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THE CONFIGURATION SPACE OF A MODEL FOR
5-MEMBERED STRAIGHT-CHAIN HYDROCARBON

MOLECULES PARAMETRIZED BY CHAIN LENGTHS

SATORU GOTO, KAZUSHI KOMATSU, AND JUN YAGI

Abstract. We provide a mathematical model of n-membered straight-chain hy-

drocarbon molecules. The configuration space of the model is parametrized by

chain lengths. By assuming the bond angle conditions required for hydrocarbon

molecules, we determine the topological types of fibers of the configuration space

of the model by chain lengths when n = 5.

1. Introduction

A straight chain with n vertices is defined to be a graph in R3 with vertices

{v0, v1, . . . , vn−1} and bonds {β1, β2, . . . , βn−1}, where βi connects vi−1 with vi (i =

1, 2, . . . , n−1). A bond angle is defined to be the angle between two adjacent bonds.

The chain length of a straight chain with n vertices {v0, v1, . . . , vn−1} is defined to

be the distance between v0 and vn−1. For simplicity, βi denotes the bond vector

vi − vi−1, where i = 1, 2, . . . , n− 1.

We consider straight chains in R3 with rigidity as a mathematical model of

straight-chain hydrocarbon molecules. Organic synthesis chemists are interested

in lengths of flexible hydrocarbon chains with a straight-chain part because they

have important significance in terms of chemical properties. For instance, it was

reported that the observed lengths of the flexible hydrocarbon chains of receptor

blockers are related directly to their inhibitory effect on the activity of an asthma

chemical mediator ([1]). To detect the change in chain length, we consider the set,

which is called the configuration space, of all such straight chains, and study the

topology of fibers of the configuration space by chain lengths.

Definition 1. We fix θ with 0 ≤ θ < π, and put three vertices v1 = (−1, 0, 0),

v2 = (0, 0, 0), v3 = (− cos θ, sin θ, 0). We define functions fk : (R3)n−3 → R

by fk(v0, v̌1, v̌2, v̌3, v4, . . . , vn−1) = 1
2
(∥βk∥2 − 1) for k = 1, 4, · · · , n − 1, and gk :

(R3)n−3 → R by gk(v0, v̌1, v̌2, v̌3, v4, . . . , vn−1) = ⟨−βk,βk+1⟩ − cos θ for k = 1,
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3, · · · , n − 2, where ⟨ , ⟩ denotes the standard inner product in R3 and ∥ · ∥ the

standard norm ∥x∥ =
√
⟨x,x⟩, and v̌i (i = 1, 2, 3) means that vi removes from

(v0, v1, · · · , vn−1), e.g. (v0, v̌1, v̌2, v̌3, v4) = (v0, v4), (v0, v̌1, v̌2, v̌3, v4, v5) = (v0, v4, v5)

and (v0, v̌1, v̌2, v̌3, v4, v5, v6) = (v0, v4, v5, v6). Then we define the configuration space

M(n) of straight chains with rigidity by the following:

M(n) =


fi(p) = gj(p) = 0

p = (v0, v̌1, v̌2, v̌3, v4, . . . , vn−1) ∈ (R3)n−3 i = 1, 4, · · · , n− 1

j = 1, 3, . . . , n− 2

 .

fi and gj are called rigidity maps, which determine the bond lengths and angles

of any chain in M(n). Note that a straight chain in M(n) is an equilateral and

equiangular straight chain with n vertices and bond lengths 1. The dihedral angle

for three bond vectors βk,βk+1 and βk+2 is the angle between two planes that consist

of the plane spanned by the two vectors βk and βk+1 and the plane spanned by the

two vectors βk+1 and βk+2. Because the straight chains inM(n) are parametrized by

dihedral angles with the angular range of 2π, we see thatM(n) is (n−3)-dimensional

torus T n−3. We consider the fibers of M(n) by chain lengths. For convenience, we

put the bond vector v0 − vn−1 = β0.

Definition 2. We put a positive real number ℓ, and set f ℓ
0 : (R3)n−3 → R by

f ℓ
0(v0, v4, · · · , vn−1) = 1

2
(∥β0∥2 − ℓ). We define the fiber Mℓ(n) of M(n) by the

following:

Mℓ(n) = {p ∈ M(n) | f ℓ
0(p) = 0}.

Note that Mℓ(n) is the set which consists of straight chains in M(n) whose chain

length is ℓ. So we see that M(n) =
∪
ℓ

Mℓ(n). In particular, when ℓ = 1, we

can regard Mℓ(n) as the configuration space of the model of n-membered ringed

hydrocarbon molecules in [2], [3] and [4]. In this paper, we assume that the bond

angle θ is equal to the tetrahedral angle cos−1(−1
3
) which is the standard bond

angle of the saturated carbon atom, and study the topology of the fiber Mℓ(n) of

M(n) = T n−3 for any chain length ℓ. When n = 3, 4, the fiber Mℓ(n) is simple. In

fact, we can easily verify that the topological types of Mℓ(3) of M(3) are one point

set if ℓ =
√

8
3
and the empty set if ℓ ̸=

√
8
3
. And, the topological types of Mℓ(4) of

M(4) = T 1 = S1 are two point set if 5
3
< ℓ <

√
57
3
, one point set if ℓ = 5

3
or

√
57
3

and

the empty set if ℓ < 5
3
or

√
57
3

< ℓ.

When n = 5, we obtain the following theorem:

Theorem 3. Let ℓ be a positive real number. The topological type of the fiber Mℓ(5)

of M(5) = T 2 is given by the following:
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(1) If ℓ = 4
3

√
2
3
or 4

√
2
3
, Mℓ(5) is one point set,

(2) If 4
3

√
2
3
< ℓ < 8

3
or 8

3
< ℓ < 4

√
2
3
, Mℓ(5) is homeomorphic to a circle S1,

(3) If ℓ = 8
3
, Mℓ(5) is homeomorphic to a union of two circles that intersect at

two points,

(4) If ℓ < 4
3

√
2
3
or 4

√
2
3
< ℓ, Mℓ(5) is the empty set.

Remark. Hydrocarbon molecules have three basic structures: ringed chains, straight

chains, and branched chains. In [6], Jun O’Hara studied the configuration space of

equilateral and equiangular spatial hexagons for any bond angle, as a mathematical

model of 6-membered ringed hydrocarbon molecules.

(a) (b)

Fig. 1. The configuration corresponding to one point.

When ℓ = 4
3

√
2
3
(resp. 4

√
2
3
) we have the configuration as in Fig. 1 (a) (resp. (b))

as the straight chain corresponding to one point. So we can easily verify Theorem

3 (1) and (4). In Section 2 we will give a proof of Theorem 3 (2) by the similar

argument to [3]. In Section 3 we prove Theorem 3 (3) by giving explicit expressions

of all the possible shapes (cf. [6]).

2. Proof of Theorem 3 (2)

In this section we assume 4
3

√
2
3
< ℓ < 8

3
, 8

3
< ℓ < 4

√
2
3
. We first prove the

following proposition.

Proposition 4. Mℓ(5) is an orientable closed 1-dimensional submanifold of R5.

We show the following lemma for the proof of Proposition 4:

Lemma 5.

(1) All vertices cannot be in one plane for each straight chain in Mℓ(5).

(2) Mℓ(5) is not the empty set.
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(a) (b)

Fig. 2. Local planar configurations of the successive three bonds.

Proof of Lemma 5. (1) We assume that for a straight chain in Mℓ(5) all vertices are

in one plane. Since the straight chain has local configurations as in Fig. 2 (a) or

(b), the straight chain is one of the four types as in Fig. 3.

(a) (b)-(i) (b)-(ii)

(c)

Fig. 3. Four types of local planar configurations.

By calculating, chain lengths of four straight chains as in Fig. 3 are 4
3

√
2
3
in the

case of Fig. 3 (a), 8
3
in the case of Fig. 3 (b)-(i), 8

3
in the case of Fig. 3 (b)-(ii) and

4
√

2
3
in the case of Fig. 3 (c). This means that any straight chain of Mℓ(5) cannot

be in one plane.

(2) We consider all straight chains in M(5). We define a function d : M(5) → R

by d(v0, v4) = ∥v0 − v4∥. We note that d is continuous with respect to v0 and v4.

From the proof of (1), if we have a configuration as in Fig. 3 (a) (resp. (c)), the

value of d(v0, v4) is equal to 4
3

√
2
3
(resp. 4

√
2
3
). From the connectedness of M(5),

the configuration space Mℓ(5) is not the empty set. □

Under the above preparation, we prove Proposition 4. From now on, f ℓ
0 is simply

denoted by f0 when ℓ is fixed.
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Proof of Proposition 4. We define F : (R3)2 → R5 as F = (f1, f0, f4, g1, g3). Then

we see Mℓ(5) = F−1({O}) for O = (0, . . . , 0) ∈ R5. By the regular value theorem,

we show that O ∈ R5 is a regular value of F . Due to [5], it is sufficient to prove that

the gradient vectors (grad f1)p, (grad f0), (grad f4)p, (grad g1)p and (grad g3)p are

linearly independent for any p ∈ F−1({O}) = Mℓ(5), where (grad f)p =
(

∂f
∂xj

(p)
)
j
.

Using the zero vector 0 = (0, 0, 0) and the bond vectors βk (k = 0, . . . , 4) of the

straight chain corresponding to p ∈ Mℓ(5), we decompose the gradient vectors of fk
and gk into 1× 3 blocks as follows:

(grad f1)p = ( −β1, 0 ),

(grad f0)p = ( β0, −β0),

(grad f4)p = ( 0, β4),

(grad g1)p = ( β2, 0 ),

(grad g3)p = ( 0, −β3).

We assume that the gradient vectors (grad f1)p, (grad f0)p, (grad f4)p, (grad g1)p
and (grad g3)p are linearly dependent. This means ck ̸= 0 and c1(grad f1)p +

c2(grad f0)p + c3(grad f4)p + c4(grad g1)p + c5(grad g3)p = (0,0) for some k. We

then have the bond vector relations:

−c1β1 + c2β0 + c4β2 = 0,

−c2β0 + c3β4 − c5β3 = 0.

Let v0, v1, v2, v3 and v4 denote the vertices of the straight chain corresponding to

p ∈ Mℓ(5). Because two successive bond vectors βk and βk+1 are linearly indepen-

dent for k ̸= 0, 4, we get c2 ̸= 0. So the bond vector relation −c1β1+c2β0+c4β2 = 0

implies that the vertices v0, v1, v2 and v4 are in one plane, and the bond vector re-

lation −c2β0 + c3β4 − c5β3 = 0 implies that the vertices v0, v2, v3 and v4 are in one

plane. This means that all vertices of the straight chain are in one plane. However

this contradicts Lemma 5 (1).

Thus, since O ∈ R5 is a regular value of F , Mℓ(5) is an orientable closed 1-

dimensional submanifold of R5. □

We define a differential function h : (R3)2 − {O} → R derived from the dihedral

angle for β1,β2,β3 by h(v0, v4) =
y0√
y20+z20

, where v0 = (x0, y0, z0) and O ∈ (R3)2.

Proposition 6. h|Mℓ(5) has two critical points.

Proof. Due to [5] p ∈ Mℓ(5) is a critical point of h|Mℓ(5) for h : (R3)2 → R if and

only if there exist ai ∈ R (i = 1, 2, 3, 4, 5) such that (grad h)p = a1(grad f1)p +

a2(grad f0)p + a3(grad f4)p + a4(grad g1)p + a5(grad g3)p. We can easily check that
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(grad h)p =
(
0,

27z20
16

√
2
,−27y0z0

16
√
2
, 0, 0, 0

)
. Note that the first 1×3 block

(
0,

27z20
16

√
2
,−27y0z0

16
√
2

)
is orthogonal to β1 and β2. So, we see that a2 ̸= 0 if (grad h)p = a1(grad f1)p +

a2(grad f0)p + a3(grad f4)p + a4(grad g1)p + a5(grad g3)p. By the same argument as

the proof of Proposition 4, the vertices v0, v2, v3 and v4 of the straight chain corre-

sponding to a critical point p are in one plane Span ⟨β3, β4⟩ = Span ⟨β3, β4, β0⟩. We

transform the straight chain by the congruent transformation that maps v2, v3 and

v4 to (0, 0, 0), (1, 0, 0) and (4
3
, 2

√
2

3
, 0) in this order, and denote the image of vk as wk.

Since w0, w2, w3 and w4 are in xy-plane, we put w0 = (α, β, 0). From the restriction of

the bond length and bond angle, we have ∥w0−w4∥ =
√

(α− 4
3
)2 + (β − 2

√
2

3
)2 = ℓ,

∥w2 − w0∥ =
√
α2 + β2 =

√
8
3
. Remark that the two solution pairs (α±, β±)

of the two equations (α − 4
3
)2 + (β − 2

√
2

3
)2 = ℓ2, α2 + β2 = 8

3
are given by

(α±, β±) = ( 1
24
(32− 6ℓ2±

√
6
√
ℓ2(32− 3ℓ2)), 1

24
(16

√
2− 3

√
2ℓ2∓ 2

√
3ℓ2(32− 3ℓ2)))

(double sign in same order). Note that α± and β± are real numbers when 4
3

√
2
3
<

ℓ < 8
3
or 8

3
< ℓ < 4

√
2
3
, and that α± and β± are determined by ℓ. We denote the co-

ordinate (α, β, 0) of w0 as (α±, β±, 0), and put w1 = (−1
3
, x2

√
2

3
, y 2

√
2

3
) (x2 + y2 = 1).

From ∥w0 −w1∥2 = (α± + 1
3
)2 + (β± − x2

√
2

3
)2 + (y 2

√
2

3
)2 = 1 and x2 + y2 = 1 we see

that x = 4+α±
2
√
2β±

.

Claim 7. We see that ( 4+α−
2
√
2β−

)2 < 1 and ( 4+α+

2
√
2β+

)2 > 1 if ℓ satisfies 4
3

√
2
3
< ℓ < 8

3
,

and that ( 4+α+

2
√
2β+

)2 < 1 and ( 4+α−
2
√
2β−

)2 > 1 if ℓ satisfies 8
3
< ℓ < 4

√
2
3
.

Proof of Claim 7. We see that ( 4+α+

2
√
2β+

)2 > 1 (resp. < 1) if and only if (2
√
2β±)

2 −
(4+α±)

2 > 0 (resp. < 0). Since (2
√
2β±)

2−(4+α±)
2 = ±

√
32−3ℓ2

96
(−64+9ℓ2)(2

√
6ℓ±√

32− 3ℓ2) (double sign corresponds), we have only to check the factors of the right

side are positive or negative.

First, we assume that 4
3

√
2
3
< ℓ < 8

3
. When 4

3

√
2
3
< ℓ < 8

3
, we have that

(−64 + 9ℓ2) < 0 and 2
√
6ℓ +

√
32− 3ℓ2 > 0. Then, we get that (2

√
2β+)

2 − (4 +

α+)
2 =

√
32−3ℓ2

96
(−64 + 9ℓ2)(2

√
6ℓ +

√
32− 3ℓ2) < 0. Meanwhile, we can see that

2
√
6ℓ −

√
32− 3ℓ2 = 27ℓ2−32

2
√
6ℓ+

√
32−3ℓ2

> 0. Then, we get (2
√
2β−)

2 − (4 + α−)
2 =

−
√
32−3ℓ2

96
(−64 + 9ℓ2)(2

√
6ℓ −

√
32− 3ℓ2) > 0. Hence, we get ( 4+α−

2
√
2β−

)2 < 1 and

( 4+α+

2
√
2β+

)2 > 1 if 4
3

√
2
3
< ℓ < 8

3
.

Secondly, we assume that ℓ satisfies 8
3
< ℓ < 4

√
2
3
. When ℓ satisfies 8

3
< ℓ < 4

√
2
3
,

we have that (−64 + 9ℓ2) > 0 and 2
√
6ℓ +

√
32− 3ℓ2 > 0. Then, we get that

(2
√
2β+)

2− (4+α+)
2 =

√
32−3ℓ2

96
(−64+9ℓ2)(2

√
6ℓ+

√
32− 3ℓ2) > 0. Meanwhile, we

can see that 2
√
6ℓ−

√
32− 3ℓ2 = 27ℓ2−32

2
√
6ℓ+

√
32−3ℓ2

> 0. Then, we get that (2
√
2β−)

2 −
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(4 + α−)
2 = −

√
32−3ℓ2

96
(−64 + 9ℓ2)(2

√
6ℓ −

√
32− 3ℓ2) < 0. Hence, we get that

( 4+α+

2
√
2β+

)2 < 1 and ( 4+α−
2
√
2β−

)2 > 1 if 8
3
< ℓ < 4

√
2
3
.

The proof of Claim 7 is completed. □

From Claim 7, when 4
3

√
2
3
< ℓ < 8

3
or 8

3
< ℓ < 4

√
2
3
, either (α+, β+, 0) or

(α−, β−, 0) satisfies 1 − x2 > 0. So, we can represent the coordinate of w1 =

(x1, y1, z1) by the following:

x1 = −1/3,

y1 = (4 + α)/3β,

z1 = ±2
√

2(1− x2)/3,

where (α, β) = (α−, β−) or (α+, β+). The vertices v2, v3, v4 and v0 are determined

uniquely and just two positions of the vertex v1 are determined for the original

straight chains with vertices {v4, v3, v2, v1, v0}. We then have only two configurations

of straight chains corresponding to the critical points. They are mirror symmetric

with respect to the plane Span ⟨β3, β4⟩. Thus h|Mℓ(5) has only two critical points.

For instance, the critical configuration is shown in Fig. 4. We choose a viewpoint

in order to see easily configuration.

Fig. 4. A critical configuration.

□

By Proposition 6 Mℓ(5) is connected. Thus, Mℓ(5) is homeomorphic to a circle

S1.

Remark 8. Mℓ(5) is also diffeomorphic to a circle.

3. Proof of Theorem 3 (3)

When ℓ = 8
3
there are straight chains corresponding to singular points (see Fig.

5). So, we need to give explicit expressions of all the possible shapes.
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Fig. 5. A singular configuration in one plane.

Let S̃ be a union of two circles that intersect at two points. We consider a straight

chain in Mℓ(5). The coordinates of v0 and v4 are v0 = (−4
3
, 2

√
2

3
cos θ1,

2
√
2

3
sin θ1)

and v4 = (4(1−2 cos θ2)
9

, 2
√
2(4+cos θ2)

9
, 2

√
2

3
sin θ2), where 0 ≤ θ1, θ2 ≤ 2π. We note that

v0 and v4 depend on θ1 and θ2 respectively. Since v1, v2 and v3 are fixed, any

straight chain in Mℓ(5) is determined by the positions of v0 and v4 in the straight

chain. So we denote by [v0, v4] a straight chain in Mℓ(5). From ∥β0∥2 = ∥v0−v4∥2 =
(−4

3
− 4(1−2 cos θ2)

9
)2+(2

√
2

3
cos θ1− 2

√
2(4+cos θ2)

9
)2+(2

√
2

3
(sin θ1−sin θ2))

2 = (8
3
)2, we have

(4+cos θ2) cos θ1+(3 sin θ2) sin θ1 = −(1+4 cos θ2). Since we see cos
2 θ1+sin2 θ1 = 1

and 1−cos2 θ2 ≥ 0, we get cos θ1 =
−(1+4 cos θ2)(4+cos θ2)∓6

√
6 sin θ2

√
1−cos2 θ2

(4+cos θ2)2+(3 sin θ2)2
and sin θ1 =

−3 sin θ2(1+4 cos θ2)±2
√
6(4+cos θ2)

√
1−cos2 θ2

(4+cos θ2)2+(3 sin θ2)2
(double sign corresponds). Thus the coordinate

of v0 = (x0, y0, z0) is given by the following:

x0 = −4/3,

y0 =
−2

√
2(1 + 4 cos θ2)(4 + cos θ2)∓ 24

√
3 sin θ2

√
1− cos2 θ2

3((4 + cos θ2)2 + (3 sin θ2)2)
,

z0 =
−6

√
2 sin θ2(1 + cos θ2)± 8

√
3(4 + cos θ2)

√
1− cos2 θ2

3((4 + cos θ2)2 + (3 sin θ2)2)
.

When θ2 ̸= 0, π, 2π we have 1−cos2 θ2 = (1−cos θ2)(1+cos θ2) > 0. So we obtain

two straight chains in Mℓ(5) for θ2 (̸= 0, π, 2π). Therefore, {[v0, v4] | 0 < θ2 < π}
and {[v0, v4] | π < θ2 < 2π} correspond to two disjoint arcs. Since {[v0, v4] | θ2 = π}
and {[v0, v4] | θ2 = 0, 2π} are one point, we have {[v0, v4] | θ2 = 0} ∪ {[v0, v4] | 0 <

θ2 < π} ∪ {[v0, v4] | θ2 = π} ∪ {[v4, v0] | π < θ2 < 2π} ∪ {[v0, v4] | θ2 = 2π} ∼= S̃.

Thus the configuration space Mℓ(5) is homeomorphic to a union of two circles that

intersect at two points.
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