
Nihonkai Math. J.
Vol.26(2015), 121–125

MAPS ON THE SPHERE OF THE ALGEBRAS OF
MATRICES

OSAMU HATORI

Abstract. Let Sn be the unit sphere with respect to the operator norm of the

algebra of n × n complex matrices. We give a complete description of the form

of surjections on Sn which preserve the metric induced by a unitarily invariant

strictly convex norm.

1. Introduction and statement of the main result

The celebrated Mazur-Ulam theorem asserts that every surjective isometry be-

tween normed spaces is automatically affine. It is natural to consider isometries

between certain subsets of normed spaces. A local Mazur-Ulam theorem due to

Mankiewicz [1] states that every isometry between connected open subsets of normed

spaces has a unique isometric extension. Tingley [4] proposed the problem if a sur-

jective isometry between spheres in normed spaces is affine. Several attempts are

done for the problem, but the problem seems to be still open. This paper concerns

with a problem in the same vein. Although the main theorem of the paper is not

even a partial answer to the Tingley problem, the author believes that the proof of

it gives an ingredient for the future development of the problem.

Let n be a positive integer. Throughout the paper Mn(C) denotes the algebra

of all complex matrices of the degree n. A norm ∥ · ∥ on Mn(C) is called unitarily

invariant if ∥V AV ′∥ = ∥A∥ for every A ∈ Mn(C) and any unitary matrices V and

V ′. For A ∈ Mn(C), A∗ is the adjoint of A; Atr is the transpose of A, Ā is the matrix

whose entries are the complex conjugate of the corresponding one’s. It is well known

that for a unitarily invariant norm ∥ · ∥ on Mn(C), ∥A∥ = ∥A∗∥ = ∥Atr∥ = ∥Ā∥ for

every A ∈ Mn(C). The Schatten p-norm (1 ≤ p < ∞) ∥ · ∥p on Mn(C) is defined by

∥A∥p = (
∑n

j=1 |sj|p)
1
p for A ∈ Mn(C) with the singular-values s1 ≥ s2 ≥ · · · ≥ sn

for A. Note that ∥ · ∥p for 1 ≤ p < ∞ is unitarily invariant. A matrix is considered

as the bounded operator on the Euclidean n-space Cn with the usual Euclidean
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norm ∥ · ∥E defined by ∥x∥E = (
∑n

j=1 |xj|2)
1
2 for x = (x1, . . . , xn) ∈ Cn. The norm

∥A∥∞ for A ∈ Mn(C) denotes the operator norm of A as the bounded operator on

(Cn, ∥ · ∥E). It is well known that ∥A∥∞ coincides with the largest singular value of

A. The norm ∥ · ∥ on a normed space is called strictly convex if x = y whenever

∥x∥ = ∥y∥ = 1
2
∥x+ y∥. A norm ∥ · ∥ on a normed space is called uniformly convex if

for every 0 < ε ≤ 2 there exists a δ > 0 so that for any x and y with ∥x∥ = ∥y∥ = 1,

the condition ∥x+ y∥ ≥ 2(1− δ) implies ∥x− y∥ ≤ ε. Note that a uniformly convex

norm is strictly convex. Note also that ∥ · ∥p (1 < p < ∞) is uniformly convex for

every 1 < p < ∞ [2], hence it is strictly convex. On the other hand ∥ · ∥∞ is not

strictly convex.

Let

Sn = {A ∈ Mn(C) : ∥A∥∞ = 1},

the unit sphere of Mn(C) with respect to ∥ · ∥∞. Suppose that V and V ′ are unitary

matrices and a map T : Sn → Sn is defined by one of the following;

(1) T (A) = V AV ′, A ∈ Sn,

(2) T (A) = V A∗V ′, A ∈ Sn,

(3) T (A) = V AtrV ′, A ∈ Sn,

(4) T (A) = V ĀV ′, A ∈ Sn.

Then T is a surjective isometry with respect to any unitarily invariant norm. For

the converse statement we have

Theorem 1. Let ∥ · ∥ be a unitarily invariant norm on Mn(C). Suppose that ∥ · ∥
is strictly convex. Suppose that T : Sn → Sn is a surjective isometry with respect

to ∥ · ∥. Then there exist unitary matrices V and V ′ such that one of the following

holds.

(1) T (A) = V AV ′, A ∈ Sn,

(2) T (A) = V A∗V ′, A ∈ Sn,

(3) T (A) = V AtrV ′, A ∈ Sn,

(4) T (A) = V ĀV ′, A ∈ Sn.

As the Schatten p-norm is strictly convex for 1 < p < ∞ we have

Corollary 2. Let 1 < p < ∞. Suppose that T : Sn → Sn is a surjective isometry

with respect to the Schatten p-norm. Then there exist unitary matrices V and V ′

such that one of the following holds.

(1) T (A) = V AV ′, A ∈ Sn,

(2) T (A) = V A∗V ′, A ∈ Sn,

(3) T (A) = V AtrV ′, A ∈ Sn,

(4) T (A) = V ĀV ′, A ∈ Sn.
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2. A condition of commutativity

For a normed real-linear space (X, ∥ · ∥), the sphere with the centre a ∈ X with

the radius r > 0 is denoted by Sr(a) = {x ∈ X|∥x− a∥ = r}.

Lemma 3. Let X be a real normed space with a strictly convex norm ∥ · ∥. Let a

and b be different points in X. Put ∥a− b∥ = 2r. Then Sr(a) ∩ Sr(b) = {a+b
2
}.

Proof. It is straightforward that a+b
2

∈ Sr(a) ∩ Sr(b).

Conversely let c ∈ Sr(a) ∩ Sr(b) be arbitrary. Suppose that c ̸= a+b
2
. Since∥∥a+b

2
− a

∥∥ = ∥c− a∥ = r and a+b
2

− a ̸= c− a we have∥∥∥∥(a+ b

2
− a

)
+ (c− a)

∥∥∥∥ < 2r

as ∥ · ∥ is strictly covex. In the same way we have∥∥∥∥(a+ b

2
− b

)
+ (c− b)

∥∥∥∥ < 2r.

Adding the both of the inequalities and applying the triangle inequality we have

4r = 2∥a− b∥ ≤
∥∥∥∥(a+ b

2
− a

)
+ (c− a)

∥∥∥∥+

∥∥∥∥(a+ b

2
− b

)
+ (c− b)

∥∥∥∥ < 4r,

which is a contradiction. Thus we have c = a+b
2
. □

Proof of Theorem 1. Let Un be the group of all unitary matrices in Mn(C), which
we call the unitary group. The operator norm of a unitary matrix is 1, so that

Un ⊂ Sn.

Let A ∈ Sn \ Un. Let A = UA|A| be the polar decomposition of A, where |A| is
the positive part and UA is the unitary part of A as usual. As A is not unitary,

|A| ̸= E, where E is the identity matrix. The norm ∥A∥∞ coincides with the largest

singular value of A, hence it equals to 1. Thus the largest singular value of |A|2 is 1,
so E − |A|2 is positive semidefinite, and (E − |A|2) 1

2 is a well defined. As |A| ̸= E,

we have |A|2 ̸= E and (E − |A|2) 1
2 is a non-zero matrix. Then

U0 = |A|+ i(E − |A|2)
1
2

is well defined and U0 is a unitary matrix. We have U∗
0 = |A| − i(E − |A|2) 1

2 and

U0 ̸= U∗
0 since (E−|A|2) 1

2 ̸= 0. Letting U1 = UAU0 and U2 = UAU
∗
0 we have different

unitary matrices U1 and U2 with

A = UA|A| =
U1 + U2

2
.

Next we prove that T (A) ∈ Sn \ Un. Since U1 and U2 are different we have

∥U1 − U2∥ = 2r ̸= 0. Then by Lemma 3 Sr(U1) ∩ Sr(U2) = {A}, where Sr(B) =

— 123 —



{X ∈ Mn(C) : ∥X − B∥ = r}. As T is isometric with respect to ∥ · ∥ we have

T (A) ∈ Sr(T (U1)) ∩ Sr(T (U2)). By Lemma 3

T (A) =
T (U1) + T (U2)

2
.

Note that T (U1) ̸= T (U2) as T is injective. Suppose that T (A) ∈ Un. Choose any

vector x ∈ Cn with ∥x∥E = 1. As T (A) is assumed to be unitary we have

2 = ∥2T (A)x∥E = ∥T (U1)x+ T (U2)x∥E ≤ ∥T (U1)x∥E + ∥T (U2)x∥E
≤ ∥T (U1)∥∞ + ∥T (U2)∥∞ = 2.

Hence ∥T (U1)x + T (U2)x∥E = 2 and ∥T (U1)x∥E = ∥T (U2)x∥E = 1. By the paral-

lelogram law

∥T (U1)x+ T (U2)x∥2 + ∥T (U1)x− T (U2)x∥2 = 2∥T (U1)x∥2 + 2∥T (U2)x∥2

we infer that T (U1)x = T (U2)x. As this equation holds for every x ∈ Cn with

∥x∥E = 1, we have that T (U1) = T (U2), which is a contradiction proving that T (A)

is not unitary. Hence we have that T (Sn \ Un) ⊂ Sn \ Un.

Applying the similar argument for T−1 instead of T we see that T−1(Sn \ Un) ⊂
Sn \ Un. It follows that T (Sn \ Un) = Sn \ Un, hence T (Un) = Un.

We obtain the surjection T |Un : Un → Un and T |Un is an isometry with respect to

∥ · ∥. Then by a theorem of Molnár [3, Theorem 3] there exist V, V ′ ∈ Un such that

T is of one of the following forms:

(i) T (U) = V UV ′, U ∈ Un,

(ii) T (U) = V U∗V ′, U ∈ Un,

(iii) T (U) = V U trV ′, U ∈ Un,

(iv) T (U) = V ŪV ′, U ∈ Un.

Let A ∈ Sn \ Un. Then by the first part of the proof there exist unitaries U1 and

U2 with A = U1+U2

2
and T (A) = T (U1)+T (U2)

2
. Suppose that T has the form (i) above.

Then

T (A) =
T (U1) + T (U2)

2
=

V U1V
′ + V U2V

′

2
= V

U1 + U2

2
V ′ = V AV ′.

By the same way for the rest of the case (ii), (iii) and (iv) we have that T (A) =

V A∗V ′ for (ii), T (A) = V AtrV ′ for (iii) and T (A) = V ĀV ′ for (iv). It follows that T

has of the one of the form of (1), (2), (3) or (4) of the statement of Theorem 1. □
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