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COMPOSITION OPERATORS ON SOME
$F$-ALGEBRAS OF HOLOMORPHIC FUNCTIONS

JUN SOO CHOA AND HONG OH KIM

ABSTRACT. We let $N^{p},$ $p>1$ , be the $F$-algebra of holomorphic functions $f$ on the
unit disc $D$ which satisfy

$\lim_{r\nearrow 1}\int_{0}^{2\pi}(\log(1+|f(re^{i\theta})|^{2}))^{p}d\theta<\infty$ .

In this paper we prove that the composition operator induced by a holomorphic self-
map of the unit disc is compact on $N^{P},$ $p>1$ , if and only if it is compact on the
Hardy space $H^{2}$ .

1. INTRODUCTION

For $p\geq 1$ , we let $N^{p}$ denote the class of al functions $f$ holomorphic in the unit

disc $D$ which satisfy the growth condition

$ r\nearrow 111m\int_{0}^{2\pi}(\log^{+}|f(re^{i\theta})|)^{p}d\theta<\infty$ .

If $p\geq 1$ , the inequalities

(1) $(\log^{+}x)^{p}\leq(\log(1+x^{2}))^{p}\leq 2^{p-1}(1+(\log^{+}x)^{p})$ for all $x\geq 0$
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imply that

$f\in N^{p}$ if and only if $||f\Vert_{N^{p}}^{p}$ $:=\lim_{r\nearrow 1}\int_{0}^{2\pi}(\log(1+|f(re^{i\theta})|^{2}))^{p}\frac{d\theta}{2\pi}<\infty$

for $f$ holomorphic in D. Note that $N^{1}$ is the classical Nevanlinna class $N$ . It was
known that

$H^{p}\subset N^{p}\subset N$ for $p>1$

and these containments are proper([5], [20]). Under the metric 4, defined for
$f,g\in N^{p}$ by $d_{p}(f,g)=||f-g||_{N^{p}},$ $N^{p}$ becomes an algebra if $p\geq 1$ and moreover
$N^{p}$ is an F-algebra(i.e., a topological vector space which is an algebra) if $p>1$ .
See [10] and [20] for this and more information on $N^{p}$ .

If $\varphi$ is a holomorphic self-map of the unit disc $D$ , then such map $\varphi$ induces a linear
operator $C_{\varphi}$ on the space of holomorphic functions on $D$ by means of the equation

$ C_{\varphi}(f)=fo\varphi$ . This $C_{\varphi}$ is called the composition operator induced by $\varphi$ . The

study of composition operators began in 1968 with the work of E. Nordgren [12].

Ftom then on, most work was on the properties of composition operators on the

Hardy space $H^{p}$(see for example [2], [4], [16], [17], [18] and [19]) although there were
various results obtained in other function spaces (see [1], [8], [9], [10], [13], [14] and

[21]). In 1987, J. Shapiro [17] has obtained a prevailing result on the compactness

of $C_{\varphi}$ on the Hardy space $H^{p}$ . In fact he gave a complete characterization of $\varphi$ , in

terms of Nevanlinna counting function, for which $C_{\varphi}$ is compact on $H^{p}$ . However,

as far as we know, the operator $C_{\varphi}$ as an operator on the class $N^{p},$ $p\geq 1$ , was first

studied by Masri in his thesis [10], where he obtained several necessary conditions

and sufficient conditions on $\varphi$ for the operator $C_{\varphi}$ to be compact on the class $N^{p}$ ,

but he could not find necessary and sufficient conditions for the compactness of
$C_{\varphi}$ on $N^{p}$ except the sequential one(see, Lemma 1 of Section 2), and indeed the

conditions are in the same spirit as conditions developed in [19] for studying the
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compactness of $C_{\varphi}$ on $H^{p}$ . In this paper we find, however, a necessary and sufficient
condition(which is not a sequential one) for the compactness of $C_{\varphi}$ on the algebra
$N^{p}$ when $p>1$ . More precIsely we prove:

A composition operator $C_{\varphi}$ is compact on the F-algebra $N^{p},$ $p>1$ , if and

only if it is compact on $H^{2}$ .
Appealing to Shapiro[17], this result gives a complete characterization of $\varphi$ for which
$C_{\varphi}$ is compact on $N^{p}$ for the case $p>1$ . Recently, the authors [3] verified that
the compactness of $C_{\varphi}$ on the Nevanlinna class $N$ is equivalent to its compactness

on $H^{2}$ . Erom this viewpoint, later on, we wil consider the compactness of $C_{\varphi}$ on
$N^{p}\ddagger n$ the case $p>1$ . The result of this paper relies on the Shapiro’s Nevanlnna
counting function criterion [17] and MacCluer’s Carleson-measure $crIter\ddagger on[7](where$

the setting was more general) for the compactness of $C_{\varphi}$ on $H^{2}$ .
Throughout this paper, the symbol $\varphi$ will be used to denote a holomorphic self-

map of the unit disc D.

2. PRELIMINARIES

As is shown in [10], the boundedness of $C_{\varphi}$ on the algebra $N^{p}$ folows from Har-

nack’s inequality. (This can also be proved by Littlewood’s subordination principle.)

So, from now on, we confine ourselves to the compactness of $C_{\varphi}$ on $N^{p}$ . Folowing

[10], we say that the operator $C_{\varphi}$ is compact on $N^{p}$ if the closure of the image, under
$C_{\varphi}$ , of each bounded set is compact. We recall that a subset $E$ of $N^{p}$ is bounded if
there exists a finite constant $M$ such that $\Vert f-g\Vert_{N^{p}}\leq M$ for all $f,g\in E$.

Now we colect some material that wil be used later. Recal that the exponent
$p$ which appears in the rest of this paper is bigger than 1.

The first one is the folowing characterization of compactness of $C_{\varphi}$ on $N^{p}$ ex-

pressed in terms of sequential convergence, which is taken from [10, Theorem 2.4.2].
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Lemma 1. Let $\varphi$ be a holomorphic self-map ofD. Then $C_{\varphi}$ is a compact operator

on $N^{p}$ if an$d$ only if for every sequence $\{f_{n}\}$ which is bounded in $N^{p}$ an $d$ converges

to zero uniformly on compact subsets of $D$ , we have 11 $f_{n^{O}}\varphi||_{N^{p}}\rightarrow 0$ .

The lemma below is a Littlewood and Paley-type identity, Since the proof which

is based on the Green’s formula [6, page 236] can be obtained by a slight modification

of that of [3, Lemmal], we just state it without proof. In what folows, $dA$ denotes

the normalized Lebesegue area measure on D.

Lemma 2. Suppose $f$ is holomorphic in D. Then

(2) $||f||_{N^{p}}^{p}=(\log(1+|f(0)|^{2}))^{p}$

$+2\int_{D}\{p(p-1)(\log(1+|f(z)|^{2}))^{p-2}\frac{|f(z)|^{2}|f^{\prime}(z)|^{2}}{(1+|f(z)|^{2})^{2}}$

$+p(\log(1+|f(z)|^{2}))^{p-1}\frac{|f^{\prime}(z)|^{2}}{(1+|f(z)|^{2})^{2}}\}\log\frac{1}{|z|}dA(z)$

where, as always ’‘11 11 $N^{p}$ denotes the quasi-norm as deined in Section 1, and

$||f||_{N^{p}}=\infty$ means $f\not\in N^{p}’$ .
The next lemma is a wel-known change of variable fomula for the integral means,

and it can be found in [18, page 186].

Lemma 3. If $g$ is a non-negative measurable function on $D$ an$ d\varphi$ is a holomorphic

self-map of $D$, then

(3) $\int_{D}g(\varphi(z))|\varphi^{\prime}(z)|^{2}$ log $\frac{1}{|z|}dA(z)=\int_{D}g(w)N_{\varphi}(w)dA(w)$ ,

where $N_{\varphi}(w)$ is the (usual) Nevanlinna counting function defined by

$N_{\varphi}(w)=\left\{\begin{array}{ll}\sum_{z\in\varphi^{-1}(w)}\log_{\Pi z}^{1} & if w\in\varphi(D),\\0 & if w\not\in\varphi(D).\end{array}\right.$
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The folowing result is an immedIate consequence of the above two formulas (2)

and (3).

Corollary 4. $S$uppose $\varphi$ is a holomorphic self-map of D. Then

(4) $\Vert C_{\varphi}f\Vert_{N^{p}}^{p}=(\log(1+|f(\varphi(0))|^{2}))^{p}$

+2 $\int_{D}\{p(p-1)(\log(1+|f(w)|^{2}))^{p-2}\frac{|f(w)|^{2}|f^{\prime}(w)|^{2}}{(1+|f(w)|^{2})^{2}}$

$+p(\log(1+|f(w)|^{2}))^{p-1}\frac{|f^{\prime}(w)|^{2}}{(1+|f(w)|^{2})^{2}}\}N_{\varphi}(w)dA(w)$

for all $f$ holomorphic in D.

The above corolary suggests that the Nevanlinna counting function is closely
related to composition operators on the algebra $N^{p}$ .

The next criteria of compactness of $C_{\varphi}$ , which $are$ due to Shapiro [17] and Mac-

Cluer [7], play crucial roles in the proof of the main result of this paper. In the

followings, we say that a positive measure $\mu$ on fi is a little Carleson measure if

$\lim_{\delta\rightarrow 0}\frac{\mu(S_{\delta}(\zeta))}{\delta}=0$ uniformly in $\zeta\in\partial D$ ,

where $S_{\delta}(\zeta)=$ {$re^{it}\in\overline{D}:1-\delta<r\leq 1$ and $|e^{it}-\zeta|<\delta$}.

Lemma 5. For $\varphi$ a holomorphic self-map of $D$ , the following conditions are equiv-

alent:
(a) $C_{\varphi}$ is compact on $H^{2}$ .

$(b)\lim_{|w|\nearrow 1}\frac{N_{\varphi}(w)}{\log_{\Pi w}^{1}}=0$ .

$(c)$ The pull-back measure $\mu_{\varphi}$ defin$edby\mu_{\varphi}=\sigma 0\varphi^{-1}$ is a little Carleson measure
on $\overline{D}$, here $\sigma=d\theta/2\pi$ .
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3. PROOF OF THE RESULT

We proceed now to prove the main result of this paper. As stated in the intro-

duction, what we want to prove is:

Main Theorem. Suppose $\varphi$ is a holomorphic self-map ofD. Then $C_{\varphi}$ is compact

on the F-algebra $N^{p},$ $p>1$ , if and only if it is compact on $H^{2}$ .

Prvof First we assume that $C_{\varphi}$ is compact on $H^{2}$ and will show that $C_{\varphi}$ is compact

on $N^{p}$ . The argument to prove this part is very similar to that of [18, Section 10.5].

For this, fix a sequence $\{f_{n}\}$ with $||f_{n}||_{N^{p}}\leq M$ that converges to zero uniformly

on compact subsets of D. By Lemma 1, it is enough to prove that $||f_{n}o\varphi||_{N^{p}}\rightarrow 0$ .
Before proving this result, to simplify some writing, let us introduce the notation

$I_{p}(f)$ for

$p(p-1)(\log(1+|f(w)|^{2}))^{p-2}\frac{|f(w)|^{2}|f^{\prime}(w)|^{2}}{(1+|f(w)|^{2})^{2}}+p(\log(1+|f(w)|^{2}))^{p-1}\frac{|f^{\prime}(w)|^{2}}{|1+|f(w)|^{2})^{2}}$

whenever $f$ is a function holomorphic in $D$ and $p>1$ .
Now let $\epsilon>0$ be given. Then it folows from Lemma 5 that we can choose

$0<r<1$ such that

$ N_{\varphi}(w)<\epsilon$ log $\frac{1}{|w|}$ whenever $r\leq|w|<1$ .

Since $f_{n}\rightarrow 0$ uniformly on compact subsets of $D$ , so is $f_{n}^{\prime}$ . Thus we can choose $n_{\epsilon}$

so that

$|f_{\mathfrak{n}}|$ and $|f_{n}^{\prime}|<\sqrt{}$
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on $rD\cup\{\varphi(0)\}$ whenever $n>n_{e}$ . Hence for each such $n$ we have from formula (4)
and the elementary inequalities $x/(1+x)\leq\log(1+x)\leq x$ $(x\geq 0)$ ,

(5) $\Vert f_{n}o\varphi\Vert_{N^{p}}^{p}=(\log(1+|f_{\iota}(\varphi(0))|^{2}))^{p}+2[\int_{rD}+\int_{D\backslash rD}\{I_{p}(f)\}N_{\varphi}(w)dA(w)]$

$\leq\epsilon^{p}+2(p(p-1)\epsilon^{p}+p\epsilon^{p})\int_{rD}N_{\varphi}(w)dA(w)+2\epsilon\int_{D\backslash rD}\{I_{p}(f)\}\log\frac{1}{|w|}dA(w)$ .

The quantity in the inequality of the above (5) is at most

$\epsilon^{p}+2p^{2}\epsilon^{p}\int_{D}N_{\varphi}(w)dA(w)+2\epsilon\int_{D}\{I_{p}(f)\}\log\frac{1}{|w|}dA(w)$

$\leq\epsilon^{p}+p^{2}\epsilon^{p}(1-|\varphi(0)|^{2})+\epsilon[||f_{n}\Vert_{N^{p}}^{p}-(\log(1+|f_{n}(0)|^{2}))^{p}]$

$\leq\epsilon^{p}+p^{2}\epsilon^{p}+\epsilon||f_{n}||_{N_{p}}^{p}$

$\leq\epsilon^{p}(1+p^{2})+eM^{p}$ ,

where in the first inequality we have used the estimate

$\int_{D}N_{\varphi}(w)dA(w)\leq\frac{1-|\varphi(0)|^{2}}{2}$

of [17, Section 4.5] and Lemma 2, and in the last inequality we used the fact that
$||f_{n}||_{N^{p}}\leq M$ for each $n$ . Thus II $f_{n}o\varphi\Vert_{N^{p}}\rightarrow 0$ , which establishes the compactness

of $C_{\varphi}$ on $N^{p}$ .
For the converse direction, we assume $C_{\varphi}$ is compact on $N^{p}$ . Because of Lemma

5, we only need to verify that the pul-back measure $\mu_{\varphi}=\sigma 0\varphi^{-1}$ is a little Carleson

on $\overline{D}$.
To prove this, we let $ a=(1-\delta)\zeta$ where $\zeta\in\partial D$ and $0<\delta<1$ , and define

$f_{a}(z)=(1-|a|)^{1/p}$ exp $(\frac{(1-|a|)^{\alpha}}{1-\overline{a}z})$
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where $\alpha=1-\frac{1}{p}(>0)$ . Then clearly $f_{a}\rightarrow 0$ uniformly on compact subsets of $D$ as

$|a|\nearrow 1$ . By simple calculations, together with the trivial inequalities

$\log^{+}xy\leq\log^{+}x+\log^{+}y$ for $x,y\geq 0$

and
$\log^{+}\exp t\leq|t|$ for $t$ real,

we have

$\int_{0}^{2\pi}(\log^{+}|f_{a}(re^{i\theta})|)^{p}\frac{d\theta}{2\pi}\leq\int_{0}^{2\pi}[\log^{+}(\exp({\rm Re}(\frac{(1-|a|)^{\alpha}}{1-\overline{a}re^{i\theta}})))]^{p}\frac{d\theta}{2\pi}$

$\leq\int_{0}^{2\pi}|{\rm Re}(\frac{(1-|a|)^{\alpha}}{1-\overline{a}re^{i\theta}})|^{p}\frac{d\theta}{2\pi}$

$=(1-|a|)^{\alpha p}\int_{0}^{2\pi}t\frac{1-{\rm Re}(\overline{a}re^{i\theta})}{|1-\overline{a}re^{i\theta}|^{2}}\}^{p}\frac{d\theta}{2\pi}$

$\leq(1-|a|)^{\alpha p}\int_{0}^{2\pi}\frac{1}{|1-\overline{a}re^{i\theta}|P}\frac{d\theta}{2\pi}$ .

In the above, the last step folows $hom$ the inequality $1-{\rm Re} w\leq|1-w|$ for $|w|<1$ .
By Proposition 1.4.10 of [15] (recall that $p>1$ ), there is an absolute constant $\overline{M}>0$

such that

$\int_{0}^{2\pi}\frac{1}{|1-\overline{a}re^{i\theta}|^{p}}\frac{d\theta}{2\pi}\leq\overline{M}(1-|a|)^{1-p}$ ,

so that

$\int_{0}^{2\pi}(\log^{+}|f_{a}(re^{i\theta})|)^{p}\frac{d\theta}{2\pi}\leq\overline{M}$,

and thus we have from (1) that

$||f_{a}||_{N^{p}}^{p}=\lim_{r\nearrow 1}\int_{0}^{2\pi}(\log(1+|f_{a}(re^{i\theta})|^{2}))^{p}\frac{d\theta}{2\pi}\leq 2^{p-1}(1+\overline{M})$ .
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It now follows from the compactnes $s$ of $C_{\varphi}$ on $N^{p}$ and Lemma 1 that

$\lim_{|a|\nearrow 1}\Vert f_{a}o\varphi\Vert_{N^{p}}=0$ .

On the other hand, if $z\in S_{\delta}(\zeta)$ then

$\frac{1-|a|}{|1-\overline{a}z|^{2}}\geq\frac{C}{\delta}$

for some absoulte constant $C>0$ . Thus, for $z\in S_{\delta}(\zeta)$ , we have

$\log^{+}|f_{a}(z)|\geq\log^{+}[(1-|a|)^{1/p}$ exp $((1-|a|)^{\alpha}\frac{1-{\rm Re}(\overline{a}z)}{|1-\overline{a}z|^{2}})]$

$\geq\log^{+}[(1-|a|)^{1/p}$ exp $((1-|a|)^{\alpha}\frac{(1-|a||z|)}{|1-\overline{a}z|^{2}})]$

$\geq\log^{+}[(1-|a|)^{1/p}$ exp $((1-|a|)^{\alpha}\frac{1-|a|}{|1-\overline{a}z|^{2}})]$

$\geq\log^{+}[\delta^{1/p}\exp(C\delta^{-1/p})]$ .

Hence, for all $\zeta\in\partial D$ and $0<\delta<1$ ,

$[\log^{+}(\delta^{1/p}\exp(C\delta^{-1/p}))]^{p}\mu_{\varphi}(S_{\delta}(\zeta))\leq\int_{S_{\delta}(\zeta)}(\log^{+}|f_{a}(z)|)^{p}d\mu_{\varphi}(z)$

$\leq\int_{S_{\delta}(\zeta)}(\log(1+|f_{a}(z)|^{2}))^{p}d\mu_{\varphi}(z)$

$\leq\int_{\overline{D}}(\log(1+|f_{a}(z)|^{2}))^{p}d\mu_{\varphi}(z)$

$\leq\lim_{r\nearrow 1}\int_{0}^{2\pi}(\log(1+|f_{a}o\varphi(re^{i\theta})|^{2}))^{p}\frac{d\theta}{2\pi}$

$=||f_{a}o\varphi||_{N^{p}}^{p}$ ,
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where the last inequality follows from the Fatou’s lemma. As we saw above, the

compactness of $C_{\varphi}$ on $N^{p}$ forces Il $f_{a}o\varphi\Vert_{N^{p}}$ to zero as $|a|\nearrow 1$ , which implies

$\delta\rightarrow 01\dot{m}[\log^{+}(\delta^{1/p}\exp(C\delta^{-1/p}))]^{p}\mu_{\varphi}(S_{\delta}(\zeta))=0$ ,

uniformly in $\zeta\in\partial D$ . Therefore the desired conclusion folows since

$\lim_{\delta\rightarrow 0}\delta[\log^{+}(\delta^{1/p}\exp(C\delta^{-1/p}))]^{p}=\lim_{t\rightarrow\infty}\frac{(Ct^{1/p}-\frac{1}{p}\log t)^{p}}{t}=C^{p}$ .
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