COMMUTING PAIRS OF NORMAL OPERATORS

OSAMU HATORI

ABSTRACT. We give a condition on commutativity of a pair of normal operators with respect to the continuous functional calculus. We show a generalization of the theorem of Fuglede and Putnum with respect to the continuous functional calculus.

1. Introduction

Among the several conditions characterizing commutativity of C^* -algebras from various points of view [1, 2, 5, 6, 7, 8, 11, 12, 13] we mention Jeang and Ko [5] gave a characterization of commutativity of C^* -algebras with respect to the continuous functional calculus. The author gives a condition of commutativity of self-adjoint operators with respect to the continuous functional calculus in [4, Corollary 3.2].

In this paper we study conditions on commutativity for normal operators with respect to the continuous functional calculus. We also show a generalization of the famous commutativity theorem of Fuglede and Putnam.

Throughout the paper an operator means a bounded linear operator on a complex Hilbert space. The complex plane is denoted by \mathbb{C} and \mathbb{R} denotes the set of all real numbers. The spectrum of an operator a is denoted by $\sigma(a)$.

2. A condition of commutativity

Proposition 2.1. Let Ω be a domain in \mathbb{C} . Suppose that a function $f : \Omega \to \mathbb{C}$ is continuous but not analytic. Then there exists $z_0 \in \Omega$, $\varepsilon_0 > 0$ and a positive integer n_0 such that; 1) $\{z_0 + w + z : w \in \mathbb{C} \text{ with } |w| \leq 1/n_0 \text{ and } z \in \mathbb{C} \text{ with } |z| \leq \varepsilon_0\} \subset \Omega$: 2) there exists a sequence $\{s_m\}$ of complex linear combinations of constant functions and the functions of the form

$$\{z \in \mathbb{C} : |z| \le \varepsilon_0\} \ni z \mapsto f(z_0 + w + \alpha z)$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47B15; Secondary 15A27.

Key words and phrases. The theorem of Fuglede-Putnam, normal elements, commutativity.

with $w \in \mathbb{C}$, $|w| \leq 1/n_0$ and $\alpha \in \mathbb{R} \cup i\mathbb{R}$, $|\alpha| < 1$ such that $s_m(z)$ uniformly converges to \bar{z} on $\{z \in \mathbb{C} : |z| \leq \varepsilon_0\}$. Moreover, if u is a normal operator with $||u|| \leq \varepsilon_0$, then $s_m(u)$ is well defined and $\lim s_m(u) = u^*$.

Proof. Since f is not analytic there exists a point $z_1 \in \Omega$ such that f is not analytic on any neighbourhood of z_1 . We can choose a sufficiently small $\varepsilon_1 > 0$ such that $\{z \in \mathbb{C} : |z - z_1| \leq 2\varepsilon_1\} \subset \Omega$. Let $\omega : \mathbb{C} \to \mathbb{R}$ be a continuously differentiable (with respect to $x = \operatorname{Re} w$ and $y = \operatorname{Im} w$ for $w \in \mathbb{C}$) function such that $\omega \geq 0$ on \mathbb{C} , $\omega(w) = 0$ for $|w| \geq 1$, and

$$\int_{|w| \le 1} \omega(w) dx dy = 1.$$

For a positive integer n put

$$\omega_n(w) = n^2 \omega(nw), w \in \mathbb{C}.$$

Then ω_n is a continuously differentiable function such that $\omega_n \ge 0$ on \mathbb{C} , $\omega_n(w) = 0$ for $|w| \ge 1/n$ and

$$\int_{|w| \le 1/n} \omega_n(w) dx dy = 1.$$

For a sufficiently large n

$$F_n(z) = \int_{|w| \le 1/n} f(z - w)\omega_n(w)dxdy, \quad z \in \{z \in \mathbb{C} : |z - z_1| \le 2\varepsilon_1\}$$

is well defined and continuously differentiable on $\{z \in \mathbb{C} : |z - z_1| < 2\varepsilon_1\}$. It is easy to see that F_n uniformly converges to f on $\{z \in \mathbb{C} : |z - z_1| \leq \varepsilon_1\}$ as n tends to infinity. Since f is not analytic on $\{z : |z - z_1| < \varepsilon_1\}$, there exists a positive integer n_0 such that F_{n_0} is not analytic on $\{z : |z - z_1| < \varepsilon_1\}$. Hence there exists a $z_0 \in \mathbb{C}$ with $|z_0 - z_1| < \varepsilon_1$ such that $\frac{\partial F_{n_0}}{\partial \overline{z}}(z_0) \neq 0$. Choose an arbitrary positive real number ε_0 with $2\varepsilon_0 < \varepsilon_1 - |z_1 - z_0|$. As F_{n_0} is continuously differentiable on $\{z : |z - z_1| < 2\varepsilon_1\}$ we have that $(F_{n_0}(z_0 + \delta z) - F_{n_0}(z_0))/\delta$ uniformly converges to $\frac{\partial F_{n_0}}{\partial x}(z_0) \operatorname{Re} z + \frac{\partial F_{n_0}}{\partial y}(z_0) \operatorname{Im} z$ on $\{z : |z| \leq \varepsilon_0\}$ as $1 > \delta \to 0$. We also have that $(F_{n_0}(z_0 + i\delta z) - F_{n_0}(z_0))/\delta$ uniformly converges to $\frac{\partial F_{n_0}}{\partial x}(z_0)(-\operatorname{Im} z) + \frac{\partial F_{n_0}}{\partial y}(z_0) \operatorname{Re} z$ on $\{z : |z| \leq \varepsilon_0\}$ as $1 > \delta \to 0$. We denote $||g|| = \sup_{|z| \leq \varepsilon_0} |g(z)|$ for a complex-valued function g(z) on $\{z : |z| \leq \varepsilon_0\}$. Let $\epsilon > 0$ be arbitrary. Then there exists $0 < \delta_{\epsilon} < 1$ such that

$$\left\|\frac{F_{n_0}(z_0+\delta_{\epsilon}z)-F_{n_0}(z_0)}{\delta_{\epsilon}}+i\frac{F_{n_0}(z_0+i\delta_{\epsilon}z)-F_{n_0}(z_0)}{\delta_{\epsilon}}-2\frac{\partial F_{n_0}}{\partial \bar{z}}(z_0)\bar{z}\right\|<\epsilon,$$

as

$$\begin{pmatrix} \frac{\partial F_{n_0}}{\partial x}(z_0) \operatorname{Re} z + \frac{\partial F_{n_0}}{\partial y}(z_0) \operatorname{Im} z \end{pmatrix} + i \left(\frac{\partial F_{n_0}}{\partial x}(z_0)(-\operatorname{Im} z) + \frac{\partial F_{n_0}}{\partial y}(z_0) \operatorname{Re} z \right)$$
$$= 2 \frac{\partial F_{n_0}}{\partial \bar{z}}(z_0) \bar{z}.$$

By the definition of F_{n_0} the Riemann sum for the integral which defines F_{n_0} uniformly converges to F_{n_0} on $\{z : |z - z_1| \le \varepsilon_1\}$ hence on $\{z : |z - z_0| \le \varepsilon_0\}$. Therefore there exists a t_{ϵ} of the complex linear combination of a constant and the functions of the form

$$z \mapsto f(z_0 + w + z)$$

on $\{z : |z| \le \varepsilon_0\}$ for $|w| \le 1/n_0$ such that

$$\|F_{n_0}(z_0+z)-t_{\epsilon}(z)\|<\delta_{\epsilon}\epsilon.$$

As $0 < \delta_{\epsilon} < 1$ we have

$$\begin{split} & \left\| \frac{t_{\epsilon}(\delta_{\epsilon}z) - F_{n_{0}}(z_{0})}{\delta_{\epsilon}} + i\frac{t_{\epsilon}(i\delta_{\epsilon}z) - F_{n_{0}}(z_{0})}{\delta_{\epsilon}} - 2\frac{\partial F_{n_{0}}}{\partial \bar{z}}(z_{0})\bar{z} \right\| \\ & \leq \left\| \frac{F_{n_{0}}(z_{0} + \delta_{\epsilon}z) - F_{n_{0}}(z_{0})}{\delta_{\epsilon}} + i\frac{F_{n_{0}}(z_{0} + i\delta_{\epsilon}z) - F_{n_{0}}(z_{0})}{\delta_{\epsilon}} - 2\frac{\partial F_{n_{0}}}{\partial \bar{z}}(z_{0})\bar{z} \right\| \\ & + \left\| \frac{F_{n_{0}}(z_{0} + \delta_{\epsilon}z) - t_{\epsilon}(\delta_{\epsilon}z)}{\delta_{\epsilon}} \right\| + \left\| \frac{F_{n_{0}}(z_{0} + i\delta_{\epsilon}z) - t_{\epsilon}(i\delta_{\epsilon}z)}{\delta_{\epsilon}} \right\| \\ & \leq \epsilon + 2 \left\| \frac{F_{n_{0}}(z_{0} + z) - t_{\epsilon}(z)}{\delta_{\epsilon}} \right\| < 3\epsilon. \end{split}$$

As $\frac{\partial F_{n_0}}{\partial \bar{z}}(z_0) \neq 0$, we obtain that there is a sequence $\{s_m(z)\}$ of complex linear combinations of constant functions and the functions of the form

$$z \mapsto f(z_0 + w + \alpha z)$$

for $|w| \leq 1/n_0$, $\alpha \in \mathbb{R} \cup i\mathbb{R}$ with $|\alpha| < 1$ such that $s_m(z)$ uniformly converges to \bar{z} on $\{z : |z| \leq \varepsilon_0\}$ as $m \to \infty$. In fact, for a positive integer m we may choose $s_m(z)$ as

$$\frac{1}{2\delta_{\frac{1}{m}}\frac{\partial F_{n_0}}{\partial \bar{z}}(z_0)}\left\{\left(t_{\frac{1}{m}}(\delta_{\frac{1}{m}}z) - F_{n_0}(z_0)\right) + i\left(t_{\frac{1}{m}}(i\delta_{\frac{1}{m}}z) - F_{n_0}(z_0)\right)\right\}.$$

Suppose that u is a normal operator with $||u|| \leq \varepsilon_0$. Then $\sigma(u) \subset \{z : |z| \leq \varepsilon_0\}$. Hence $s_m(u)$ is well defined. As $s_m(z)$ uniformly converges to \bar{z} on $\{z : |z| \leq \varepsilon_0\}$ as $m \to \infty$ we have $\lim s_m(u) = u^*$.

Theorem 2.2. Let Ω_j be a domain in \mathbb{C} and $f_j : \Omega_j \to \mathbb{C}$ a non-constant continuous function for j = 1, 2. Let u_j be a normal operator for j = 1, 2. Suppose that

$$f_1(\lambda_1 + \mu_1 u_1) f_2(\lambda_2 + \mu_2 u_2) = f_2(\lambda_2 + \mu_2 u_2) f_1(\lambda_1 + \mu_1 u_1)$$
(1)

holds for every complex number λ_j and $\mu_j \in \mathbb{R} \cup i\mathbb{R}$ with $\sigma(\lambda_j + \mu_j u_j) \subset \Omega_j$ for j = 1, 2. Then $u_1 u_2 = u_2 u_1$.

Proof. Suppose that both of f_1 and f_2 are analytic. Since f_j is not constant, there is a $z_j \in \Omega_j$ with $f'_j(z_j) \neq 0$. For a sufficiently small $\delta > 0$, $\sigma(z_j + \delta u_j) \subset \Omega_j$, hence $f_j(z_j + \delta u_j)$ is well defined. By (1) we infer that

$$((f_1(z_1 + \delta u_1) - f_1(z_1))/\delta)((f_2(z_2 + \delta u_2) - f_2(z_2))/\delta) = ((f_2(z_2 + \delta u_2) - f_2(z_2))/\delta)((f_1(z_1 + \delta u_1) - f_1(z_1))/\delta).$$

Letting $\delta \to 0$ we have

$$f_1'(z_1)u_1f_2'(z_2)u_2 = f_2'(z_2)u_2f_1'(z_1)u_1$$

and $u_1u_2 = u_2u_1$ since $f'_1(z_1) \neq 0$ and $f'_2(z_2) \neq 0$.

Suppose that neither f_1 nor f_2 is analytic. By Proposition 2.1 there exists $z_j \in \Omega_j, \ \varepsilon_j > 0$ and a positive integer n_j such that; 1) $\{z_j + w + z : w \in \mathbb{C} \text{ with } |w| \leq 1/n_j \text{ and } z \in \mathbb{C} \text{ with } |z| \leq \varepsilon_j\} \subset \Omega_j$: 2) there exists a sequence $\{s_m^{(j)}\}$ of complex linear combinations of constant functions and the functions of the form

$$\{z \in \mathbb{C} : |z| \le \varepsilon_j\} \ni z \mapsto f_j(z_j + w + \alpha z) \tag{2}$$

with $w \in \mathbb{C}$, $|w| \leq 1/n_j$ and $\alpha \in \mathbb{R} \cup i\mathbb{R}$, $|\alpha| < 1$ such that $s_m^{(j)}(z)$ uniformly converges to \bar{z} on $\{z \in \mathbb{C} : |z| \leq \varepsilon_j\}$ for j = 1, 2. Choose a $\delta > 0$ so that $||\delta u_j|| \leq \varepsilon_j$ for j = 1, 2. Then $s_m^{(j)}(\delta u_j)$ is well defined and converges to δu_j^* for j = 1, 2. As $s_m^{(j)}$ is a linear combination of the functions of the form $f_j(z_j + w + \alpha \cdot)$ with $|w| \leq 1/n_j$, we infer that

$$s_m^{(1)}(\delta u_1)s_m^{(2)}(\delta u_2) = s_m^{(2)}(\delta u_2)s_m^{(1)}(\delta u_1).$$

Letting $m \to \infty$ we have $\delta u_1^* \delta u_2^* = \delta u_2^* \delta u_1^*$. Hence we have $u_1 u_2 = u_2 u_1$.

Suppose that f_1 (resp. f_2) is analytic and f_2 (resp. f_1) is not. In a way similar to the above we have

$$u_1 u_2^* = u_2^* u_1$$
 (resp. $u_1^* u_2 = u_2 u_1^*$).

By the theorem of Fuglede and Putnam we have that $u_1u_2 = u_2u_1$.

3. A generalization of the theorem of Fuglede and Putnam

The famous theorem of Fuglede and Putnam [3, 9] states that if $u^*a = av^*$ holds for normal operators u and v and an operator a, then ua = av (cf. [10]). The theorem can be restated as follows; if f(u)a = af(v), then ua = av, where fdenotes the complex conjugation; $f(z) = \overline{z}$. Instead of $f(z) = \overline{z}$, for examples, $f(z) = |z|, f(z) = \overline{z}^n \ (n \ge 2), f(z) = \exp \overline{z}$ do not induce the conclusion ua = aveven if f(u)a = af(v) holds. But applying the theorem of Fuglede and Putnam it is not difficult to prove by simple calculations that $f(\lambda + \mu u)a = af(\lambda + \mu v)$ for every pair of complex numbers λ and μ induces that ua = av for the case where f(z) = |z| or $f(z) = \overline{z}^n$ $(n \ge 2)$ or $f(z) = \exp \overline{z}$. Applying Proposition 2.1 we prove that it is the case for any non-constant continuous function f.

Theorem 3.1. Let f be a non-constant complex-valued continuous function on a domain Ω in the complex plane \mathbb{C} . Let a be an operator and u and v normal operators. Suppose that

$$f(\lambda + \mu u)a = af(\lambda + \mu v) \tag{3}$$

holds for every $\lambda \in \mathbb{C}$ and $\mu \in \mathbb{R} \cup i\mathbb{R}$ such that $\sigma(\lambda + \mu u), \ \sigma(\lambda + \mu v) \subset \Omega$. Then we have

$$ua = av.$$

Proof. Suppose that f is analytic. As f is not constant, there is $z_0 \in \Omega$ with $f'(z_0) \neq 0$. In a way similar to the proof of Theorem 2.2 we have that $f'(z_0)ua = af'(z_0)v$. Hence we infer that ua = av.

Suppose that f is not analytic. By Proposition 2.1 there exists a positive integer $n_0, z_0 \in \Omega$, an $\varepsilon_0 > 0$, and a sequence $\{s_m(z)\}$ of complex linear combinations of constant functions and the functions on $\{z \in \mathbb{C} : |z| \le \varepsilon_0\}$ of the form

$$\{z \in \mathbb{C} : |z| \le \varepsilon_0\} \ni z \mapsto f(z_0 + w + \alpha z)$$

with $w \in \mathbb{C}$, $|w| \leq 1/n_0$ and $\alpha \in \mathbb{R} \cup i\mathbb{R}$, $|\alpha| < 1$ such that $\lim s_m(b) = b^*$ for any normal operator b with $||b|| \leq \varepsilon_0$. For the given normal operators u and v, choose a small positive δ with $||\delta u|| \leq \varepsilon_0$ and $||\delta v|| \leq \varepsilon_0$. Then we have by (3) that $s_m(\delta u)a = as_m(\delta v)$. Letting $m \to \infty$ we have $\delta u^*a = a\delta v^*$, so that $u^*a = av^*$. By the theorem of Fuglede and Putnam we conclude that ua = av.

Acknowledgements. The author is greatly indebted to the referee who read the paper carefully. The author records here his sincere appreciation to the referee for his/her comments and advice which have improved the presentation of the paper.

References

- R. Beneduci and L. Molnár, On the standard K-loop structures of positive invertible elements in a C^{*}-algebra, J. Math. Anal. Appl. 420 (2014), 551–562.
- [2] M. J. Crabb, J. Duncan and C. M. McGregor, *Characterizations of commuta*tivity for C^{*}-algebras, Glasgow Math. J. 15 (1974), 172–175.
- B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 35–40.
- [4] O. Hatori, Commuting pairs of self-adjoint elements in C^* -algebras, to appear.
- [5] J.-S. Jeang and C.-C. Ko, On the commutativity of C^{*}-algebras, Manuscripta Math. 115 (2004), 195–198.

- [6] G. Ji and J. Tomiyama, On characterizations of commutativity of C*-algebras, Proc. Amer. Math. Soc. 131 (2003), 3845–3849.
- [7] L. Molnár, A few conditions for a C*-algebra to be commutative, Abstr. Appl. Anal. 2014, Art. ID 705836, 4pp.
- [8] T. Ogasawara, A theorem on operator algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1955), 307–309.
- [9] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357–362.
- [10] M. Rosenblum, On a theorem of Fuglede and Putnam, J. London Math. Soc. 33 (1958), 376–377.
- [11] S. Sherman, Order in operator algebras, Amer. J. Math. **73** (1951), 227–232.
- [12] M. Uchiyama, Commutativity of selfadjoint operators, Pacific J. Math. 161 (1993), 385–392.
- [13] W. Wu, An order characterization of commutativity for C*-algebras, Proc. Amer. Math. Soc. 129 (2001), 983–987.

Department of Mathematics, Faculty of Science, Niigata University, 950-2181 Niigata, Japan *E-mail address*: hatori@math.sc.niigata-u.ac.jp

Received April 10, 2015 Revised August 20, 2015