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Abstract. In the paper, we propose Ricceri type theorem on Fan-Takahashi min-

imax inequality for set-valued maps by using the scalarization method proposed

by Kuwano, Tanaka and Yamada based on a certain type of the set-relations.

1. Introduction

In Convex Analysis, there are several kinds of inequality theorems related to min-

imality or maximality. Fan-Takahashi minimax inequality theorem (see [1] in 1972

and [10] in 1976) is one of important results with many applications to other math-

ematical areas. It gives a value of upper-bound of minimax value of a two-variable

function. Then, in [8], Ricceri proposes a reasonable substitute of assumptions for

Fan-Takahashi minimax inequality, that is, he shows the same conclusion on the

inequality under some different assumptions which contains a certain mutually ex-

clusive condition to the assumption of the original Fan-Takahashi theorem.

On the other hand, Kuwano, Tanaka and Yamada in [5] propose four kinds of

Fan-Takahashi minimax inequality theorem for set-valued maps. They use certain

scalarization methods for set-valued maps, proposed in [4], based on set-relations in

[2].

In 2015, we propose a certain Ricceri type theorem for set-valued maps with a set-

relation ̸≤(5)

intC in [6], in which we propose a certain equivalence between a simpler

set and a nonsensitive set in the Ricceri’s theorem. By using the same method used

in [6], we could obtain another three types of set-valued generalized theorems.

2010 Mathematics Subject Classification. 49J53, 54C60, 90C29.
Key words and phrases. Fan-Takahashi minimax inequality, Ricceri’s theorem, scalarization

method, set-relations, set-valued map.
This work was supported by JSPS KAKENHI Grant Number 26400194 (Grant-in-Aid for Sci-

entific Research (KAKENHI) (C) from Japan Society for the Promotion of Science (JSPS)).

— 135 —



The aim of this paper is to research Ricceri type theorems for Fan-Takahashi

minimax inequality into set-valued maps by a similar method above. We prove a

result with respect to ̸≤(3)

intC and some counter examples for the results with respect

to ≤(j)
C (j = 3, 5).

The organization of the paper is as follows. In Section 2, we recall some definitions

and propositions on set-relations, and some tools of a scalarization method for sets.

In Section 3, we introduce Ricceri type theorem (Theorem 3.2) on Fan-Takahashi

minimax inequality. In Section 4, we propose generalized theorems of the two Ricceri

type theorems for set-valued maps. Finally, we consider other cases with each set-

relation and show counter examples on them.

2. Preliminaries

Throughout the paper, let E be a real topological vector space, V a linear subspace

of E, D a non-empty subset of V , Y an ordered topological vector space, C an

ordering cone in Y with intC ̸= ∅, θE (resp., θY ) the zero vector of E (resp., Y ) and

V(x) the open neighborhood system of a point x. Let F be a set-valued map from

a real topological vector space into 2Y \ {∅}.
Moreover, if S, T, U are three non-empty subsets of E, we put

IS,T,U := {x ∈ S | T ⊆ ∪λ>0λ(x− U)}.

Furthermore, we denote the algebraic sum and difference of any subsets A and B

in Y by A + B := {a + b | a ∈ A, b ∈ B} and A − B := {a − b | a ∈ A, b ∈ B},
respectively. Also, given A ⊂ Y , we write tA := {ta | a ∈ A} for t ∈ R and

A+ x := A+ {x} for x ∈ Y .

At first, we introduce some set-relations by Kuroiwa, Tanaka and Ha.

Definition 2.1 (set-relation, [2]). For any nonempty sets A, B ⊂ Y , we write

B ⊂ (A+ C) by A ≤(3)
C B;

A ⊂ (B − C) by A ≤(5)
C B.

Proposition 2.2 ([4]). For any nonempty sets A,B ⊂ Y , the following statements

hold for j = 3 and 5:

(i) A ≤(j)
C B implies (A+ y) ≤(j)

C (B + y) for y ∈ Y , and

A ≤(j)
C B implies αA ≤(j)

C αB for α > 0;

(ii) ≤(j)
C is transitive;

(iii) ≤(j)
C is reflexive;

(iv) A ≤(j)
C B and y1 ≤C y2 for y1, y2 ∈ Y imply A+ y1 ≤(j)

C B + y2.

We recall some definitions of C-notions which are referred in [7]. A subset A in Y

is said to be C-convex (resp., C-closed) if A+C is convex (resp., closed); C-proper
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if A + C ̸= Y . Moreover, A is said to be C-bounded if for each U ∈ V(θY ) there

exists t ≥ 0 such that A ⊂ tU + C. Furthermore, we say that a set-valued map F

is each C-notion mentioned above on a topological vector space E, if the set F (x)

for each x ∈ E has the property of the corresponding C-notion. A set A (resp., a

map F ) is said to be finitely notion if A∩V (resp., F (·)∩V ) has the notion for any

finite subspace V on Y .

Definition 2.3 (type (j) C-convexity). For each j = 3, 5, a set-valued map F is

called a type (j) C-convex function if for each x, y ∈ E and λ ∈ (0, 1),

F (λx+ (1− λ)y) ≤(j)
C λF (x) + (1− λ)F (y).

Definition 2.4 (type (j) C-concavity). For each j = 3, 5, a set-valued map F is

called a type (j) C-concave function if for each x, y ∈ E and λ ∈ (0, 1),

λF (x) + (1− λ)F (y) ≤(j)
C F (λx+ (1− λ)y).

Above two definitions include the C-convexity and C-concavity for vector-valued

functions with respect to ≤C (where z1 ≤C z2 denotes z2 − z1 ∈ C), respectively.

Definition 2.5 (C-continuity, [7]).

(i) F is called a C-lower continuous function if for each x̄ ∈ E and open set W

with F (x̄) ∩W ̸= ∅, there exists U ∈ V(x̄) such that F (y) ∩ (W + C) ̸= ∅
for all y ∈ U .

(ii) F is called a C-upper continuous function if for each x̄ ∈ E and open set

W with F (x̄) ⊂ W , there exists U ∈ V(x̄) such that F (y) ⊂ W + C for all

y ∈ U .

Next, we introduce the definition of two types of nonlinear scalarizing functions

for sets.

Definition 2.6 (unified scalarization for sets, [4]). Let A and V ′ be nonempty

subsets in Y and direction k ∈ intC. For each j = 3, 5, we define scalarizing

functions I
(j)
k,V ′ and S

(j)
k,V ′ : 2Y \ {∅} → R ∪ {±∞} by

I
(j)
k,V ′(A) := inf

{
t ∈ R

∣∣∣A ≤(j)
C (tk + V ′)

}
and

S
(j)
k,V ′(A) := sup

{
t ∈ R

∣∣∣ (tk + V ′) ≤(j)
C A

}
,

respectively. They are called unified scalarizing functions for sets.

Proposition 2.7 ([4]). Let A, B and V ′ be nonempty subsets in Y and k ∈ intC.

Then, for each j = 3, 5,

A ≤(j)
C B implies I

(j)
k,V ′(A) ≤ I

(j)
k,V ′(B) and S

(j)
k,V ′(A) ≤ S

(j)
k,V ′(B).
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Proposition 2.8 ([5]). Let A and V ′ be nonempty subsets in Y and k ∈ intC.

Then, the following statements hold:

(i) If A is C-bounded and V ′ is C-proper then S
(3)
k,V ′(A) ∈ R;

(ii) If A is C-proper and V ′ is C-bounded then I
(3)
k,V ′(A) ∈ R;

(iii) If A is (−C)-bounded and V ′ is (−C)-proper then I
(5)
k,V ′(A) ∈ R.

For each x ∈ E and j = 3, 5, we consider the following composite functions:

(I
(j)
k,V ′ ◦ F )(x) := I

(j)
k,V ′(F (x));

(S
(j)
k,V ′ ◦ F )(x) := S

(j)
k,V ′(F (x)).

Then, we can get the following properties between a set-valued map F and the

composite function S
(j)
k,V ′ ◦ F .

Proposition 2.9 ([3]). If F is type (3) C-concave, then for each fixed (k, V ) ∈
(intC)× (2Y \ {∅}), S(3)

k,V ′ ◦ F is a concave function on E.

Proposition 2.10 ([9]). For each fixed (k, V ′) ∈ (intC)× (2Y \ {∅}), the following

statements hold:

(i) (a) If F is (−C)-lower continuous on E then S
(3)
k,V ′ ◦ F is upper semicon-

tinuous in E,

(b) if F is C-upper continuous on E then S
(3)
k,V ′ ◦F is lower semicontinuous

in E;

(ii) (a) If F is (−C)-lower continuous on E then I
(3)
k,V ′ ◦ F is upper semicon-

tinuous in E,

(b) if F is C-upper continuous on E then I
(3)
k,V ′ ◦F is lower semicontinuous

in E;

(iii) (a) If F is C-lower continuous on E then I
(5)
k,V ′ ◦F is lower semicontinuous

in E,

(b) if F is (−C)-upper continuous on E then I
(5)
k,V ′ ◦ F is upper semicon-

tinuous in E.

3. Ricceri’s theorems on Fan-Takahashi minimax inequality

At first, we recall the following two theorems.

Theorem 3.1 (Fan-Takahashi minimax inequality, [10]). Let E be a real Hausdorff

topological vector space, X a non-empty compact convex subset of E and f a real

function on X ×X satisfying the following conditions:

(1) for every x ∈ X, the function f(x, ·) is (quasi) concave in X;

(2) for every y ∈ X, the function f(·, y) is lower semicontinuous in X;

(3) for every x ∈ X, f(x, x) ≤ 0.
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Then, there exists x̂ ∈ X such that f(x̂, y) ≤ 0 for all y ∈ X.

Theorem 3.2 (Ricceri type theorem for Fan-Takahashi minimax inequality, [8]).

Let E be a real topological vector space, X a non-empty compact convex subset of E,

θE ∈ X and f a real-valued function on X × E satisfying the following conditions:

(1) for every x ∈ X, the function f(x, ·) is concave in E and f(x, θE) = 0;

(2) for every y ∈ E, the function f(·, y) is lower semicontinuous in X;

(3) for every x ∈ X such that X \ ∪λ>0λ(x−X) ̸= ∅, one has f(x, x) > 0.

Then, there exists x̂ ∈ X such that f(x̂, y) ≤ 0 for all y ∈ X.

Ricceri proposes Theorem 3.2 above which is a reasonable substitute of Theo-

rem 3.1. Clearly, both third conditions in the theorems can not occur at the same

time. However, the two theorems have the same result, and so they are mutually

exclusive. Also, a set-valued version of Fan-Takahashi minimax inequality theorem

is proposed by the scalarization method in [5].

A set-valued Ricceri type theorem can be proved by a similar method (see [6]).

In the next section, we obtain a set-valued version of Theorem 3.2 as a corollary of

a set-valued version of the following theorem, that is, the origin of Theorem 3.2.

We note that about an operator A from X into MV , where MV is the set of

all real-valued functions on V , we often consider A as a two-variable real-valued

function on X ×V . Then, we write (A(x))(y) by A(x, y) for each x ∈ X and y ∈ V .

Theorem 3.3 ([8]). Let E be a real topological vector space, X a non-empty finitely

closed and convex subset of E, K a finitely compact subset of X with θE ∈ K, τ̃ a

topology on K with respect to which K is compact and f a real-valued function on

X × V . We assume that f satisfies the following conditions:

(1) for every x ∈ X, the function f(x, ·) is concave in V ;

(2) the function f(·, y) is finitely lower semicontinuous in X for every y ∈
(X − X) ∩ V , is τ̃ -lower semicontinuous in K for every y ∈ D, is finitely

continuous in X and τ̃ -continuous in K for y = θE.

Then, for any convex real-valued function ψ on V with ψ(θE) = 0 and

f(x, x) > f(x, θE) + ψ(x) for all x ∈ (X ∩ V ) \ IK,D,X ,

there exists x̂ ∈ K such that

f(x̂, y) ≤ f(x̂, θE) + ψ(y) for all y ∈ D.

4. Ricceri type theorem for set-valued maps

In this section, we study Ricceri type theorems for set-valued maps. Throughout

this section, we assume that intC ̸= ∅. In [6], we propose Ricceri type theorem for

set-valued maps and its corollary as follows.
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Theorem 4.1 ([6]). Let E be a real topological vector space, Y an ordered topological

vector space with ordering cone C, X a non-empty finitely closed and convex subset

of E, K a finitely compact subset of X with θE ∈ K, τ̃ a topology on K with respect

to which K is compact and F a set-valued map from X×V to 2Y \{∅}. We assume

that F satisfies the following conditions:

(1) F is (−C)-proper;
(2) for every x ∈ X, the map F (x, ·) is type (5) C-concave in V ;

(3) the map F (·, y) is finitely C-lower continuous in X for every y ∈ (X −
X) ∩ V , τ̃ -C-lower continuous in K for every y ∈ D, the map F (·, θY ) is

vector-valued map, finitely continuous in X and τ̃ -continuous in K.

Then, for any C-convex vector-valued map ψ from V to Y with ψ(θE) = θY and

F (x, θE) + ψ(x) ≤(5)

intC F (x, x) for all x ∈ (X ∩ V ) \ IK,D,X ,

there exists x̂ ∈ K such that

F (x̂, θE) + ψ(y) ̸≤(5)

intC F (x̂, y) for all y ∈ D.

Corollary 4.2 ([6]). Let E be a real topological vector space, Y an ordered topological

vector space with ordering cone C, X a non-empty compact convex subset of E,

θE ∈ X and F a set-valued map from X × E to 2Y \ {∅} satisfying the following

conditions:

(1) F is (−C)-proper;
(2) for every x ∈ X, F (x, ·) is type (5) C-concave in E and F (x, θE) = {θY };
(3) for every y ∈ E, F (·, y) is C-lower continuous in X;

(4) for every x ∈ X such that X \ ∪λ>0λ(x−X) ̸= ∅, one has

{θY } ≤(5)

intC F (x, x).

Then, there exists x̂ ∈ X such that {θY } ̸≤(5)

intC F (x̂, y) for all y ∈ X.

The conclusion of Corollary 4.2 is of the form {θY } ̸≤(5)

intC F (x̂, y) with respect to

the set-relation type (5). We consider another three kinds of Ricceri type theorem

for set-valued maps with the following conclusions:

(i) {θY } ̸≤(3)

intC F (x̂, y);

(ii) F (x̂, y) ≤(5)
C {θY };

(iii) F (x̂, y) ≤(3)
C {θY }.

4.1. Observation for the case (i)

We show the following theorem and its corollary with respect to the case (i).

Theorem 4.3. Let E be a real topological vector space, Y an ordered topological

vector space with ordering cone C, X a non-empty finitely closed and convex subset
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of E, K a finitely compact subset of X with θE ∈ K, τ̃ a topology on K with respect

to which K is compact and F a set-valued map from X×V to 2Y \{∅}. We assume

that F satisfies the following conditions:

(1) F is compact-valued;

(2) for every x ∈ X, the map F (x, ·) is type (3) C-concave in V ;

(3) the map F (·, y) is finitely C-upper continuous in X for every y ∈ (X−X)∩V
and τ̃ -C-upper continuous in K for every y ∈ D, the map F (·, θY ) is vector-
valued map, finitely continuous in X and τ̃ continuous in K.

Then, for any C-convex vector-valued map ψ from V to Y with ψ(θE) = θY and

ψ(x) ≤(3)

intC F (x, x)− F (x, θE) for all x ∈ (X ∩ V ) \ IK,D,X ,

there exists x̂ ∈ K such that

ψ(y) ̸≤(3)

intC F (x̂, y)− F (x̂, θE) for all y ∈ D.

Proof. Let V ′ := {θY }, k ∈ intC be fixed. We consider the set-valued map B from

X × V to 2Y \ {∅} defined by

B(x, y) := F (x, y)− F (x, θE)− ψ(y).

We consider the composite function S
(3)
k,V ′ ◦ B, and we denote it by A. By Proposi-

tion 2.8, A has real-valued images without ±∞. Then, there exists x̂ ∈ K such that

A(x̂, y) ≤ 0 for all y ∈ D if A holds the following conditions:

(a) A(x, ·) is concave for any x ∈ X;

(b) A(x, θE) = 0;

(c) A(·, y) is finitely lower semicontinuous in X for any y ∈ (X −X) ∩ V ;

(d) A(·, y) is τ̃ -lower semicontinuous in K for any y ∈ D;

(e) A(x, x) > 0 for all x ∈ (X ∩ V ) \ IK,D,X .

We show each proof of the five statements above.

(a) By assumption (2), the C-concavity of vector-valued function −ψ and the

C-convexity of V ′, it follows from (iv) of Proposition 2.2 that B(x, ·) is type (3)

C-concave in V . From Proposition 2.9, it follows that S
(3)
k,V ′ ◦B(x, ·) is concave.

(b) Since F (x, θE) is singleton and ψ(θE) = θY , we get B(x, θE) = {θY } = V ′.

Clearly, S
(3)
k,V ′(V ′) = 0 is always true.

(c) Let y ∈ (X −X) ∩ V be fixed. For each finite dimensional subspace S in E,

we take x ∈ X ∩ S and an open subset W of Y with (F (x, y) − F (x, θE)) ⊂ W .

Since F (x, y) is compact set, F (x, y)− F (x, θE) is compact. Hence, there exist W1,

any open neighborhood of F (x, y), and W2, any open neighborhood of −F (x, θE),
such that W1 +W2 ⊂ W . By the C-upper continuity of F (·, y) and F (·, θE), there
exist open neighborhoods U

(1)
x and U

(2)
x of x such that F (z1, y) ⊂ (W1 + C) and
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(−F (z2, θE)) ⊂ (W2+C) for any z1 ∈ U
(1)
x and z2 ∈ U

(2)
x . We put Ux := U

(1)
x ∩U (2)

x ,

then Ux is an open neighborhood of x and

(F (z, y)− F (z, θE)) ⊂ (W1 +W2 + C) for all z ∈ Ux.

We know (W1+W2) ⊂ W , and then F (·, y)−F (·, θE) is finitely C-upper continuous.
Thus, B(·, y) is (finitely) C-upper continuous. Hence, S(3)

k,V ′◦B(·, y) is (finitely) lower
semicontinuous, which is proved by (i)-(b) of Proposition 2.10,

(d) It can be proved in a similar way to the proof of (c).

(e) If (X∩V )\IK,D,X = ∅, then (e) is true. Otherwise, for each x ∈ (X∩V )\IK,D,X ,

by assumption, we have

{θY } = V ′ ≤(3)

intC B(x, x).

Thus, B(x, x) ⊂ V ′ + intC. Since V ′ − intC is open, there exists t > 0 such that

B(x, x)− tk ⊂ V ′ + intC, which implies that 0 < t ≤ (S
(3)
k,V ′ ◦B)(x, x) = A(x)(x).

Therefore, in the same way as the proof of Theorem 3.3, we obtain there exists

x̂ ∈ K such that A(x̂, y) = (S
(3)
k,V ′ ◦ B)(x̂, y) ≤ 0 for all y ∈ D. By the definition of

S
(3)
k,V ′ and Proposition 2.7, for each y ∈ D and s > 0,

B(x̂, y) ̸⊆ {θY }+ sk + C.

By ∪s>0(sk + C) = intC, we obtain {θY } ̸≤(3)

intC B(x̂, y). Thus,

ψ(y) ̸≤(3)

intC F (x̂, y)− F (x̂, θE).

Corollary 4.4. Let E be a real topological vector space, Y an ordered topological

vector space with ordering cone C, X a non-empty compact convex subset of E,

θE ∈ X and F a set-valued map from X × E to 2Y \ {∅} satisfying the following

conditions:

(1) F is compact-valued;

(2) for every x ∈ X, F (x, ·) is type (3) C-concave in E and F (x, θE) = {θY };
(3) for every y ∈ E, F (·, y) is C-upper continuous in X:

(4) for every x ∈ X such that X \ ∪λ>0λ(x−X) ̸= ∅, one has

{θY } ≤(3)

intC F (x, x).

Then, there exists x̂ ∈ X such that {θY } ̸≤(3)

intC F (x̂, y) for all y ∈ X.

The conclusion has the form {θY } ̸≤(3)

intC F (x̂, y), that is, the reverse form of

assumption (4) in Corollary 4.4.
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4.2. Observation for the cases (ii) and (iii)

On the other hand, the cases (ii) and (iii) don’t give us naturally assumptions

that reach each consequence. Specifically, in order to use Propositions 2.8 and

2.10, suitable four assumptions for the case (ii) (resp., (iii)), which correspond to

assumptions (1), (2), (3) and (4) in Corollary 4.4, are expected to be compact-valued,

type (5) (resp., type (3)) (−C)-concavity, C-lower (resp., C-upper ) continuity, and
F (x, x) ̸≤(5)

C {θY } (resp., F (x, x) ̸≤(3)
C {θY }). However, we can indicate the following

example which satisfies those conditions but doesn’t deduce the consequence for the

cases (ii) nor (iii).

Example 4.5. Let X := [−1, 1] ⊂ R, C := R2
+, F : X × X → R2 defined as

F (x, y) := {(y, 1−2y)} for every x, y ∈ X. Then, F is a compact-valued map, F (x, ·)
is type (j) (−C)-concave and F (x, 0) = {(0, 0)} for every x ∈ X and j = 3, 5, F (·, y)
is C-lower and C-upper continuous for every y ∈ X. {x ∈ X | X \ ∪λ>0λ(x−X) ̸=
∅} = {−1, 1}, also we have F (−1,−1) = {(−1, 1

2
)} ̸≤(j)

C {(0, 0)} and F (1, 1) =

{(1,−1)} ̸≤(j)
C {(0, 0)} for each j = 3, 5. However, for every x ∈ X, there is y ∈ X

such that F (x, y) ̸⊂ −C, that is, there is no x̂ ∈ X such that F (x̂, y) ≤(j)
C {(0, 0)}

for all y ∈ X and j = 3, 5.
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