MAPS ON THE SPHERE OF THE ALGEBRAS OF MATRICES

OSAMU HATORI

Abstract

Let S_{n} be the unit sphere with respect to the operator norm of the algebra of $n \times n$ complex matrices. We give a complete description of the form of surjections on S_{n} which preserve the metric induced by a unitarily invariant strictly convex norm.

1. Introduction and statement of the main result

The celebrated Mazur-Ulam theorem asserts that every surjective isometry between normed spaces is automatically affine. It is natural to consider isometries between certain subsets of normed spaces. A local Mazur-Ulam theorem due to Mankiewicz [1] states that every isometry between connected open subsets of normed spaces has a unique isometric extension. Tingley [4] proposed the problem if a surjective isometry between spheres in normed spaces is affine. Several attempts are done for the problem, but the problem seems to be still open. This paper concerns with a problem in the same vein. Although the main theorem of the paper is not even a partial answer to the Tingley problem, the author believes that the proof of it gives an ingredient for the future development of the problem.

Let n be a positive integer. Throughout the paper $M_{n}(\mathbb{C})$ denotes the algebra of all complex matrices of the degree n. A norm $\|\cdot\|$ on $M_{n}(\mathbb{C})$ is called unitarily invariant if $\left\|V A V^{\prime}\right\|=\|A\|$ for every $A \in M_{n}(\mathbb{C})$ and any unitary matrices V and V^{\prime}. For $A \in M_{n}(\mathbb{C}), A^{*}$ is the adjoint of $A ; A^{\mathrm{tr}}$ is the transpose of A, \bar{A} is the matrix whose entries are the complex conjugate of the corresponding one's. It is well known that for a unitarily invariant norm $\|\cdot\|$ on $M_{n}(\mathbb{C}),\|A\|=\left\|A^{*}\right\|=\left\|A^{\text {tr }}\right\|=\|\bar{A}\|$ for every $A \in M_{n}(\mathbb{C})$. The Schatten p-norm $(1 \leq p<\infty)\|\cdot\|_{p}$ on $M_{n}(\mathbb{C})$ is defined by $\|A\|_{p}=\left(\sum_{j=1}^{n}\left|s_{j}\right|^{p}\right)^{\frac{1}{p}}$ for $A \in M_{n}(\mathbb{C})$ with the singular-values $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$ for A. Note that $\|\cdot\|_{p}$ for $1 \leq p<\infty$ is unitarily invariant. A matrix is considered as the bounded operator on the Euclidean n-space \mathbb{C}^{n} with the usual Euclidean

[^0]norm $\|\cdot\|_{E}$ defined by $\|x\|_{E}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$. The norm $\|A\|_{\infty}$ for $A \in M_{n}(\mathbb{C})$ denotes the operator norm of A as the bounded operator on $\left(\mathbb{C}^{n},\|\cdot\|_{E}\right)$. It is well known that $\|A\|_{\infty}$ coincides with the largest singular value of A. The norm $\|\cdot\|$ on a normed space is called strictly convex if $x=y$ whenever $\|x\|=\|y\|=\frac{1}{2}\|x+y\|$. A norm $\|\cdot\|$ on a normed space is called uniformly convex if for every $0<\varepsilon \leq 2$ there exists a $\delta>0$ so that for any x and y with $\|x\|=\|y\|=1$, the condition $\|x+y\| \geq 2(1-\delta)$ implies $\|x-y\| \leq \varepsilon$. Note that a uniformly convex norm is strictly convex. Note also that $\|\cdot\|_{p}(1<p<\infty)$ is uniformly convex for every $1<p<\infty[2]$, hence it is strictly convex. On the other hand $\|\cdot\|_{\infty}$ is not strictly convex.

Let

$$
S_{n}=\left\{A \in M_{n}(\mathbb{C}):\|A\|_{\infty}=1\right\}
$$

the unit sphere of $M_{n}(\mathbb{C})$ with respect to $\|\cdot\|_{\infty}$. Suppose that V and V^{\prime} are unitary matrices and a map $T: S_{n} \rightarrow S_{n}$ is defined by one of the following;
(1) $T(A)=V A V^{\prime}, \quad A \in S_{n}$,
(2) $T(A)=V A^{*} V^{\prime}, \quad A \in S_{n}$,
(3) $T(A)=V A^{\operatorname{tr}} V^{\prime}, \quad A \in S_{n}$,
(4) $T(A)=V \bar{A} V^{\prime}, \quad A \in S_{n}$.

Then T is a surjective isometry with respect to any unitarily invariant norm. For the converse statement we have

Theorem 1. Let $\|\cdot\|$ be a unitarily invariant norm on $M_{n}(\mathbb{C})$. Suppose that $\|\cdot\|$ is strictly convex. Suppose that $T: S_{n} \rightarrow S_{n}$ is a surjective isometry with respect to $\|\cdot\|$. Then there exist unitary matrices V and V^{\prime} such that one of the following holds.
(1) $T(A)=V A V^{\prime}, \quad A \in S_{n}$,
(2) $T(A)=V A^{*} V^{\prime}, \quad A \in S_{n}$,
(3) $T(A)=V A^{\operatorname{tr}} V^{\prime}, \quad A \in S_{n}$,
(4) $T(A)=V \bar{A} V^{\prime}, \quad A \in S_{n}$.

As the Schatten p-norm is strictly convex for $1<p<\infty$ we have
Corollary 2. Let $1<p<\infty$. Suppose that $T: S_{n} \rightarrow S_{n}$ is a surjective isometry with respect to the Schatten p-norm. Then there exist unitary matrices V and V^{\prime} such that one of the following holds.
(1) $T(A)=V A V^{\prime}, \quad A \in S_{n}$,
(2) $T(A)=V A^{*} V^{\prime}, \quad A \in S_{n}$,
(3) $T(A)=V A^{\text {tr }} V^{\prime}, \quad A \in S_{n}$,
(4) $T(A)=V \bar{A} V^{\prime}, \quad A \in S_{n}$.

2. A condition of commutativity

For a normed real-linear space $(X,\|\cdot\|)$, the sphere with the centre $a \in X$ with the radius $r>0$ is denoted by $\mathbb{S}_{r}(a)=\{x \in X \mid\|x-a\|=r\}$.

Lemma 3. Let X be a real normed space with a strictly convex norm $\|\cdot\|$. Let a and b be different points in X. Put $\|a-b\|=2 r$. Then $\mathbb{S}_{r}(a) \cap \mathbb{S}_{r}(b)=\left\{\frac{a+b}{2}\right\}$.

Proof. It is straightforward that $\frac{a+b}{2} \in \mathbb{S}_{r}(a) \cap \mathbb{S}_{r}(b)$.
Conversely let $c \in \mathbb{S}_{r}(a) \cap \mathbb{S}_{r}(b)$ be arbitrary. Suppose that $c \neq \frac{a+b}{2}$. Since $\left\|\frac{a+b}{2}-a\right\|=\|c-a\|=r$ and $\frac{a+b}{2}-a \neq c-a$ we have

$$
\left\|\left(\frac{a+b}{2}-a\right)+(c-a)\right\|<2 r
$$

as $\|\cdot\|$ is strictly covex. In the same way we have

$$
\left\|\left(\frac{a+b}{2}-b\right)+(c-b)\right\|<2 r .
$$

Adding the both of the inequalities and applying the triangle inequality we have

$$
4 r=2\|a-b\| \leq\left\|\left(\frac{a+b}{2}-a\right)+(c-a)\right\|+\left\|\left(\frac{a+b}{2}-b\right)+(c-b)\right\|<4 r
$$

which is a contradiction. Thus we have $c=\frac{a+b}{2}$.
Proof of Theorem 1. Let \mathbb{U}_{n} be the group of all unitary matrices in $M_{n}(\mathbb{C})$, which we call the unitary group. The operator norm of a unitary matrix is 1 , so that $\mathbb{U}_{n} \subset S_{n}$.

Let $A \in S_{n} \backslash \mathbb{U}_{n}$. Let $A=U_{A}|A|$ be the polar decomposition of A, where $|A|$ is the positive part and U_{A} is the unitary part of A as usual. As A is not unitary, $|A| \neq E$, where E is the identity matrix. The norm $\|A\|_{\infty}$ coincides with the largest singular value of A, hence it equals to 1 . Thus the largest singular value of $|A|^{2}$ is 1 , so $E-|A|^{2}$ is positive semidefinite, and $\left(E-|A|^{2}\right)^{\frac{1}{2}}$ is a well defined. As $|A| \neq E$, we have $|A|^{2} \neq E$ and $\left(E-|A|^{2}\right)^{\frac{1}{2}}$ is a non-zero matrix. Then

$$
U_{0}=|A|+i\left(E-|A|^{2}\right)^{\frac{1}{2}}
$$

is well defined and U_{0} is a unitary matrix. We have $U_{0}^{*}=|A|-i\left(E-|A|^{2}\right)^{\frac{1}{2}}$ and $U_{0} \neq U_{0}^{*}$ since $\left(E-|A|^{2}\right)^{\frac{1}{2}} \neq 0$. Letting $U_{1}=U_{A} U_{0}$ and $U_{2}=U_{A} U_{0}^{*}$ we have different unitary matrices U_{1} and U_{2} with

$$
A=U_{A}|A|=\frac{U_{1}+U_{2}}{2}
$$

Next we prove that $T(A) \in S_{n} \backslash \mathbb{U}_{n}$. Since U_{1} and U_{2} are different we have $\left\|U_{1}-U_{2}\right\|=2 r \neq 0$. Then by Lemma $3 \mathbb{S}_{r}\left(U_{1}\right) \cap \mathbb{S}_{r}\left(U_{2}\right)=\{A\}$, where $\mathbb{S}_{r}(B)=$
$\left\{X \in M_{n}(\mathbb{C}):\|X-B\|=r\right\}$. As T is isometric with respect to $\|\cdot\|$ we have $T(A) \in \mathbb{S}_{r}\left(T\left(U_{1}\right)\right) \cap \mathbb{S}_{r}\left(T\left(U_{2}\right)\right)$. By Lemma 3

$$
T(A)=\frac{T\left(U_{1}\right)+T\left(U_{2}\right)}{2}
$$

Note that $T\left(U_{1}\right) \neq T\left(U_{2}\right)$ as T is injective. Suppose that $T(A) \in \mathbb{U}_{n}$. Choose any vector $x \in \mathbb{C}^{n}$ with $\|x\|_{E}=1$. As $T(A)$ is assumed to be unitary we have

$$
\begin{aligned}
& 2=\|2 T(A) x\|_{E}=\left\|T\left(U_{1}\right) x+T\left(U_{2}\right) x\right\|_{E} \leq\left\|T\left(U_{1}\right) x\right\|_{E}+\left\|T\left(U_{2}\right) x\right\|_{E} \\
& \leq\left\|T\left(U_{1}\right)\right\|_{\infty}+\left\|T\left(U_{2}\right)\right\|_{\infty}=2 .
\end{aligned}
$$

Hence $\left\|T\left(U_{1}\right) x+T\left(U_{2}\right) x\right\|_{E}=2$ and $\left\|T\left(U_{1}\right) x\right\|_{E}=\left\|T\left(U_{2}\right) x\right\|_{E}=1$. By the parallelogram law

$$
\left\|T\left(U_{1}\right) x+T\left(U_{2}\right) x\right\|^{2}+\left\|T\left(U_{1}\right) x-T\left(U_{2}\right) x\right\|^{2}=2\left\|T\left(U_{1}\right) x\right\|^{2}+2\left\|T\left(U_{2}\right) x\right\|^{2}
$$

we infer that $T\left(U_{1}\right) x=T\left(U_{2}\right) x$. As this equation holds for every $x \in \mathbb{C}^{n}$ with $\|x\|_{E}=1$, we have that $T\left(U_{1}\right)=T\left(U_{2}\right)$, which is a contradiction proving that $T(A)$ is not unitary. Hence we have that $T\left(S_{n} \backslash \mathbb{U}_{n}\right) \subset S_{n} \backslash \mathbb{U}_{n}$.

Applying the similar argument for T^{-1} instead of T we see that $T^{-1}\left(S_{n} \backslash \mathbb{U}_{n}\right) \subset$ $S_{n} \backslash \mathbb{U}_{n}$. It follows that $T\left(S_{n} \backslash \mathbb{U}_{n}\right)=S_{n} \backslash \mathbb{U}_{n}$, hence $T\left(\mathbb{U}_{n}\right)=\mathbb{U}_{n}$.

We obtain the surjection $\left.T\right|_{\mathbb{U}_{n}}: \mathbb{U}_{n} \rightarrow \mathbb{U}_{n}$ and $\left.T\right|_{\mathbb{U}_{n}}$ is an isometry with respect to $\|\cdot\|$. Then by a theorem of Molnár [3, Theorem 3] there exist $V, V^{\prime} \in \mathbb{U}_{n}$ such that T is of one of the following forms:
(i) $T(U)=V U V^{\prime}, \quad U \in \mathbb{U}_{n}$,
(ii) $T(U)=V U^{*} V^{\prime}, \quad U \in \mathbb{U}_{n}$,
(iii) $T(U)=V U^{\mathrm{tr}} V^{\prime}, \quad U \in \mathbb{U}_{n}$,
(iv) $T(U)=V \bar{U} V^{\prime}, \quad U \in \mathbb{U}_{n}$.

Let $A \in S_{n} \backslash \mathbb{U}_{n}$. Then by the first part of the proof there exist unitaries U_{1} and U_{2} with $A=\frac{U_{1}+U_{2}}{2}$ and $T(A)=\frac{T\left(U_{1}\right)+T\left(U_{2}\right)}{2}$. Suppose that T has the form (i) above. Then

$$
T(A)=\frac{T\left(U_{1}\right)+T\left(U_{2}\right)}{2}=\frac{V U_{1} V^{\prime}+V U_{2} V^{\prime}}{2}=V \frac{U_{1}+U_{2}}{2} V^{\prime}=V A V^{\prime} .
$$

By the same way for the rest of the case (ii), (iii) and (iv) we have that $T(A)=$ $V A^{*} V^{\prime}$ for (ii), $T(A)=V A^{\text {tr }} V^{\prime}$ for (iii) and $T(A)=V \bar{A} V^{\prime}$ for (iv). It follows that T has of the one of the form of (1), (2), (3) or (4) of the statement of Theorem 1.

References

[1] P. Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 367-371.
[2] C. A. McCarthy, C_{p}, Israel J. Math. 5 (1967), 249-271.
[3] L. Molnár, Jordan triple endomorphisms and isometries of unitary groups, Linear Algebra Appl. 439 (2013), 3518-3531.
[4] D. Tingley, Isometries of the unit sphere, Geom. Dedicata 22 (1987), 371-378.
Department of Mathematics, Faculty of Science, Niigata University, 950-2181 Niigata, Japan
E-mail address: hatori@math.sc.niigata-u.ac.jp

Received October 27, 2015
Revised November 5, 2015

[^0]: 2010 Mathematics Subject Classification. Primary 15A60; Secondary 15A86,46B04.
 Key words and phrases. Isometry, sphere, algebra of matrices, unitarily invariant norm, strictly convex norm.

