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DISCONTINUOUS MAPS WHOSE ITERATIONS ARE
CONTINUOUS

KOUKI TANIYAMA

Abstract. Let X be a topological space and f : X → X a bijection. Let C(X, f)

be a set of integers such that an integer n is an element of C(X, f) if and only if

the bijection fn : X → X is continuous. A subset S of the set of integers Z is said

to be realizable if there is a topological space X and a bijection f : X → X such

that S = C(X, f). A subset S of Z containing 0 is called a submonoid of Z if the

sum of any two elements of S is also an element of S. We show that a subset S of

Z is realizable if and only if S is a submonoid of Z. Then we generalize this result

to any submonoid in any group.

1. Introduction

Let X be a topological space and f : X → X a bijection. By f−1 : X → X

we denoted the inverse mapping of f . For each integer n we define a bijection

fn : X → X by

fn =



f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

(n > 0)

idX (n = 0)

f−1 ◦ f−1 ◦ · · · ◦ f−1︸ ︷︷ ︸
−n

(n < 0).

We note that fn ◦ fm = fm+n for any integers m and n. Let Z be the set of all

integers. We define a subset C(X, f) of Z by

C(X, f) = {n ∈ Z|fn : X → X is continuous.}.
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A subset S of Z is said to be realizable if there is a topological space X and a

bijection f : X → X such that S = C(X, f). A subset S of Z is called a submonoid

of Z if S satisfies the following two conditions.

(1) S contains 0,

(2) if S contains a and b then S contains a+ b.

Note that it is not necessary that S contains a− b.

Example 1.1. The following subsets of Z are submonoids of Z.
Z, {n ∈ Z|n ≥ 0}, {0} ∪ {n ∈ Z|n ≤ −3}, {2n|n ∈ Z}, {0} ∪ {3n|n ∈ Z, n ≥ 2},
{3a+ 5b|a, b ∈ Z, a, b ≥ 0} = {0, 3, 5, 6, 8} ∪ {n ∈ Z|n ≥ 9}, {0}.

Theorem 1.1. A subset S of the set of all integers Z is realizable if and only if S

is a submonoid of Z.

We generalize Theorem 1.1 to any submonoid in any group in the third section.

2. Proof of Theorem 1.1

Proposition 2.1. Let X be a topological space and f : X → X a bijection. Then

the subset C(X, f) of Z is a submonoid of Z.

Proof. Since f 0 = idX is continuous the set C(X, f) contains 0. Suppose that C(X, f)

contains a and b. Then fa and f b are continuous. Then the composition f b ◦ fa =

fa+b is also continuous. Therefore C(X, f) contains a+ b. □

Proof of Theorem 1.1. It follows from Proposition 2.1 that if S is realizable then

S is a submonoid of Z. We will show that if S is a submonoid of Z then S is

realizable. Let S be a submonoid of Z. For each integer n we define a subset Xn of

the 2-dimensional Euclidean space R2 as follows.

Xn =

{
{n} × [0, 2) (n ∈ S)

{n} × ([0, 1) ∪ [2, 3)) (n ∈ (Z \ S)).

Let X =
∪
n∈Z

Xn. Then X is a topological subspace of R2. Let f : X → X be a

bijection defined by the followings.

(1) if n, n+ 1 ∈ S, then f((n, x)) = (n+ 1, x) for each x ∈ [0, 2),

(2) if n, n+ 1 ∈ (Z \ S), then f((n, x)) = (n+ 1, x) for each x ∈ ([0, 1) ∪ [2, 3)),

(3) if n ∈ S and n + 1 ∈ (Z \ S), then f((n, x)) = (n + 1, x) for each x ∈ [0, 1)

and f((n, x)) = (n+ 1, x+ 1) for each x ∈ [1, 2),

(4) if n ∈ (Z \ S) and n + 1 ∈ S, then f((n, x)) = (n + 1, x) for each x ∈ [0, 1)

and f((n, x)) = (n+ 1, x− 1) for each x ∈ [2, 3).
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By definition we have fn(Xm) = Xm+n for any integers m and n. Suppose that n ∈
(Z\S). Since X0 = {0}×[0, 2) is connected and fn(X0) = Xn = {n}×([0, 1)∪[2, 3))
is not connected, we see that fn is discontinuous. Therefore n is not an element

of C(X, f). Suppose that n ∈ S. For each m ∈ (Z \ S) we see that fn maps

Xm = {m}× ([0, 1)∪ [2, 3)) onto Xm+n. If m+n ∈ S then Xm+n = {m+n}× [0, 2)

and fn((m,x)) = (m+ n, x) for each x ∈ [0, 1) and fn((m,x)) = (m+ n, x− 1) for

each x ∈ [2, 3). Therefore fn maps Xm continuously onto Xm+n. If m+ n ∈ (Z \ S)
then Xm+n = {m + n} × ([0, 1) ∪ [2, 3)) and fn((m,x)) = (m + n, x) for each

x ∈ ([0, 1)∪ [2, 3)). Therefore fn maps Xm homeomorphically onto Xm+n. Thus we

see that fn|Xm is continuous for each m ∈ (Z \ S). Suppose that m is an element of

S. Then Xm = {m}× [0, 2). Since S is a submonoid of Z we see that m+n is also an

element of S. ThereforeXm+n = {m+n}×[0, 2). We see that fn((m,x)) = (m+n, x)

for each x ∈ [0, 2). Therefore fn maps Xm homeomorphically onto Xm+n. Thus we

see that fn|Xm is continuous for each m ∈ S. Therefore fn is continuous. Therefore

n is an element of C(X, f). Thus we have S = C(X, f) as desired. □

Example 2.1. Figure 1 illustrates X and f : X → X in the proof of Theorem 1.1

where S = C(X, f) = {0} ∪ {n ∈ Z|n ≥ 3}.

X0 X1 X2 X3 X4 X5X
−1X

−2X
−3

Figure 1

We note that the topological type of the topological space X in the proof of

Theorem 1.1 is independent of the choice of the subset S of Z. Actually X is a

disjoint union of countably many semi-open intervals. Thus we have shown the

following proposition.

Proposition 2.2. Let X be a disjoint union of countably many semi-open intervals.

Then for any submonoid S of Z there is a bijection f : X → X such that S =

C(X, f).

We note that not all topological spaces have such a property as X in Proposition

2.2. For example, let X be a compact Hausdorff space. Then a continuous bijection
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from X to X is a homeomorphism. Therefore, for any bijection f : X → X the set

C(X, f) is invariant under the map r : Z → Z defined by r(x) = −x, x ∈ Z.

3. Generalization

In this section we reformulate and generalize Theorem 1.1 as follows. Let G be a

group and e the unit element of G. A subset S of G is called a submonoid of G if S

satisfies the following two conditions.

(1) S contains e,

(2) if S contains a and b then S contains ab.

Let X be a topological space. By B(X) we denote the set of all bijections from X

to X. Then B(X) forms a group under the composition of maps. Let A(X) be a

subgroup of B(X). By C(A(X)) we denote the set of all continuous bijections in

A(X). Since idX : X → X is continuous and the composition of two continuous

maps is continuous, we see that C(A(X)) is a submonoid of A(X). Let G and H

be groups and S and T submonoids of G and H respectively. We say that the pair

(G,S) is isomorphic to the pair (H,T ) if there is a group isomorphism h : G → H

such that h(S) = T .

Theorem 3.1. Let G be a group and S a submonoid of G. Then there is a topological

space X and a subgroup A(X) of B(X) such that the pair (G,S) is isomorphic to

the pair (A(X), C(A(X))).

Proof. Let G be a group and S a submonoid of G. We give a discrete topology to

G. Let R be the 1-dimensional Euclidean space and G×R the product topological

space. For each element n in G we define a subspace Xn of G× R as follows.

Xn =

{
{n} × [0, 2) (n ∈ S)

{n} × ([0, 1) ∪ [2, 3)) (n ∈ (G \ S)).

Let X =
∪
n∈G

Xn. Then X is a topological subspace of G × R. For each element n

in G we define a bijection fn : X → X by the followings.

(1) if m,mn ∈ S, then fn((m,x)) = (mn, x) for each x ∈ [0, 2),

(2) if m,mn ∈ (G \ S), then fn((m,x)) = (mn, x) for each x ∈ ([0, 1) ∪ [2, 3)),

(3) if m ∈ S and mn ∈ (G \ S), then fn((m,x)) = (mn, x) for each x ∈ [0, 1)

and fn((m,x)) = (mn, x+ 1) for each x ∈ [1, 2),

(4) if m ∈ (G \ S) and mn ∈ S, then fn((m,x)) = (mn, x) for each x ∈ [0, 1)

and fn((m,x)) = (mn, x− 1) for each x ∈ [2, 3).

For any two elements m and n in G we see by definition that fn ◦ fm = fmn. Let

A(X) be the subgroup of B(X) defined by A(X) = {fn|n ∈ G}. Then we see
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that the group A(X) is isomorphic to the group G. Then by an entirely analogous

argument as in the proof of Theorem 1.1 we see that C(A(X)) = {fn|n ∈ S}. Thus
we see that the pair (A(X), C(A(X))) is isomorphic to the pair (G,S) as desired. □

Remark 3.1. (1) In general the group B(X) is so big that we should take a subgroup

A(X) of B(X) as in the statement of Theorem 3.1. In fact there is a group G that

is not isomorphic to B(X) for any set X. For example, it is easy to check that B(X)

is not isomorphic to a cyclic group of order 3 for any set X.

(2) Even in the case that a group G is isomorphic to B(X) for some set X, not

all pair (G,S) is realized by the pair (B(X), C(B(X))) under any topology on X.

Let G = S3 be a symmetric group of degree 3. Note that every submonoid of a

finite group G is a subgroup of G. We will see that the pair (S3, C3) is not real-

ized where C3 is a cyclic group of order 3. It is clear that B(X) is isomorphic to

S3 if and only if X contains exactly 3 points. Therefore we may suppose without

loss of generality that X = {a, b, c}. Then, up to self-homeomorphism, there are 9

topologies on X. They are D1 = {∅, X}, D2 = {∅, {a}, X}, D3 = {∅, {a, b}, X},
D4 = {∅, {a}, {a, b}, X}, D5 = {∅, {a}, {b, c}, X}, D6 = {∅, {a}, {b}, {a, b}, X},
D7 = {∅, {a}, {a, b}, {a, c}, X}, D8 = {∅, {a}, {b}, {a, b}, {a, c}, X} and D9 = 2X .

Then we see that the subgroup C(B(X,Di)) of B(X,Di) is the trivial group for

i = 4, 8, a cyclic group of order 2 for i = 2, 3, 5, 6, 7 and the symmetric group of

degree 3 B(X,Di) for i = 1, 9. Thus C(B(X,Di)) is not a cyclic group of order 3 for

any i.

Next we give a variation of Theorem 3.1 as follows. A monoid M is a semigroup

with the unit element e. Namely M has an associative binary operation such that

xe = ex = x for any element x ∈ M . A subset S of a monoid M is said to be a

submonoid of M if e is an element of S and for any elements a and b of S the element

ab is an element of S. Let X be a topological space. By M(X) we denote the set

of all maps from X to X. Then M(X) forms a monoid under the composition of

maps. Let A(X) be a submonoid of M(X). By C(A(X)) we denote the set of all

continuous maps in A(X). Then we see as before that C(A(X)) is a submonoid of

A(X). Let M and N be monoids and S and T submonoids of M and N respectively.

We say that the pair (M,S) is isomorphic to the pair (N, T ) if there is a monoid

isomorphism h : M → N such that h(S) = T .

Theorem 3.2. Let M be a monoid and S a submonoid of M . Then there is a

topological space X and a submonoid A(X) of M(X) such that the pair (M,S) is

isomorphic to the pair (A(X), C(A(X))).

Proof. We define a topological space X to be a subspace of M ×R as in the proof of

Theorem 3.1. The map fn : X → X is also defined in the same way for each element
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n of M . The only difference is that the map fn is not a bijection in general. Note

that in the proof of Theorem 3.1 the assumption that n has an inverse element in

the group G assured the fact that fn : X → X is a bijection. Then the rest of the

proof is the same as the proof of Theorem 3.1. □

Finally we give another variation of Theorem 3.1 as follows. As we have already

remarked, if X is compact Hausdorff and f : X → X is a continuous bijection, then

f−1 : X → X is also continuous. Therefore for any subgroup A(X) of B(X) the

submonoid C(A(X)) of A(X) is a subgroup of A(X). Then we have the following

theorem.

Theorem 3.3. Let G be a group and H a subgroup of G. Then there is a com-

pact Hausdorff space X and a subgroup A(X) of B(X) such that the pair (G,H) is

isomorphic to the pair (A(X), C(A(X))).

Proof. We give a discrete topology to G. Let G × [0, 1] be the product topological

space and X = (G× [0, 1])∪{∞} the one-point compactification of G× [0, 1]. Then

X is a compact Hausdorff space. For each element n in G we define a bijection

fn : X → X by the followings.

(1) For each m in G and x in (0, 1), fn((m,x)) = (mn, x).

(2) Ifm,mn ∈ H orm,mn ∈ (G\H), then fn((m, 0)) = (mn, 0) and fn((m, 1)) =

(mn, 1).

(3) If m ∈ H and mn ∈ (G\H), or m ∈ (G\H) and mn ∈ H, then fn((m, 0)) =

(mn, 1) and fn((m, 1)) = (mn, 0).

(4) fn(∞) = ∞.

We see by the definition that the composition fn◦fm is equal to fmn for any elements

m and n in G. Let A(X) be the subgroup of B(X) defined by A(X) = {fn|n ∈ G}.
Then we see that the group A(X) is isomorphic to the group G. We will show that

C(A(X)) = {fn|n ∈ H}. First we will show that fn is continuous at ∞ for any n

in G. Let U be an open neighbourhood of ∞. Then X \ U is a compact subset of

G × [0, 1]. Therefore there is a finite subset F of G such that X \ U is contained

in F × [0, 1]. Let V = X \ ((Fn−1) × [0, 1]). Then V is an open neighbourhood of

∞ such that fn(V ) = X \ (F × [0, 1]) is contained in U as desired. Suppose that

n ∈ (G \ H). Then fn maps {e} × [0, 1] to {n} × [0, 1]. Since the unit element e

is in H, fn((e, 0)) = (n, 1) and fn((e, 1)) = (n, 0). Therefore fn is not continuous

and fn is not in C(A(X)). Suppose that n ∈ H. Let m be an element of G. Then

we see that mn is an element of H if and only if m is an element of H. Therefore

fn maps {m} × [0, 1] to {mn} × [0, 1] by the formula fn((m,x)) = (mn, x) for each

x in [0, 1]. Therefore the restriction map fn|{m}×[0,1] is continuous for each m in G.
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Therefore fn is an element of C(A(X)). Thus the pair (G,H) is isomorphic to the

pair (A(X), C(A(X))). □

Remark 3.2. Theorem 3.1, Theorem 3.2 and Theorem 3.3 concern the pairs (G,S),

(M,S) and (G,H) respectively. There are some known results not on a pair but

on a single group or a single monoid. It is shown in [1] that for any group H there

exists a topological space X such that the group of all self-homeomorphisms of X is

isomorphic to H. It is shown in [2] that for any monoid S there exists a topological

space X such that the monoid of all nonconstant continuous maps from X to X is

isomorphic to S.
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