n− 1)!

∫
∆n

M(ω;A)dω = L(M)(A).

□

Remark 8. The above theorem is valid for an arbitrary permutation (shift)- invari-

ant probability measure p.

Remark 9. Let M : ∆n ×B(H)n+ → B(H)+ be a map satisfying (P3), (P7), (P8)

and (P10). We put

M0(ω;A) := M

(
(
1

n
, ...,

1

n
);M(ω;A),M(Sω;A), ...,M(Sn−1ω;A)

)
.

Then M0 satisfies the assumption of Proposition 7. Precisely, M0 satisfies (P3),

(P7), (P8) and H(A) ≤ M0(ω;A) ≤ A(A) for all ω ∈ ∆n and A ∈ B(H)n+. So L(M0)

also satisfies (P10). Moreover, the following inequalities hold

H(A) ≤ L(M0)(A) ≤ L(M)(A) ≤ A(A).
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The second inequality can be shown as follows. Since M(ω;A) satisfies (P10), we

have

M0(ω;A) ≤
n−1∑
k=0

1

n
M(Skω;A).

Then we obtain

L(M0)(A) = (n− 1)!

∫
∆n

M0(ω;A)dω

≤ (n− 1)!

∫
∆n

{
n−1∑
k=0

1

n
M(Skω;A)

}
dω

=
(n− 1)!

n

n−1∑
k=0

∫
∆n

M(Skω;A)dω

=
1

n

n−1∑
k=0

L(M)(A) = L(M)(A).

Since the weighted Karcher mean Λ(ω;A) is continuous on the probability vector

in the Thompson metric [8], so L(Λ)(A) exists.

Proposition 10.

H(A) ≤ L(Λ)(A) ≤ A(A).

Proof. Since the weighted Karcher mean satisfies (P1)–(P10) in Section 2 [2, 7, 8],

it is easy by Proposition 7. □

Corollary 11. Logarithmic mean L(Λ)(A) satisfies the same assertion to Corollary

6 for ω = ( 1
n
, ..., 1

n
), too.

Proof. We can prove Corollary 11 by the same way to the proof of Corollary 6. □

Acknowledgement. The authors wish to express their thanks to the referees for

their many helpful comments and suggestions which have contributed to the final

preparation of the paper.

References

[1] T. Ando, C.-K. Li and R. Mathias, Geometric means, Linear Algebra Appl.

385 (2004), 305–334.

[2] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means,

Linear Algebra Appl. 413 (2006), 594–618.

[3] D. A. Bini, B. Meini and F. Poloni, An effective matrix geometric mean satis-

fying the Ando-Li-Mathias properties, Math. Comp. 79 (2010), 437–452.

— 14 —



[4] T. Furuta, Characterizations of chaotic order via generalized Furuta inequality,

J. Inequal. Appl. 1 (1997), 11–24.

[5] S. Izumino and N. Nakamura, Geometric means of positive operators II, Sci.

Math. Jpn. 69 (2009), 35–44.

[6] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246

(1979/80), 205–224.

[7] J. D. Lawson and Y. Lim, Monotonic properties of the least squares mean,

Math. Ann. 351 (2011), 267–279.

[8] J. D. Lawson and Y. Lim, Karcher means and Karcher equations of positive

definite operators. Trans. Amer. Math. Soc. Ser. B 1 (2014), 1–22.

[9] H. Lee, Y. Lim and T. Yamazaki, Multi-variable weighted geometric means of

positive definite matrices, Linear Algebra Appl. 435 (2011), 307–322.

[10] Y. Lim and M. Pálfia, Matrix power means and the Karcher mean J. Funct.

Anal. 262 (2012), 1498–1514.

[11] R. D. Nussbaum and J. E. Cohen, The arithmetic-geometric mean and its gen-

eralizations for noncommuting linear operators, Ann. Scuola Norm. Sup. Pisa

Cl. Sci. (4) 15 (1988), 239–308.

[12] M. Pálfia and D. Petz, Weighted multivariable operator means of positive defi-

nite operators, Linear Algebra Appl. 463 (2014), 134–153.

[13] M. Uchiyama and T. Yamazaki, A converse of Loewner-Heinz inequality and

applications to operator means, J. Math. Anal. Appl. 413 (2014), 422–429.

[14] T. Yamazaki, An elementary proof of arithmetic-geometric mean inequality of

the weighted Riemannian mean of positive definite matrices, Linear Algebra

Appl. 438 (2013), 1564–1569.

(Shuhei Wada) Department of Information and Computer Engineering, Kisarazu National College

of Technology, 2-11-1 Kiyomidai-Higashi, Kisarazu, Chiba 292-0041, Japan.

E-mail address: wada@j.kisarazu.ac.jp

(Takeaki Yamazaki) Department of Electrical, Electronic and Computer Engineering, Toyo Uni-

versity, Kawagoe 350-8585, Japan.

E-mail address: t-yamazaki@toyo.jp

Received August 6, 2015

Revised February 10, 2016

— 15 —


