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STEINER RATIOS FOR LENGTH SPACES HAVING
ENDS

SHINETSU TAMURA AND NOBUHIRO INNAMI

Abstract. We prove that the Steiner ratios for complete locally compact length
spaces having n ends are less than or equal to n/2(n−1). In particular, the Steiner
ratio of a complete simply connected surface with a pole satisfying the Visibility
axiom is 1/2.

1. Introduction

Let M be a complete locally compact length space. Then, any two points p and q in

M can be joined by a minimal geodesic segment whose length is the distance between

p and q. Let P be a finite set of points in M . A shortest network interconnecting

P is called a Steiner minimum tree which is denoted as SMT(P ). An SMT(P )

may have vertices which are not in P . Such vertices are called Steiner points. A

spanning tree on P is a tree with vertex set P where all edges are minimal geodesic

segments. A shortest spanning tree on P is called a minimum spanning tree on P

which is denoted as MST(P ). Let L(T ) be the total length of edges in a tree T .

In a complete locally compact length space M two minimal geodesic segments can

have a subsegment in common. In that case we consider that all edges in MST(P )

connect two points in P even if they contain their subsegment in common. This

does not occur if M is an Alexandrov space with curvature bounded below. The

Steiner ratio is given by

ρ = ρ(M) = inf
P

L(SMT(P ))

L(MST(P ))
.

where P runs over all finite sets of points in M . Du and Hwang ([2]) have stated

that ρ(M) =
√

3/2 if M is a Euclidean plane. Their statement was the affirmative

answer of a famous conjecture of Gilbert and Pollak ([4]). However their proof is

not complete because the length of minimum inner spanning trees is not continuous
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([6]). Rubinstein and Weng ([8]) have stated that ρ(M) =
√

3/2 if M is a 2-

dimensional sphere of constant Gaussian curvature. Ivanov, Tuzhilin and Cieslik

([7]) have estimated some Steiner ratios for manifolds. In particular, they proved

that ρ(M) is less than or equal to ρ(Ek) if M is a smooth Riemannian manifold with

dimension k where Ek is a k-dimensional Euclidean space, and that ρ(M) ≥ ρ(M̃) if

M̃ is a covering manifold over a smooth Riemannian manifold M . Innami and Kim

([5]) have recently proved that ρ(M) = 1/2 if M ia a complete simply connected

2-dimensional Riemannian manifold having constant negative Gaussian curvature,

namely, a Poincaré disk.

We say that M has n ends if there exists a compact set K in M such that M −K

consists of n connected components which are unbounded and there is no compact

set K ′ such that M − K ′ has n + 1 connected components which are unbounded.

In the present note we will prove the following theorem.

Theorem 1.1. Let M be a complete locally compact length space with n ends. Then,

the Steiner ratio of M is less than or equal to n/2(n − 1).

We do not assume in Theorem 1.1 that the dimension of M is two. If the dimension

of M is two, then a certain set of straight lines surrounds a domain with ends, and

hence, we have the following corollary.

Corollary 1.1. Let M be a complete Alexandrov surface homeomorphic to a plane

with curvature bounded below. If M has n straight lines which are mutually disjoint

such that each straight line has all other straight lines in one hand side of it, then

we have that 1/2 ≤ ρ(M) ≤ n/2(n − 1).

Let M be a complete Alexandrov surface with curvature bounded below. We can

see the definition of Alexandrov spaces in [1]. A point p in M is called a pole of

M if all the geodesics emanating from p are minimal geodesic rays in M . Hence,

if M has a pole, then M is homeomorphic to a plane and its singular point is

possibly the pole p, since no singular points exist in the interior of any minimal

geodesic segment. We say that a point p in M satisfies the Visibility axiom if for

any two distinct rays q(s), 0 ≤ s < ∞, and r(t), 0 ≤ t < ∞, from p = q(0) =

r(0) any sequence of minimal geodesic segments T (q(s), r(t)) have a subsequence

T (q(si), r(ti)) converging to a minimal geodesic line which is called a straight line

as si −→ ∞ and ti −→ ∞. If all points in M satisfy the Visibility axiom, then

M is said to satisfy the Visibility axiom. The Visibility axiom was first defined

for complete Riemannian manifolds with nonpositive curvature in [3]. There are

many examples of Riemannian manifolds satisfying the Visibility axiom in the class

of complete simply connected Riemannian manifolds with nonpositive curvature.

However we use the axiom in the above sense.
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Corollary 1.2. Let M be a complete Alexandrov surface homeomorphic to a plane

with curvature bounded below. If M has a point p such that there are infinitely many

rays from the point p and it satisfies the Visibility axiom, then ρ(M) = 1/2.

This corollary implies that the Steiner ratio of Poincaré disks is 1/2 ([5]).

2. Preliminaries

Let M be a complete locally compact length space with distance d(·, ·). Then, there

exists a minimal geodesic segment T (p, q) connecting any points p and q in M . Two

minimal geodesic segments can have their subsegment in common. Then, SMT(P )

satisfies the following property.

Lemma 2.1. Let M be a complete locally compact length space and let P be a finite

set of points in M . Then,

(i) all terminal points of SMT(P ) are points in P .

In additon, if M is an Alexandrov surface with curvature bounded below, then

SMT(P ) satisfies the following properties.

Lemma 2.2. Let M be a complete Alexandrov surface with curvature bounded below

and P a set of n points in M . Then, SMT(P ) satisfies the following properties.

(ii) Any two edges meet at an angle of at least 2π/3.

(iii) Every Steiner point has degree exactly three, and hence, is not a singular

point. The edges emanating from it to three neighboring vertices are unique

minimal geodesic segments.

(iv) There are at most n − 2 Steiner points in SMT(P ).

Proof. The properties (i) and (iv) are proved in the same way for the Euclidean case

([2]). We prove (ii). We can see the notation and some properties of Alexanvrov

spaces in [1]. Suppose there exists a vertex p where two edges meet at the angle

θ < 2π/3. Let T (p, q) and T (p, r) be those edges. Let q1 and r1 be points in T (p, q)

and T (p, r) with a = d(p, q1) = d(p, r1). For a sufficiently small positive ε the part

of the circle C(p, ε) = {y ∈ M | d(p, y) = ε} ∩4(pq1r1) contains a point s with b =

d(s, q1) = d(s, r1), since d(r1, q2) > d(r1, r2) and d(q1, r2) > d(q1, q2) where q2 and r2

are the endpoints of the subarc of C(p, ε) in T (p, q1) and T (p, r1), respectively. The

quadrangle p̃q̃1s̃r̃1 consisting of comparison triangle domains 4(p̃q̃1s̃) and 4(p̃r̃1s̃)

has the angle ∠(q̃1p̃r̃1) less than 2π/3 with θ1 = ∠(q̃1p̃s̃) = ∠(r̃1p̃s̃) < θ/2. Hence,

we have that

τ = 2 cos θ1 > 1 and b2 = a2 + ε2 − τaε.
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Then, we have that

a2 −
(
b +

ε

2

)2

= bε

(
τa

b
− 1 − 5

4

ε

b

)
.

Therefore, we can get a sufficiently small positive ε such that

a > b +
ε

2
.

Thus, we have that

d(p, q1) + d(p, r1) = d(p̃, q̃1) + d(p̃, r̃1)

= 2a > 2
(
b +

ε

2

)
= d(q̃1, s̃) + d(r̃1, s̃) + d(p̃, s̃)

= d(q1, s) + d(r1, s) + d(p, s),

contaradicting that T (p, q) and T (p, r) are edges in SMT(P ).

The property (iii) follows (ii) because there are at least three edges emanating

from this point, each angle is at least 2π/3 and the total angle around this point is

at most 2π. This completes the proof. ¤

The following is proved in the same way as was seen in [5].

Lemma 2.3. Let M be a complete Alexandrov surface with curvature bounded below.

Then,

ρ(M) ≥ 1/2.

This lemma shows the lower bound 1/2 in Corollary 1.1.

3. Proofs of Theorem 1.1, Corollaries 1.1 and 1.2

Proof of Theorem 1.1. Let K be a compact set such that M − K consists of n

connected components U1, U2, . . . , Un which are unbounded. Let p ∈ K. For a suffi-

ciently large number s we take a set P (s) of n points p1(s), p2(s), . . . , pn(s) such that

pi(s) ∈ Ui and d(p, pi(s)) = s for all i = 1, 2, . . . , n. Let rij(s) be a foot of p on a min-

imal geodesic segment T (pi(s), pj(s)) for any i 6= j, nemaly, rij(s) ∈ T (pi(s), pj(s))

and d(p, rij(s)) = d(p, T (pi(s), pj(s))). Since each T (pi(s), pj(s)) passes through K,

there exists a positive R such that d(p, rij(s)) < R for all i 6= j and for all s. By the

triangle inequality we have

d(pi(s), pj(s)) ≤ d(p, pi(s)) + d(p, pj(s)) = 2s

≤ 2d(p, rij(s)) + d(rij(s), pi(s)) + d(rij(s), pj(s))

≤ 2d(p, rij(s)) + d(pi(s).pj(s))

< 2R + d(pi(s), pj(s)),
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for i 6= j. Since d(p, pi(s)) = d(p, pj(s)) = s, we see that

2s

d(pi(s), pj(s))
−→ 1

as s −→ ∞. The convergence is uniform for i 6= j as s −→ ∞. A minimum spanning

tree MST(P (s)) consists of n − 1 minimal geodesic segments interconnecting P (s)

which are in the set of the minimal geodesic segments T (pi(s), pj(s)) for i 6= j. Thus,

we have that
2(n − 1)s

L(MST(P (s)))
−→ 1

as s −→ ∞. On one hand, we have that

L(SMT(P (s))) ≤
n∑

i=1

d(p, pi(s)) = ns.

Therefore, we have that

L(SMT(P (s)))

L(MST(P (s)))
≤ 2(n − 1)s

L(MST(P (s)))

ns

2(n − 1)s
,

and the right hand side converges to n/2(n − 1) as s −→ ∞, and hence,

ρ(M) ≤ 1

2

n

n − 1
.

This completes the proof of Theorem 1.1. ¤

Proof of Corollary 1.1. From the assumption there exists a domain U surrounded

by n straight lines. The domain U has n ends. Since the boundary ∂U of U consists

of straight lines, the domain U is convex, and hence, a complete locally compact

length space. Theorem 1.1 and Lemma 2.3 prove that ρ(M) ≤ ρ(U) ≤ n/2(n − 1).

This completes the proof of Corollary 1.1. ¤

Proof of Corollary 1.2. If M has a point satisfying the assumption in Corollary 1.2,

then for any positive integer n we can have n straight lines in M which surround a

domain with n ends. This completes the proof of Corollary 1.2. ¤
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