A POLYNOMIALLY SPECTRUM PRESERVING MAP BETWEEN UNIFORM ALGEBRAS

GO HIRASAWA AND HIROKAZU OKA

Abstract

We determine the general forms of polynomially spectrum preserving maps between uniform algebras for polynomials of the type $p(z, w)=z w+a z+$ $b w+c$.

1. Introduction

Let X be a compact Hausdorff space. The algebra of all complex valued continuous functions on X is denoted by $C(X)$. A uniform algebra on X is a closed subalgebra of $C(X)$ which contains constants and separates the points of X. A uniform algebra is a unital semisimple commutative Banach algebra with respect to the supremum norm which is denoted by $\|\cdot\|$ in this paper. For simplicity the Gelfand transform of a uniform algebra A and $f \in A$ are also denoted by A and f respectively, throughout the paper. The spectrum $\sigma(f)$ of $f \in A$ is the usual set of all complex numbers λ such that $f-\lambda$ is not invertible in A, and the subset $\{z \in \sigma(f):|z|=\|f\|\}$ of $\sigma(f)$ is called the peripheral spectrum and is denoted by $\sigma_{\pi}(f)$.

Molnár [6] initiated the study of multiplicatively spectrum preserving maps on certain Banach algebras. Luttman and Tonev [5] introduced the peripherally multiplicatively spectrum preserving maps and show a generalization of a theorem of Molnár.

Polynomially spectrum preserving maps are first considered by Hatori, Miura and Takagi in [3]. In particular, they considered the surjective map T between uniform algebras A and B such that $\sigma_{\pi}(p(T(f), T(g)))=\sigma_{\pi}(f, g)$ holds for every pair $f, g \in A$ with respect to the polynomial of the type $p(z, w)=z w+a z+b w+a b$. They asked a question for the case of $p(z, w)=z w+a z+b w+c$ without assuming that $c=a b$. In this paper we give an answer for the question by showing a similar result in [3].

[^0]
2. Main Result

Theorem 2.1. Let A and B be uniform algebras on compact Hausdorff spaces X and Y with maximal ideal spaces M_{A} and M_{B}, respectively. Let $p(z, w)=z w+a z+b w+c$ be a two-variable polynomial with coefficients a, b and c of complex numbers. Suppose that $T: A \rightarrow B$ is a surjective map such that the peripheral spectrum inclusion

$$
\begin{equation*}
\sigma_{\pi}(p(T(f), T(g))) \subset \sigma_{\pi}(p(f, g)) \tag{2.1}
\end{equation*}
$$

holds for every pair f and g in A. Then we have the following:
(1) if $a \neq b$, then T is an algebra isomorphism. Thus there exists a homeomorphism Φ from M_{B} onto M_{A} such that the equality

$$
T(f)(y)=f(\Phi(y)), \quad y \in M_{B}
$$

holds for every $f \in A$;
(2) if $a=b$, then there exist a continuous map $\eta: M_{B} \rightarrow\{-1,1\}$ and a homeomorphism Φ from M_{B} onto M_{A} such that the equality

$$
T(f)(y)=\eta(y) f(\Phi(y))+a(\eta(y)-1), \quad y \in M_{B}
$$

holds for every $f \in A$.
Proof. We note that every map of the forms (1) for the case of $a \neq b$ and (2) for the case of $a=b$ satisfies the spectral equation $\sigma(p(T(f), T(g))=\sigma(p(f, g))$. The content of the theorem is that the reverse statement with a weaker assumption is also true.

To begin with the proof, we define two surjections $S_{1}: A \rightarrow B$ and $S_{2}: A \rightarrow B$ as $S_{1}(h)=T(h-a)+a$ and $S_{2}(h)=T(h-b)+b$ for $h \in A$. Since $p(z, w)=$ $(z+b)(w+a)+c-a b$ we see by a simple calculation that

$$
\begin{equation*}
\sigma_{\pi}\left(S_{1}\left(h_{1}\right) S_{2}\left(h_{2}\right)+c-a b\right) \subset \sigma_{\pi}\left(h_{1} h_{2}+c-a b\right) \tag{2.2}
\end{equation*}
$$

holds for every pair h_{1} and h_{2} in A.
Firstly, we consider the case where $c=a b$. In this case we have

$$
\begin{equation*}
\sigma_{\pi}\left(S_{1}\left(h_{1}\right) S_{2}\left(h_{2}\right)\right) \subset \sigma_{\pi}\left(h_{1} h_{2}\right) \tag{2.3}
\end{equation*}
$$

holds for every pair h_{1} and h_{2} in A. Then by [4, Corollary 1] there exists a homeomorphism $\phi: \mathrm{Ch}(B) \rightarrow \mathrm{Ch}(A)$ such that

$$
\begin{equation*}
\frac{S_{1}(h)(y)}{S_{1}(1)(y)}=\frac{S_{2}(h)(y)}{S_{2}(1)(y)}=h(\phi(y)), \quad \forall y \in \mathrm{Ch}(B) \tag{2.4}
\end{equation*}
$$

holds for every $h \in A$, where $\operatorname{Ch}(\cdot)$ is the Choquet boundary. We consider both cases of $a \neq b$ and $a=b$. Now we suppose that the first case : $a \neq b$. Then

$$
T(-b)=S_{1}(-b+a)-a=-S_{1}(1) b+\left(S_{1}(1)-1\right) a
$$

and

$$
T(-b)=S_{2}(-b+b)-b=-b
$$

on $\operatorname{Ch}(B)$. Then we have $S_{1}(1)=1$ for $a-b \neq 0$. It follows that

$$
T(h)(y)=S_{1}(h+a)(y)-a=h(\phi(y)), \quad \forall y \in \operatorname{Ch}(B)
$$

holds for every $h \in A ; T$ is an algebra isomorphism from A onto B. Applying general theory for commutative Banach algebra we see that there exists a homeomorphism Φ from M_{B} onto M_{A} with

$$
T(h)(y)=h(\Phi(y)), \quad \forall y \in M_{B}
$$

for every $h \in A$. Next we suppose that the second case : $a=b$. Then $S_{1}=S_{2}$ in this case. Applying the first part of the proof of [4, Corollary 1] we see that $\left(S_{1}(1)\right)^{2}=1$ holds. Then by (2.4) the map $\frac{S_{1}}{S_{1}(1)}$ defines an algebra isomorphism from A onto B. Hence there exists a homeomorphism $\Phi: M_{B} \rightarrow M_{A}$ such that

$$
S_{1}(h)(y)=\eta(y) h(\Phi(y)), \quad \forall y \in M_{B}
$$

holds for every $h \in A$, where η is (precisely the Gelfand transform of) $S_{1}(1)$. It follows by a calculation that

$$
T(h)(y)=\eta(y) h(\Phi(y))+a(\eta(y)-1), \quad \forall y \in M_{B}
$$

holds for every $h \in A$.
Secondly, we consider the case where $c \neq a b$. Put $d=c-a b \neq 0$ and rewrite (2.2) we have

$$
\sigma_{\pi}\left(S_{1}\left(h_{1}\right) S_{2}\left(h_{2}\right)+d\right) \subset \sigma_{\pi}\left(h_{1} h_{2}+d\right)
$$

for every pair h_{1} and h_{2} in A. Henceforce

$$
\left\|S_{1}\left(h_{1}\right) S_{2}\left(h_{2}\right)+d\right\|=\left\|h_{1} h_{2}+d\right\|
$$

holds for every pair h_{1} and h_{2} in A. Then by [4, Theorem 3] there exists a homeomorphism $\Phi: M_{B} \rightarrow M_{A}$ and a clopen subset K of M_{B} such that

$$
S_{1}(1)(y) S_{2}(1)(y)=\left\{\begin{array}{l}
1, y \in K \tag{2.5}\\
d / \bar{d}, y \in M_{B} \backslash K
\end{array}\right.
$$

and

$$
\frac{S_{1}(h)(y)}{S_{1}(1)(y)}=\frac{S_{2}(h)(y)}{S_{2}(1)(y)}= \begin{cases}h(\Phi(y)), & y \in K, \tag{2.6}\\ h(\Phi(y)), & y \in M_{B} \backslash K\end{cases}
$$

hold for every $h \in A$. We intend to prove $K=M_{B}$. Suppose that $K \neq M_{B}$. We will lead a contradiction. Put a complex number α such that $|d|<\left|\bar{\alpha}^{2} d / \bar{d}+d\right|$,
$|d|<\left|\alpha^{2}+d\right|$, and $\bar{\alpha}^{2} d / \bar{d}+d \neq \alpha^{2}+d$. By the Šilov idempotent theorem there exists an $h_{0} \in A$ with

$$
h_{0}(y)=\left\{\begin{array}{l}
0, y \in \Phi(K), \\
\alpha, y \in M_{A} \backslash \Phi(K) .
\end{array}\right.
$$

Then by (2.5) and (2.6) we have

$$
S_{1}\left(h_{0}\right)(y) S_{2}\left(h_{0}\right)(y)=\left\{\begin{array}{l}
0, y \in K, \\
\bar{\alpha}^{2} d / \bar{d}, y \in M_{B} \backslash K .
\end{array}\right.
$$

Hence we see that

$$
\sigma_{\pi}\left(S_{1}\left(h_{0}\right) S_{2}\left(h_{0}\right)+d\right)=\left\{\bar{\alpha}^{2} d / \bar{d}+d\right\}
$$

since $|d|<\left|\bar{\alpha}^{2} d / \bar{d}+d\right|$. On the other hand since

$$
\left(h_{0}\right)^{2}+d=\left\{\begin{array}{l}
d \text { on } \Phi(K), \\
\alpha^{2}+d \text { on } M_{A} \backslash \Phi(K)
\end{array}\right.
$$

holds we have

$$
\sigma_{\pi}\left(\left(h_{0}\right)^{2}+d\right)=\left\{\alpha^{2}+d\right\}
$$

since $|d|<\left|\alpha^{2}+d\right|$, which contradicts to the inclusion

$$
\sigma_{\pi}\left(S_{1}\left(h_{0}\right) S_{2}\left(h_{0}\right)+d\right) \subset \sigma_{\pi}\left(\left(h_{0}\right)^{2}+d\right)
$$

We have just concluded that $K=M_{B}$. Henceforce

$$
S_{1}(1) S_{2}(1)=1
$$

and

$$
S_{1}(h)=S_{1}(1) h \circ \Phi, S_{2}(h)=S_{2}(1) h \circ \Phi
$$

hold on M_{B}. The rest of the proof is similar to the proof for the case of $c=a b$ and we see that

$$
T(h)=h \circ \Phi
$$

on M_{B} for every $h \in A$ if $a=b$, and if $a \neq b$, then there is a continuous function $\eta: M_{B} \rightarrow\{-1,1\}$ such that

$$
T(h)=\eta h \circ \Phi+a(\eta-1)
$$

on M_{B} holds for every $h \in A$.
Acknowledgements. The authors would like to express our gratitude to the referee for several useful comments. The authors also thank Prof. O.Hatori for providing the preprint [3], which piqued their interest in the problem on polynomially spectrum preserving maps.

References

[1] A. Browder, Introduction to Function Algebras, W.A. Benjamin, 1969.
[2] T. W. Gamelin, Uniform Algebras 2nd ed., Chelsea Publishing Company, 1984.
[3] O. Hatori, T. Miura and H. Takagi, Polynomially spectrum-preserving maps between commutative Banach algebras, preprint.
[4] O. Hatori, T. Miura, R. Shindo and H. Takagi, Generalizations of spectrally multiplicative surjections between uniform algebras, Rend. Circ. Mat. Palermo (2), 59 (2010), 161-183.
[5] A. Luttman and T. Tonev, Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc., 135 (2007), 3589-3598.
[6] L. Molnár, Some characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc., 130 (2002), 111-120.
(Go Hirasawa) Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
E-mail address: gou@mx.ibaraki.ac.jp
(Hirokazu Oka) Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 3168511, Japan
E-mail address: oka@mx.ibaraki.ac.jp

Received Octorber 25, 2010
Revised November 10, 2010

[^0]: 2000 Mathematics Subject Classification. Primary 46J10; Secondary 47B48.
 Key words and phrases. uniform algebras, isomorphisms, spectrum preserving maps.
 The authors were partially supported by the Grant-in-Aid for Scientific Research(C) No.20540154, from the Japan Society for the Promotion of Science.

