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THE ASYMPTOTIC BEHAVIOR OF GEODESIC
CIRCLES IN A 2-TORUS OF REVOLUTION

AND A SUB-ERGODIC PROPERTY

NOBUHIRO INNAMI

Abstract. Let M be a complete Riemannian manifold with finite volume and

Gt the geodesic flow on the unit tangent bundle SM . In the light of the Poincaré

recurrence property we study the following properties. (P1) For any point p ∈ M

and any open set U ⊂ M there exists an R > 0 such that π(Gt(SpM)) ∩ U ̸= ∅
for all t > R. (P2) For any unit tangent vector x ∈ SM and any point q ∈ M

there exist a sequence of unit tangent vectors xn ∈ SM and a sequence tn → ∞
such that xn → x and π(Gtn(xn)) → q.

1. Introduction

Let M be a complete Riemannian manifold with finite volume and SM its unit

tangent bundle with the natural projection π : SM → M . Let Gt : SM → SM

be the geodesic flow. This means that Gt(x) = γ̇x(t) for all x ∈ SM and all t ∈
(−∞,∞) where γx(t) = π(Gt(x)), t ∈ (−∞,∞), is the geodesic with γx(0) = π(x)

and γ̇x(0) = x. The starting point of our discussion is the Poincaré recurrence

property which states that for every vector x ∈ SM there are a sequence of vectors

xn → x and a sequence tn → ∞ such that Gtn(xn) → x as n→ ∞ (cf. [19] ). From

the viewpoint of the geometry of geodesics in M this theorem can be restated as

follows:

Proposition 1.1. Let M be a complete Riemannian manifold with finite volume.

Let p, q ∈ M . Then there exist a sequence of vectors xn ∈ SM and a sequence

tn → ∞ such that π(xn) → p and γxn(tn) → q.
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This is because there exists a minimizing geodesic connecting p and q in M and

Poincaré recurrence property for the unit tangent vector of this geodesic at p con-

cludes Proposition 1.1. This proposition motivates us to study the following prop-

erties: Let p be a point in M .

(P1) For any open subset U in M there exists an R > 0 such that π(Gt(SpM)) ∩
U ̸= ∅ for all t > R.

(P2) For any unit vector x ∈ SpM and any point q ∈ M there exist a sequence

of unit vectors xn ∈ SM and a sequence tn → ∞ such that xn → x and

γxn(tn) → q.

We first take up the property (P1). In a surface of revolution homeomorphic to the

sphere, (P1) fails for the north and south poles if U is a sufficiently small open set.

W. Sierpinski and M. N. Huxley ([9]) estimate the asymptotic difference between

the area πr2 of the circle C(r) with radius r and the number N(r) of lattice points

contained in C(r) in the Euclidean plane, proving that |πr2 − N(r)| ≤ O(r2/3+ε)

where ε > 0. Their estimate directly shows that a flat 2-torus T = E2/Z2 satisfies

the property (P1).

We prove that the property (P1) holds in any 2-torus of revolution. Here is the

definition of a 2-torus of revolution. Let R2 = {(x, y) |x, y ∈ R} and f(y) a periodic

positive function with period b > 0 and minimum at 0. Give a Riemannian metric

on R2 as

ds2 = f(y)2dx2 + dy2

at (x, y). Let a be a positive constant. The maps φ(x, y) = (x+ a, y) and ψ(x, y) =

(x, y + b) are isometries in M = (R2, ds2). Let Φ be the group generated by {φ.ψ}.
The quotient surface T = M/Φ is called a 2-torus of revolution. Let B(q, ε) =

{x | d(q, x) < ε}.

Theorem 1.2. Let T be a 2-torus of revolution and p, q ∈ T. Given ϵ > 0 there

exists an R > 0 such that π(Gt(SpT)) ∩B(q, ε) ̸= ∅ for all t > R.

This theorem follows from the following lemma.

Lemma 1.3. Let T = M/Φ be a 2-torus of revolution. Let p, q ∈ M . Given ε > 0

there exists an R > 0 such that S(p, t) ∩ Φ(B(q, ε)) ̸= ∅ for all t > R, where

S(p, t) = {x ∈M | d(p, x) = t}.

We next take up the condition (P2) in a relation to the disconjugate property of

Jacobi vector fields along geodesics. For a unit vector x ∈ SM , we say that γx is a

geodesic ray on [0,∞) if all points γx(t), t > 0, are not conjugate to π(x) = γx(0)

along γx, namely all non-trivial Jacobi vector fields along γx with γx(0) = 0 do not

vanish at any t > 0. We say that a point p ∈ M is a pole if γx is a geodesic ray for
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every vector x ∈ SpM . The property of being a pole does not depend only on the

point or its neighborhood, but rather on the whole manifold M.

We think the property (P2) influences the metric structure of M under these

properties. A complete Riemannian manifold all of whose points are poles is said to

be without conjugate points. E. Hopf ([8]) proved that a 2-torus is without conjugate

points if and only if it is flat. In a 2-torus of revolution all points lying on the

minimum parallel circles are poles (cf. [10]), and, hence, there exists a non-flat

2-torus such that the set of all poles has positive measure ([10]). We say that a

complete Riemannian manifold is without focal points if all geodesics in M have no

focal points as one dimensional submanifolds inM . A manifold without focal points

is without conjugate points. N. Innami ([12]) proved that if there exists a point p in

a compact Riemannian manifold M such that the point p cannot be a focal point to

any geodesic in M , then M is without focal points. Moreover, if there exists a point

p in a compact Riemannian manifoldM such that all the sectional curvatures Kγx(t)

of tangent planes containing γ̇x(t), x ∈ SpM , are non-positive, then the sectional

curvature of M is non-positive.

Thus, “without focal points” and “with non-positive curvature” are controlled by

a global property of a single point, but ”without conjugate points” is not. Under

the property (P2) we prove the following.

Proposition 1.4. Let M be a complete Riemannian manifold such that the set of

all poles has interior which is not empty. Assume the geodesic flow Gt satisfies (P2).

Then all points in M are poles, namely M is without conjugate points.

Since any Riemannian metric without conjugate points on a Riemannian n-torus

is flat ([8], [5]), we have the following corollary.

Corollary 1.5. Let Tn be a Riemannian torus such that the set of all poles contains

an open set. Then the metric of Tn is flat if and only if its geodesic flow satisfies

(P2).

Here is another application of Proposition 1.4. Let ω be the volume form in-

duced from the Riemannian metric of M . Let L1(M,ω) be the set of all integrable

functions defined on M . Then, we consider the following sub-ergodic property: If

f ∈ L1(M,ω), then

(f ◦ π)∗(v) = 1

vol(M)

∫
M

f dω, a. e. v ∈ SM, (SE)

where

(f ◦ π)∗(v) = lim
t→∞

1

t

∫ t

0

(f ◦ π)(Gt(v)) dt.
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Obviously, (SE) implies (P2). The property (SE) has been introduced in [13] to

characterize flat metrics on 2-tori. The ergodic property of geodesic flows implies

(SE). However, the geodesic flow of a flat n-torus satisfies (SE) but it is not ergodic

([1]). On the other hand, V. J. Donnay ([7]) proved that there exists a Riemannian

metric on a 2-torus whose geodesic flow is ergodic. Let P be the set of all unit

vectors x ∈ STn such that the geodesic γx is without conjugate points on [0,∞),

namely a geodesic ray. The following corollary shows that the measure of P is zero

if the geodesic flow of T is ergodic.

Corollary 1.6. Let M be a complete Riemannian manifold with finite volume. Let

P be the set of all vectors x ∈ SM such that γx is a geodesic ray on [0,∞). Assume

that P has positive measure. Then, M is without conjugate points if the geodesic

flow Gt satisfies (SE). In particular, a Riemannian torus Tn such that P has positive

measure is flat if and only if its geodesic flow satisfies (SE).

In Section 2 we review the properties of geodesics in the universal covering space

of a 2-torus of revolution and prove some lemmas which will be needed in the proof

of Lemma 1.3. In Section 3 we prove Lemma 1.3. Proposition 1.4 will be proved

in Section 4. In Section 5, apart from the geodesic flows, we take up the properties

(P2) and (SE) on a flow having a first integral. In Section 6 we also take up the

properties (P2) and (SE) on the convex billiards in relation to the set of poles having

positive measure.

We are thankful to Professor I. Kubo who proposed the property (P1).

2. Preliminaries

The theory provided in this section has been developed by H. Busemann ([6]) for

straight G-spaces and it has been modified by V. Bangert ([2], [3]) and N. Innami

([10], [11], [18]) to be applicable for not straight spaces and convex billiards.

Throughout this section let T2 =M/Φ be a 2-torus of revolution whose definition

was given in Section 1. Let {φ, ψ} generate Φ. If τ = φm ◦ ψn ∈ Φ, then τ(x, y) =

(x+ma, y + nb) for all (x, y) ∈ R2. Let dτ : M → R be the displacement function

of τ ∈ Φ which is given by dτ (x) = d(x, τ(x)) for all x ∈ M . Since T is compact

and Φ is abelian, every displacement function of τ ∈ Φ attains its minimum in M .

Recall that dτ (p) = min dτ =: c if and only if there exists a straight line γ : R →M

through p such that τ(γ(t)) = γ(t + c) for all t ∈ R and γ(0) = p. Here a straight

line γ : R → M is by definition a geodesic such that d(γ(t), γ(t′)) = |t − t′| for all
t, t′ ∈ R. Such a straight line is called an axis of τ . All points in an axis of τ are

also minimum points of dτ .
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2.1. Geodesic

We recall the facts about geodesics in the universal covering M .

(1) The set of poles is {p ∈ M | f(p) = min f} and hence {(x,mb) | x ∈ R,m ∈
Z} is a subset of poles.

(2) At any pole all the displacement functions dτ of isometries τ ∈ Φ attain their

minimums.

(3) Every geodesic passing through a pole is straight line in M .

(4) If f(p) = min f and p = (x(p), y(p)), then y = y(p) is a straight line. In

particular, y = mb, m ∈ Z, are straight lines.

(5) x = c is a straight line for any c ∈ R.
(6) All geodesics crossing y = mb, m ∈ Z, are straight lines.

2.2. Slope

Let γ : [0,∞) →M be a geodesic with unit speed and γ(s) = (u(s), v(s)) for all

s ∈ R. We set

A(γ) := lim inf
s→∞

v(s)

u(s)
.

We call A(γ) the slope of γ. We say that a geodesic γ : [0,∞) → M is a ray if

d(γ(s), γ(0)) = s for all s ∈ [0,∞). If γ is a ray, then

A(γ) = lim
s→∞

v(s)

u(s)

exists. If γ : R → M is a straight line, then A(γ) = A(γ−) where γ− is given by

γ−(s) = γ(−s) for all s ∈ R. In general, there exist at least two rays from each

point p with slope h for each h ∈ R. Let γ(s) = (u(s), v(s)), s ∈ [0,∞), be a ray.

Then A(γ) ̸= ±∞ if and only if u(s) → ±∞ as s → ∞ if and only if u(s) is not

constant in s > 0.

Lemma 2.1. Let γ : [0,∞) →M be a ray. If τ ∈ Φ, then A(τ ◦ γ) = A(γ).

Proof. Let γ(s) = (u(s), v(s)) and τ = φm◦ψn. Then τ ◦γ(s) = (u(s)+ma, v(s)+nb)

for all s ∈ [0,∞) where a and b are the minimum positive periods of φ and ψ,

respectively. Therefore, we have

A(τ ◦ γ) = lim
s→∞

v(s) + nb

u(s) +ma
= lim

s→∞

v(s)

u(s)
= A(γ).

�

If a geodesic γ is an axis of φm◦ψn through (u, v), then it is a straight line through

(u+kma, v+knb) for all k ∈ Z and A(γ) = nb/ma. If the axis γ of φm ◦ψn through
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(0, v0) passes through (ia, vi) for each i ∈ Z, then vi+km = vi+ knb for all k ∈ Z and

i = 0, 1, . . . ,m− 1.

2.3. Co-ray and parallel

Let γ : [0,∞) → M be a ray with A(γ) = h. Let pk be a sequence of points in

M converging to p and sk a sequence going to ∞. Then a sequence of minimizing

geodesic segments from pk to γ(sk) contains a subsequence which converges to a ray

β : [0,∞) →M with β(0) = p. We call such a ray β a co-ray from p to γ.

Lemma 2.2. If β is a co-ray to a ray γ, then A(β) = A(γ).

Proof. Let γ(s) = (u(s), v(s)), s > 0, and β(s) = (w(s), z(s)), s > 0. Suppose

A(γ) ̸= ±∞. Then, u(s), w(s) → ±∞ as s → ∞, say ∞. There exists an x0 ∈ R
such that both γ and β cross x = x0. Hence, there exist an isometry τ ∈ Φ and

an s0 such that β([s0,∞)) is contained in the half strip bounded by γ, x = x0 and

τ ◦ γ. This implies that A(β) = A(γ) because of Lemma 2.1.

Suppose A(γ) = ±∞. Then, β(s) = (c, z(s)), s > 0 for some c ∈ R. This means

that A(β) = ±∞. �

The co-ray relation is not symmetric, in general. Let γ : (−∞,∞) → M be

a straight line. We say that a straight line β : (−∞,∞) → M is a parallel to

γ if, for any s0, β |[s0,∞) and β |(−∞,s0] are co-rays to γ and γ−, respectively. The

parallel relation is not symmetric, in general. However, it follows from the following

lemma that the co-ray and parallel relations are equivalence relations in the set of

all geodesics γ with A(γ) ̸= 0 in M .

Lemma 2.3. Let h ∈ R \ {0}. Let γ be a straight line with A(γ) = h. Then, M is

foliated uniquely by parallels to γ. Moreover, if h = nb/ma for some m,n ∈ Z, then
those parallels are the axes of φm ◦ ψn.

Let π : M → T be the covering map.

Lemma 2.4. Let γ be a straight line in M . Assume that A(γ) ̸= 0. If A(γ) is

rational or ±∞, then π ◦γ is a closed geodesic in T. If A(γ) is irrational, then π ◦γ
is dense in T.

2.4. Busemann function

Let γ : [0,∞) →M be a ray with A(γ) = h. Define a function fγ on M by

fγ(q) = lim
t→∞

(d(q, γ(t))− t)

for all q ∈ M . The function fγ is called the Busemann function for γ. Its level

set {q ∈ M | fγ(q) = c} is denoted by [fγ = c]. If γ is a ray with A(γ) ̸= 0, then
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the Busemann function fγ is differentiable on M and its gradient vector at p is the

reverse of the initial tangent vector of the co-ray from p to γ. Therefore, if γv,

v ∈ SpM , is a geodesic with A(γv) = A(γ), then −v is the gradient vector of fγ at

p.

Lemma 2.5. Let h ∈ R \ {0}. If γ and γ1 are straight lines with slope A(γ) =

A(γ1) = h, then fγ − fγ1 is constant on M .

This lemma shows that the foliation of M by the level sets of fγ is independent

of the choice of γ with A(γ) = h. From Lemma 2.1 we have the following.

Lemma 2.6. Let h ∈ R\{0} and γ a ray with A(γ) = h. If τ ∈ Φ, then τ([fγ = c])

is also a level of fγ, namely the foliation by the level sets of fγ is invariant under Φ.

Let p ∈M and h ∈ R \{0}. Take the straight line γ with A(γ) = h and γ(0) = p.

Set fh = fγ.

Lemma 2.7. The level sets [fh = 0] continuously depend on h ∈ R \ {0}.

Let Y = {τ([fh = 0]) | τ ∈ Φ}.

Lemma 2.8. Let m ̸= 0 and n ̸= 0 be relative prime integers. Then there exists

the unique h ∈ R r {0} such that [fh = 0] passes through (x(p) + ma, y(p) + nb).

Moreover, Y divides the curves C(p, φ(p)) = {(x, y(p)) | x(p) ≤ x ≤ x(p) + a} and

C(p, ψ(p)) = {(x(p), y) | y(p) ≤ y ≤ y(p) + b} into n and m subarcs, respectively.

Proof. Lemmas 2.5 to 2.7 show the first part of this lemma. The numbers of divided

subsegments are equal to the numbers of points at which Y intersects C(p, φ(p))

and C(p, ψ(p)), respectively. �

The following property is important to prove Lemma 1.3.

Lemma 2.9. Let h ∈ R r {0}. Let C and B be compact subarcs of the level

[fh = 0] with C ⊂ B. Then, for any ε > 0 there exists a K > 0 such that

max{d(u, S(q, t)) | u ∈ C} < ε for any t > K and any q such that q = σ(t) where σ

is a straight line intersecting B at σ(0) and with A(σ) = h.

Proof. Since B(u, t−d(u, v)) ⊂ B(v, t) for any points u, v with u ∈ B(v, t), S(σ(t), t)

lies between [fh = 0] and S(σ(s), s) for 0 < s < t. Hence, d(u, S(σ(s), s)) ≥
d(u, S(σ(t), t)) for 0 < s < t and u ∈ C. Since S(σ(t), t) continuously depends on σ

with A(σ) = h and t, we conclude this lemma. �

3. Proof of Lemma 1.3

In this section we use the notation as in Lemma 1.3.
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We may assume that q ∈ M lies in the rectangle R(p) with vertices (x(p), y(p)),

(x(p), y(p)+b), (x(p)+a, y(p)) and (x(p)+a, y(p)+b), namely the domain surrounded

by C(p, φ(p)), C(p, ψ(p)), C(φ(p), ψ ◦ φ(p)) and C(ψ(p), φ ◦ ψ(p)). Let m and n be

relatively prime integers such that a/n < ε/2 or b/m < ε/2. Assume that a/n < ε/2.

From Lemma 2.8 there exists the unique slope h ∈ R \ {0} such that q′ = (x(q) +

ma, y(q) + nb) ∈ [fh = fh(q)]. The distance between the adjacent elements in the

set Y as in Lemma 2.7 is less than ε/2. In fact, the length of one of subarcs cut

by adjacent intersection points of Y and the parallel to the y-axis through q is less

than ε/2. Since adjacent elements in Y have equal distance, the claim is proved.

Let π : M → T be the covering map. Let C be the subarc of [fh = fh(q)] from

q to q′. Then π(C) is a closed curve in T. Hence, if the length of C is L(C), then

all subarcs B of [fh = fh(q)] with length greater than L(C) contain τ(q) for some

τ ∈ Φ.

Let γ be the straight line with γ(0) = p and A(γ) = h. Let Φ(γ) be the set of

those isometries τ ∈ Φ such that γ intersects τ(R(p)). If the diameter of R(p) is d,

then for any isometry τ ∈ Φ(γ) the distance from τ(p) to the closest point τ1(p),

τ1 ∈ Φ(γ), is less than 2d.

We consider a compact set X such that the length of X ∩ [fh = s] is greater than

L(C) (0 ≤ s ≤ 2d), max{fh(u) |u ∈ X} = 2d, min{fh(u) |u ∈ X} = 0 and all

parallels to γ with distance to γ less than 2d pass through X.

Apply Lemma 2.9 to X ∩ [fh = 2d] and ε/2, and we have a K > 0 satisfying the

property in Lemma 2.9. Therefore, if τ(p), τ ∈ Φ(γ), satisfies that fh(τ(p)) > K+2d,

then for any t with fh(τ(p)) < t < fh(τ(p))+2d, there exists an isometry τ1 ∈ Φ such

that τ1(q) ∈ X and d(τ1(q), S(τ(p), t)) < ε, in other words, d(τ−1◦τ1(q), S(p, t)) < ε.

This completes the proof.

4. Proof of Proposition 1.4

In this section we use the notation as in Proposition 1.4.

Let A be an open set consisting of poles. Let p be any point in M . Let v ∈ SpM

be any vector and B(−v, 1/k) the open ball in SM centered at −v with radius 1/k

for k = 1, 2, . . . . It follows from (P2) that there exist a point −vk ∈ B(−v, 1/k)
and a parameter tk such that Gtk(−vk) ∈ π−1(A). Since π(Gtk(−vk)) = γ−vk(tk) is

a pole and vk = γ̇wk
(tk) where wk = −γ̇−vk(tk), any point is not conjugate to γvk(0)

along the geodesic γvk for each k. Since the sequence of unit vectors vk converges

to v, there is no point conjugate to π(v) along the geodesic γv. Thus the point p

is a pole, and, hence, all the points in M are poles. This completes the proof of

Proposition 1.4.
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5. Flows with first integrals

In this section we take up the condition (SE) on a class of flows that have first

integrals.

LetM be a smooth manifold and φt : M →M be a flow which has a smooth first

integral H : M → R, namely H(φt(p)) = H(p) for all p ∈M and t ∈ R. Let µ be a

measure onM with µ(M) = 1 which is invariant under φt. Let ψt : M →M be the

flow generated by the gradient vector field of H. We define an equivalence relation

∼ as follows; p ∼ q if and only if q = ψt(p) for some t ∈ R. Set N = M/ ∼. Let

π : M → N be the natural projection. Define a measure ω on N by ω(A) = µ(Ã)

for A ⊂ N where Ã = π−1(A).

In this situation the property (P2) is stated as follows:

(P2) Let p be any point in N and U any open subset in N . For every point

x ∈ π−1(p) there exist a sequence of points xn ∈M and a sequence tn → ∞
such that xn → x and π(φtn(x)) ∈ U .

We prove the following.

Proposition 5.1. Assume that the gradient vector of H does not vanish. If φt

satisfies (P2), then all H−1(c), c ∈ H(M), are diffeomorphic to one another. In

addition, we assume that there exists a measure ω on N such that µ = ω ∧ η for

some measure η on H(M). Then, φt satisfies (SE) if and only if φt|H−1(c) is ergodic

for a. e. c ∈ H(M).

Proof. Let a, b ∈ H(M). We prove that H−1(a) is diffeomorphic to H−1(b). To

do this we have only to show that for any point p ∈ H−1(a) there exists a point

q ∈ H−1(b) such that π(p) = π(q). Take a point x with H(x) = b. Let B(π(p), 1/n)

be the 1/n-ball around π(p). It follows from (P2) that there exist a sequence of points

xn → x and a sequence of parameters tn → ∞ such that φtn(xn) ∈ π−1(B(p, 1/n)).

SinceH−1(b) is invariant under φt, we have φtn(xn) converges to a point q in π
−1(p)∩

H−1(b).

Let X ⊂ H(M) be the set of all values a such that φt|H−1(a) is not ergodic.

Suppose that X has positive measure. There exist subsets Y (a) ⊂ H−1(a), a ∈ X,

such that 0 < ω(Y (a)) < ω(H−1(a)) and Y (a) is invariant under φt|H−1(a). Let

p(a) ∈ M such that H(p(a)) = a ∈ X and π(p(a)) are constant for all a ∈ X.

One of Y (a) and H−1(a) − Y (a) contains p(a) for each a ∈ X, say Y ′(a). Set

Y = ∪a∈XY
′(a) and Z = N −π(Y ). If χZ is the characteristic function of Z, we see

(χZ ◦ π)∗ is not constant a. e. p ∈M . In fact, (χZ ◦ π)∗(p) = 0 if p ∈ Y and the set

of those points p ∈M such that (χZ ◦ π)∗(p) > 0 has positive measure.
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Suppose that φt|H−1(a) is ergodic for a. e. a ∈ H(M). Then we have

(f ◦ π)∗(p) = 1

volM

∫
M

f ◦ π dµ =
1

volN

∫
N

f dω

for any function f ∈ L1(N,ω) and a. e. p ∈ M . Thus (SE) holds. This completes

the proof. �

6. Convex billiards

Let Mn+1 be a complete Riemannian manifold with boundary ∂M =: B ̸= ∅
which is a union of smooth hypersurfaces. Let q ∈ B be an arbitrary point at which

B is smooth and Qq the symmetry with respect to TqB, i.e.,

Qq(W ) = w − 2⟨w,N(q)⟩N(q)

for any w ∈ TqM , where ⟨·, ·⟩ is the Riemannian metric in M and N is the inward

unit normal vector field to B. We say that γ : [a, b] →M is a reflecting geodesic or

briefly a geodesic if there exists the partition a = a0 < a1 < · · · < am = b such that

(1) γ(ai) ∈ B, B is smooth at γ(ai) and γ̇(ai−0) ̸∈ Tγ(ai)B for i−1, 2, . . . ,m−1.

(2) γi = γ|[ai−1, ai] is a geodesic in M in the usual sense for i = 1, 2, . . . ,m.

(3) Q(γ̇(ai − 0)) = γ̇(si + 0) for i = 1, 2, . . . ,m− 1.

A variation of a geodesic γ through geodesics yields a Jacobi vector field Y along γ

which satisfies the following properties at the boundary:

(1) Q(Y (ai − 0)) = Y (ai + 0)

(2) Q(∇γ̇(ai−0)Y )−∇γ̇(ai+0)Y = A(γ̇(Ai + 0))(Y ⊥(ai + 0))

where A(γ̇(ai +0)) is a symmetric endomorphism of n-dimensional subspace γ̇(ai +

0)⊥ of Tγ(ai)M which is perpendicular to γ̇(ai+0). We say that γ(t1), t1 ̸= t0 ∈ [a, b],

is conjugate to γ(t0), t0 ∈ [a, b], along γ if there exists a nontrivial Jacobi vector

field Y along γ with Y (t0) = Y (t1) = 0.

Let SM be the unit tangent bundle of M . For a vector v ∈ SM let γv be the

geodesic with γ̇v(0) = v. If π(v) ∈ B, then γ̇v(0) is considered either γ̇(+0) of γ̇(−0).

The geodesic γv are defined on the whole real line (−∞,∞) for almost all v ∈ SM .

Let the set of all such vectors be denoted by SM , also.

Let φt |SM → SM be a flow given by φt(v) = γ̇v(t) for any v ∈ SM . The symbol

∂SM denotes the set of all vectors v ∈ SM with π(v) = q ∈ B and ⟨v,N(q)⟩ > 0.

Let T be the ceiling function on ∂SM , i.e., T (v) is the first parameter such that

γv(T (v)) ∈ B, T (v) > 0. We assume that T (v) <∞ for all v ∈ ∂SM .

Let φ : ∂SM → ∂SM be a map given by φ(v) = γ̇v(T (v) + 0) for all v ∈ ∂SM .

We call φ the billiard ball map of B. We say that conjugate points along a geodesic

γv are separated by the boundary B if there exists only one point γv(t) ∈ B between
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any pair of adjacent conjugate points. We say that a point p ∈ B is a pole if the

geodesic γv(t) satisfies this property for every vector v ∈ ∂SM with π(v) = p. This

naming comes from the geometry of geodesics for convex billiards.

Let S be the second fundamental form of B at differentiable points with respect

to N and λS the maximal eigenvalue function of S. The following theorem is proved

in [17].

Theorem 6.1 ([17]). LetMn+1 be a compact Riemannian manifold with nonpositive

sectional curvature and T (v) < ∞ for all v ∈ ∂SM . If all points in B are poles,

then we have the inequality ∫
B

λS dB ≥ vol (B)2

(n+ 1)vol (M)

and the equality holds if and only if λS is constant and M is a spherical domain with

flat metric of radius λS
−1.

If M is a simply connected domain in the 2-dimensional Euclidean space E2,

then the right hand side is greater than or equal to 2π because of the isoperimetric

inequality. Therefore we have the following corollary which is a slight generalization

of the theorem in [4], [20].

Corollary 6.2 ([17]). Suppose M ⊂ E2 is a simply connected domain bounded by a

closed curve B and the sum of outer angles of B is nonnegative. Then all the points

of B are poles if and only if M is a circular domain in E2.

We consider the same properties as (P2) and (SE) on the billiard ball map. We

can prove the following.

Theorem 6.3. Let B be a simple closed convex curve in the Euclidean plane such

that the set of poles has positive measure. Then, B is a circle if and only if its

billiard ball map φ satisfies (SE).

Proof. We assume that B is the unit circle. If M denotes the disk bounded by B,

then ∂SM = B×(−1, 1) and the measure on it is ds∧dt where ds is the line element

of B and dt is the natural measure. Note that φ = ∪0<θ<πR(2θ) × I where R(2θ)

is the rotation around the center of B × {cos θ} by 2θ and I is the identity map on

(−1, 1). Since R(2θ) is ergodic on B × {cos θ} if 2π/θ is irrational, Proposition 5.1

shows that φ satisfies the condition (SE).

Assume that the billiard ball map φ satisfies (SE). Let Z be the set of all poles

in B. Let v ∈ ∂SM be an arbitrary point. Since Z has positive measure, the orbit

φn(v) of v meets Z. Then the conjugate pairs of the geodesic γv(t), t ∈ R, are
separated by the points in the boundary B. This implies that all points in B are

poles. Corollary 6.2 completes the proof. �
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