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ON A COMPOSITION OPERATOR AND HARDY SPACE

E. G. KwoN

ABSTRACT. Characterizing a geometric property of the self map that induces a
bounded composition operator on Blochs to a Hardy-Sobolov space, we give a way
of constructing examples of Bloch functions f whose derivative is in H? for all p :
0 <p<1but f ¢ BMOA. The hyperbolic version of such an example is also given.

1. Introduction.

Let U = {2 : |z| < 1} be the open unit disc of the complex plane and let T be
the boundary of U identified with [—m, 7]. Let o(z) denotes the hyperbolic distance
of zand 0 in U:

1 1+|z
o(z) = = log 1_:2:.

2

For 0 < p < oo and for f subharmonic in U, we set
1 fll, = sup My(r,f),
0<r<1

where

27 . d %
me. 0 = ([ ieerst)” i<

and

Meo(r, f) = Sgplf(reio)l-

If f(2) is subharmonic in U, then it has a harmonic majorant if and only if || f||; <
0o.
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The Hardy space H? is the class of those functions f holomorphic in U for
which || fll, < oo. The Yamashita hyperbolic Hardy class H? is the class of those
holomorphic self maps ¢ of U for which ||o(¢)|l, < oo. Though H? is not a linear
space, it has, as hyperbolic counterparts, many properties analogous to those of

HP?. See [D] and [G] for H? spaces, and [Y1], [Y3] and [Kw4] for H? spaces.
BMOA, analytic functions of bounded mean oscillation, consists of those f € H?!

for which
I (2)]*(1 - |2|*)dzdy

is a Carleson measure, that is to say,

/ /S £ (2)(1 = |2*)dzdy = O(5),

where 0 < § <1 and
Ss0={re: 06—t <61-6<r<1}, 0€eT.

BMOA,, the Yamashita BMOA class, consists of those holomorpluc self maps ¢
of U for which

(6#(2))*(1 - |2I*) dzdy
is a Carleson measure on U, where ¢# is the hyperbolic derivative :
|¢']
1—|¢f?
See [G] for BMOA and [Y2) for BMOA,.

¢%(2) = (2), zel.

The Bloch space B consists of those f holomorphic in U for which
I£lls = sup|f'(2)I(1 = |2]*) < co.
z€eU
While, by Schwarz-Pick’s lemma stating that

s*(z)(1-|z1*) <1, zeU,

every holomorphic self map of U is hyperbolically Bloch. To keep up the parallism
between H? and H? more closely, we introduce a weighted subspace of Hardy-
Sobolev space H?', which is defined to consist of those f for which f' € H? and
fl(z) = 0(1 - |z|)_ See [KKw] and [Kw3] for the weighted subspaces of Hardy

spaces.

We consider the sharpness of the following two parallel results.
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Theorem A ([K] or [KKw]). If f € H”' for some p: 0 < p < 1, then f € H? for
all ¢: 0 < ¢ < oo.

Theorem B ([Kw2]). If ¢ is a holomorphic self map of U and (¢%#)? admits a
harmonic majorant in U for somep:0<p< 1, then ¢ € HY forallq:0 < q < oo.

The example f(z) = log(1l — z) shows that we can improve the conclusion of
Theorem A neither up to f € H* nor up to the Dirichlet finite functions. In a
parallel direction, the bound on ¢ in Theorem B is sharp in the sense that there
is a holomorphic self map ¢ such that (¢#)? admits harmonic majorants in U for
arbitrary p less than 1, but neither ¢ € HS® nor ¢ a function of hyperbolically

Dirichlet finite, that is,
[ [ @*r ey = oo

Next step to the sharpness problem may be concerned with BMOA and BMOA,
respectively. We prove

Theorem 1. Thereis an f such that f € H? forallp: 0 < p < 1 but f ¢ BMOA.

Theorem 2. There exists a holomorphic self map ¢ such that (¢#)P has harmonic
majorants for allp : 0 < p< 1 but ¢ ¢ BMOA,.

Theorem 1 is sharp because if f' € H! then, by a well known result of Pri-
valov(see [D, pp 42-52]), f is continuous on U and absolutely continuous on T so
that f € H*° C BMOA. Theorem 2 is sharp by a parallel reason (see [Y1, Theorem

1]).

It seems that there are other ways of showing the existence of functions requested
in Theorem 1. Our point is that we can transfer, by use of a composition operator,
the problem to a parallel problem of holomorphic self maps on U with hyperbolic
geometry. We show that Theorem 1 is a consequence of Theorem 2. This will be
done in Section 2 and Section 3. We prove Theorem 2 in Section 4 by giving an
example which is connected with the order of contact. See [S] for the concept on
contact.

2. A composition operator on the Bloch space.

The following represents one of the relationships between H? and H? via com-
position operators.

Theorem 3. Let ¢ be a holomorphic selfmap of U and 0 < p < oo. Then the
following (1) and (2) are equivalent.
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(1) (9o @) € HP for all g € B.

(2) (¢#)P has a harmonic majorant.

Proof. Suppose that (¢#)p has a harmonic majorant. Then, for g € B, the lemma
of Schwarz-Pick gives

(g o 8)'IZ < llglls ll6¥]1% < oo,
so that (g o ¢)' € H?.

Conversely, suppose that (g o ¢)' € H? for all g € B. By [RU, Proposition 5.4],
there is {g;};j=1,2 C B such that

Z lg5(2)| > | gy 2 € U.

Hence

2
My(r, ¢%#) < C(p) Y My(r,(gj 0 ¢)') < o0

Jj=1

for some constant C(p) depending on p. Therefore (¢#)p has a harmonic majo-
rant. O

On the same vein we need is the following

Theorem C ([RU]). Let ¢ be a holomorphic self map of U. Then the following
(1) and (2) are equivalent.

(1)goéd € BMOA for all g € B.
(2) $ € BMOA,.

See [Kwl] for a similar results on H?. Though the proof is simple, Theorem 3
has many applications. We see one of them in the next section.

3. Theorem 2 implies Theorem 1.

Assuming Theorem 2, we can prove Theorem 1 by help of Theorem 3.

Proof (Theorem 2 = Theorem 1). Suppose that ¢ is a self map of U such that
(¢*)? has a harmonic majorant for all p: 0 < p < 1 and ¢ ¢ BMOA,. Then by
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Theorem 3, (g o ¢)' € HP forall p: 0 < p < 1 and for all g € B. Also by Theorem
C,

(3.1) god & BMOA

for some g € B. Now f = g o ¢ with g satisfying (3.1) is a required function of
Theorem 1. 0O

We are left, therefore, to prove Theorem 2 in the next section.

4. Proof of Theorem 2 by an example.

Recall, for a holomorphic self map ¢, that (¢#)p has a harmonic majorant if
and only if

(4.1) sup /T (1 l¢l’g£izl|)|2)pd9 < o0,

and that ¢ € BMOA, if and only if

(4.2) / /S (%)2(1 — 122 dzdy = O(6)

forall8eT.

Properties (4.1) and (4.2) are connected with the order of contact and the an-
gular derivative. See [S], for example, for these two concepts. For a theoretical
background, we invoke a theorem of Tsuji-Warschawski(see [T, p 366] or [S, p 72])
stating a necessary and sufficient contact condition for a univalent map to have an
angular derivative. Without regarding the growth of the derivative, a holomorphic
self map ¢ need to have worse order of contacts to satisfy (4.1) but need to have a
smooth contact to fail (4.2). We prove Theorem 2 by giving the following example.

Ezample.
There is a holomorphic self map ¢ of U such that
(1) ¢ does not satisfy (4.2) for § = 0.
(2) ¢ is univalent and has angular derivative nowhere on T

(3) ¢ satisfies (4.1) forall p: 0 <p < 1.
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P = o I,
i
h(z) = 7 Y—=—r, z€U,
it
1—-1z2

where the branch of square root is taken with negative imaginary axis omitted, and
k is a large positive constant, say k > 9. Then h maps U conformally onto

A={w: |lw|< l,Re(w)>0}.

Since h is conformal and extensible analytically across T in a neighborhood of z = 1
with k(1) = 0, A'(1) = — ¢, h maps the (Polar) Carleson square S; = S50 onto a
roughly rectangular (Carleson) square Rs = h(Ss) of the right half plane around 0
if 4 is sufficiently small. Hence we can take éo small enough such that |h'(2)| > &
for all z € S5, and

Re(w) < £ (1~ A7 (w)]), w € Rs
along with

)
{w D w| < 3% Re(w) > 0} C Rs

forall 6: 6 < &.
Now, let

f(z) = zlog%, z€A

with the principal branch of log z and let
¢(z)=1— foh(z), ze€U.

Then it follows from the conformality of A with an easy calculation that, for all
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5<6(),

//s,, (1 l¢|<§5z)|)|2>2 (1 —|2[?) dzdy

’ 2
1) oo
r, \1—[1 - f(w)]
2
_ // u |1 + log w| 5 dudv
v, (1= 11+ wlog uP)
5/8k 2
> (6 51 6)2 + (log r cos )2
g /5/8k/ sec 8 dfdr
Z 0tan9)2,
Iogr
whence . / [ (2L (- ey oy
§—0 Ss 1- |¢(z)|2
2 lim 2008
r—0 Jo 1+ (oztoagnro)
= ©0.

This proves (1). Here A 2 B means that there is a positive constant C such that
CA> B.

It is not difficult to see that f’' has positive real part on A\ 0, so that ¢ is
univalent. Concerning the order of contact, from

(43) e =i {~ gz +0 (o)},
we see that
1— |g(e™))?
(4.4) =1—|1— foh(e)
= %m +0 (6 tog |6])

in a neighborhood of § = 0. By (4.4),

‘ 1 — |¢(ei0)| do _
/o 62 -
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for ¢ > 0, so that ¢ can not have an angular derivative at z = 1 by Tsuji-
Warchauski’s Theorem [T]. Hence ¢ has no angular derivatives on T. This with
univalency proves (2).

By (4.3),
16'()] = |1 + log h(e*)| |1'(e*®)| = O(|1 + log h(e**)[) = O (log |6])
for 6 near 0. Thus, by (4.4), the function
¢ (e*)]
1—|g(e)|?

is p-integrable with respect to 6 on a small neighborhood of § = 0 for all p less than
1. Now since ¢(U) C U U {1}, to prove (3) it is enough to check that the radial
limit function lin} |¢'(re*®)| is p-integrable with respect to 6 for all p less than 1 on

any compact subset of T' that does not contain § = 0. Since
|6'()] = | 0 h(e) h'(e")| = O(IR'(e**))
on such a set, we are enough to check the behavior of A'. Note that h'(re*®) fails

to have finite radial limits only at # = +7, and in a small neighborhood of those
points

Ih'(2)| = O (11 + iz|-1/2) .

Hence |h'(e'?)|? is integrable for all p less than 1 with respect to § on the compact
subset. Therefore we have (3). O
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