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In this article we investigate the local structure of Mizohata’s systems in $R^{3}$ , i.e. the
local structure of systems of the form

$|_{\& u=\epsilon_{2}ix^{2}\partial_{3}u+g}^{\partial_{1}u=\epsilon_{1}ix^{1}\partial_{3}u+f}$ (1)

where $u(x)=u(x^{1}, x^{2}, x^{3})$ is the unknown complex function of $x=(x^{1}, x^{2}, x^{3})\in R^{3},$ $f(x)$

and $g(x)$ are given smooth complex functions, $\epsilon_{j}=+1$ or-l, $j=1,2$ , and $\partial_{k}u=\frac{\partial u}{\partial x^{k}}$

The local existence of solutions of Mizohata systems of codimension 1 in $R^{n}$ was
studied in the paper [1] by P. Cordaro and J. Hounie, where sufficient conditions for the
local solvability were given in the case when the given functions in the right hand sides
of the equations ( $f$ and $g$ in (1)) satisfy certain conditions. The key problem for these
systems, which are a special case of the complex linear systems of PDEs, is the problem of
their solvability. As in the case of the classical Frobenius theorem, a necessary condition
for the solvability of such systems is their formal integrability, i.e. the compatibility of
their right hand sides; for the system (1) these conditions are

$L_{1}g=L_{2}f$ , (2)

where $L_{1}=\partial_{1}-\epsilon_{1}ix^{1}\partial_{3}$ and $L_{2}=\partial_{2}-\epsilon_{2}ix^{2}\partial_{3}$ .
The purpose of this note is to show that any system (1), satisfying (2), can be reduced

by a suitable change of the variables to a system (possibly llon-linear) in $R^{2}$ , i.e. to a
system, involving only two independent variables and two unknown functions, which is not
overdetermined. This result relates the local theory of the formally integrable Mizohata
systems with the local theory of the first order systems of PDEs in $R^{2}$ . More exactly,
the theory of the systems of the form (1), having solutions, is a part of the theory of the
systems of PDEs with two unknown real functions of two real variables.

In view of this result any formally integrable system of the form (1) is equivalent to
an ordinary first order smooth complex equation of the form $\partial w=F(z, w, \frac{\partial w}{\partial\overline{z}})$ , where $w$

is the unknown complex function of the complex variable $z$ .
Note that, given a system of partial differential equations, it is often possible to sim-

plify its equations by increasing the number of the variables (independent and dependent).
The converse, i.e. to simplify the equations with a simultaneous decreasing the number of
the variables is rarely possible; in the present article we consider a class of systems of the
form (1), for which the procedure suggested below leads to a simplffication.

It should be noted, that the general idea of the method, which we use here, as well as
the key notion of characteristic vector fields, have been introduced by S. Lie.
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Let $u=u^{1}+iu^{2},$ $f=f^{1}+if^{2}$ and $g=g^{1}+ig^{2}$ . Then (1) can be rewritten in real
variables (dependent and independent) in the following way:

$|a_{\& u^{2}=\epsilon_{2}x^{2}\& u^{1}+g^{2}}^{\partial_{1}u^{2}=\epsilon_{1}x^{1}\& u^{1}+f^{2}}u^{1}=-\epsilon_{2}x^{2}\& u^{2}+g^{1}$

.

(3)

For the sake of convenience, we denote the right hand sides of the above equations by $m_{1}$ ,
$n_{1},$ $m_{2}$ and $n_{2}$ , respectively, and $\& u^{1},$ $\& u^{2},$ $u^{1}$ and $u^{2}$ by $x^{4},$ $x^{5},$ $x^{6}$ and $x^{7}$ , respectively.
Then Pfaff’s system, corresponding to (3), is

$|_{\omega^{2}(dx)\equiv dx^{7}-n_{1}dx^{1}-n_{2}dx^{2}-x^{5}dx^{3}=0}^{\omega^{1}(dx)\equiv dx^{6}-m_{1}dx^{1}-m_{2}dx^{2}-x^{4}dx^{3}=0}$ (4)

Recall that, according to the classical definition (see e.g. Schouten and van der Kulk
[2]), the vector field $\eta$ is called acharacteristic vector $fieldforthesystem\omega^{k}(dx)=0,$ $k=$

$1,2,$ $\ldots$ , $p$, if for any $\xi$ , satisfying $\omega^{k}(\xi)=0$ , $k=1,2,$ $\ldots,p$, the equalities

$\omega^{k}(\eta)=0$ , $\partial\omega^{k}(\xi, \eta)=0$ , $k=1,2,$ $\ldots,p$

hold.
Consider the following vector fields:

$\xi_{1}=\partial_{4}$ ,

$\xi_{2}=\&$ ,
$\xi_{3}=\&+x^{4}\partial_{6}+x^{5}\partial_{7}$ ,

$\xi_{4}=\partial_{1}+m_{1}\partial_{6}+n_{1}\partial_{T}$ ,
$\xi_{5}=a+m_{2}\partial_{6}+n_{2}\partial_{7}$ .

Theorem 1. If $f$ and $g$ satisfy (2), then the vector field

$\eta=(-\epsilon_{2}x^{2}\& f^{1}+\epsilon_{1}x^{1}\partial_{3}g^{1})\xi_{1}+(\& f^{1}-\partial_{1}g^{1})\xi_{2}-\epsilon_{2}x^{2}\xi_{4}+\epsilon_{1}x^{1}\xi_{S}$

is characteristic for the system (4).
Proof. We have to prove that for any vector field $\xi$ , satisfying the conditions $\omega^{k}(\xi)=$

$0$ , $k=1,2$ , the equalities

$\omega^{k}(\eta)=0$ , $\partial\omega^{k}(\xi,\eta)=0,$ $k=1,2$ (5)

hold. A straightforward verification shows that $\xi_{j},$ $j=1,2,3,4,5satis\Phi\omega^{k}(\xi_{j})=0,$ $k=$

$1,2$ , and that they are linearly independent; hence each field $\zeta$ , satisfying the conditions
$\partial\omega^{k}(\xi_{j}, \zeta)=0$ , $k=1,2,$ $j=1,2,3,4,5$ and $\omega^{k}(\zeta)=0$ , $k=1,2$ , satisfies also (5).
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Therefore, in order to prove the required result, it is sufficient to show that

$\omega^{k}(\xi_{j}, \eta)=0$ , $k=1,2,$ $j=1,2,3,4,5$ (6)

(note that, since $\eta$ is a linear combination of $\xi_{j}$ , and since $\omega^{k}(\xi_{j})=0,$ $j=1,2,3,4,5,$ $k=$

$1,2$ , then $\omega^{k}(\eta)=0,$ $k=1,2$ ).
We have

$[\xi_{1},\xi_{2}]=0$ ,

$[\xi_{1},\xi_{3}]=\partial_{6}$ ,

$[\xi_{2},\xi_{3}]=\partial_{7}$ ,

$[\xi_{1},\xi_{4}]=\epsilon_{1}x^{1}\partial_{7}$ ,

$[\xi_{2}, \xi_{4}]=-\epsilon_{1}x^{1}\partial_{6}$ ,

$[\xi_{1}, \xi_{5}]=\epsilon_{2}x^{2}\partial_{7}$ ,

$[\xi_{2}, \xi_{5}]=-\epsilon_{2}x^{2}\partial_{6}$ ,

$[\xi_{3}, \xi_{4}]=\& m_{1}\partial_{6}+\& n_{1}\partial_{t}$ ,

$[\xi_{3}, \xi_{5}]=\& m_{2}\partial_{6}+\& n_{2}\partial_{t}$ ,

$[\xi_{4}, \xi_{5}]=(\partial_{1}m_{2}-\partial_{2}m_{1})\partial_{6}+(\partial_{1}n_{2}-\partial_{2}n_{1})\partial_{7}$ .

Hence, using the above results and the identity $\partial\omega(X, Y)=X\omega(Y)-Y\omega(X)-$

$\omega([X, Y])$ , we obtain

$\partial\omega^{1}(\xi_{1}, \eta)=(-\epsilon_{2}x^{2}\partial_{3}f^{1}+\epsilon_{1}x^{1}\partial_{3}g^{1})\partial\omega^{1}(\xi_{1}, \xi_{1})$

$+(\& f^{1}-\partial_{1}g^{2})\partial\omega^{1}(\xi_{1},$ $\xi_{2}$ } $-\epsilon_{2}x^{2}\partial\omega^{1}(\xi_{1}, \xi_{4})+\epsilon_{1}x^{1}\partial\omega^{1}(\xi_{1}, \xi_{5})$

$=-(\partial_{2}f^{1}-\partial_{1}g^{1})\omega^{1}([\xi_{1}, \xi_{2}])+\epsilon_{2}x^{2}\omega^{1}([\xi_{1}, \xi_{4}])-\epsilon_{1}x^{1}\omega^{1}([\xi_{1}, \xi_{5}])$

$=0$ , (7)

and similarly
$\partial\omega^{2}(\xi_{1}, \eta)=0$ ,

$\partial\omega^{1}(\xi_{2}, \eta)=0$ , $\partial\omega^{1}(\xi_{3}, \eta)=0$ ,

$\partial\omega^{1}(\xi_{4}, \eta)=0$ , $\partial\omega^{1}(\xi_{5}, \eta)=0$ . (8)

Note that the condition (2) is equivalent to the equalities

$\partial_{1}g^{1}+\epsilon_{1}x^{1}\partial_{3}g^{2}=\partial_{2}f^{1}+\epsilon_{2}x^{2}\partial_{3}f^{2}$ (9)

and
$\partial_{1}g^{2}-\epsilon_{1}x^{1}\partial_{3}g^{1}=\partial_{2}f^{2}-\epsilon_{2}x^{2}\partial_{3}f^{1}$ . (10)
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Hence $\eta$ can be represented also in the form

$\eta=(-\partial_{2}f^{2}+\partial_{1}g^{2})\xi_{1}+(-\epsilon_{2}x^{2}\& f^{2}+\epsilon_{1}x^{1}\partial_{3}g^{2})\xi_{2}-\epsilon_{2}x^{2}\xi_{4}+\epsilon_{1}x^{1}\xi_{5}$ .

Then

$M^{2}(\xi_{3}, \eta)=(-af^{2}+\partial_{1}g^{1})a_{\theta^{2}}(\xi_{3},\xi_{1})$

$+$ ( $-\epsilon_{2}x^{2}\& f^{2}+\epsilon_{1}x^{1}$a $g^{2}$ ) $\partial\omega^{2}(\xi_{3},\xi_{2})$

$-\epsilon_{2}x^{2}\partial\omega^{2}(\xi_{3},\xi_{4})+\epsilon_{1}x^{1}\partial\omega^{2}(\xi_{1},\zeta_{S})$

$=-(-\& f^{2}+\partial_{1}f^{1})\omega^{2}([\xi_{3},\xi_{1}])+\epsilon_{2}x^{2}\omega^{2}([\xi_{1},\xi_{4}])-\epsilon_{1}x^{1}\omega^{2}([\xi_{1},\xi_{S}])$

$=0$ , (11)

and similarly
$a_{v^{2}(\xi_{4},\eta)=0}$ , $\partial\omega^{2}(\xi_{5},\eta)=0$ . (12)

Combining (7), (8), (11) and (16), we get (5). Theorem 1 is proved.
For Pfaff’s systems, having a characteristic vector field, there exists a standard method

for reducing the number of the variables (see e.g. Schouten and van der Kulk [2]). Here for
the case of system (4) the total number of the variables can be reduced from 7 to 6. We wil
apply a slightly modified version of the classical method in order to deduce a respective
system of PDEs, equivalent to (1), with two unknown functions and two independent
variables.

Consider the system
$\xi_{1}\Phi=0$ , $\xi_{2}\Phi=0$ , $\eta\Phi=0$ . (13)

Lemma 1.
$[\xi_{1}, \eta]=0$ , $[\xi_{2}, \eta]=0$ , $[\xi_{1},\xi_{2}]=0$ . (14)

Proof. The last of these three equalities was mentioned above and is trivial; in order
to prove the first two it is sufficient to rewrite $\eta$ , using (9) and (10), in the folowing way:

$\eta=(-\epsilon_{2}x^{2}\& f^{1}+\epsilon_{1}x^{1}\& g^{1})\xi_{1}+(\& f^{1}-\partial_{1}g^{1})\xi_{2}-\epsilon_{2}x^{2}\xi_{4}+\epsilon_{1}x^{1}\xi_{S}$

$=-\epsilon_{2}x^{2}\partial_{1}-\epsilon_{2}x^{2}m_{1}\partial_{6}-\epsilon_{2}x^{2}n_{1}\partial_{7}+\epsilon_{1}x^{1}\&+\epsilon_{1}x^{1}m_{2}\partial_{6}+\epsilon_{1}x^{1}n_{2}\partial_{7}$

$+(-\& f^{2}+\partial_{1}g^{2})\partial_{4}+(af^{1}-\partial_{1}g^{1})\partial_{S}$

$=-\epsilon_{2}x^{2}\partial_{1}+\epsilon_{1}x^{1}\partial_{2}-(\& f^{2}+\partial_{1}g^{2})\partial_{4}+(\& f^{1}-\partial_{1}g^{1})$&
$+(-\epsilon_{2}x^{2}f^{1}+\epsilon_{1}x^{1}g_{1})\partial_{6}-(\epsilon_{2}x^{2}f^{2}+\epsilon_{1}x^{1}g_{2})\partial_{7}$ ;

now the required result is clear.
It follows from Lemma 1 that (13) has four functionally independent solutions $\Phi^{k}=$

$\Phi^{k}(x)$ , $k=1,2,3,4$ , $x\in R^{7}$ . Consider also the equation $\eta\Phi=0$ . The above four
functions are its solutions, and it has two more functionally independent solutions; denote
these two solutions by $\Phi^{S}$ and $\Phi^{6}$ . And finally, let $\Phi^{7}$ be any function, which is functionally
independent with the previous six $\Phi^{k}$ , $k=1,2,$ $\ldots,$

$6$ .
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Consider the local system of coordinates with coordinate functions $y^{k}=\Phi^{k}(x)$ . Since

$\omega^{k}(\xi_{1})=\omega^{k}(\xi_{2})=\omega^{k}(\eta)=0$ ,

and since $\Phi^{k}$ , $k=1,2,3,4$ satisfy (13), then in the new coordinates (4) has the form

$|_{\omega^{2}(y)\equiv\omega_{1}^{2}(dy)dy^{1}+\omega_{2}^{2}(y)dy^{2}+\omega_{3}^{2}(y)dy^{3}+\omega_{4}^{2}(y)dy^{4}=0}^{\omega^{1}(dy)\equiv\omega_{1}^{1}(y)dy^{1}+\omega_{2}^{1}(y)dy^{2}+\omega_{3}^{1}(y)dy^{3}+\omega_{4}^{1}(y)dy^{4}=0}$ (15)

Since the rank of (4) equals 2, (15) can be resolved with respect to two of $dy^{1},$ $dy^{2},$ $dy^{3}$

and $dy^{4}$ ; without loss of generality we can assume, that (15) can be resolved with respect
to $dy^{3}$ and $dy^{4}$ :

$|_{\overline{\omega}^{2}(dy)\equiv dy^{4}-H(y)dy^{1}-K(y)dy^{2}=0}^{\overline{\omega}^{1}(dy)\equiv dy^{3}-F(y)dy^{1}-G(y)dy^{2}=0}$ (16)

This new Pfaff system is equivalent to (15) and hence to (4).
Lemma 2. $F(y),$ $G(y),$ $H(y)$ and $K(y)$ do not depend on $y^{7}$ : $\partial_{7}F=\partial_{7}G=\partial_{7}H=$

$\partial_{7}K=0$ .
Proof. Since $\eta\Phi^{k}=0$ , $k=1,2,$ $\ldots$ , 6, then $\eta=a(y)_{\partial y}^{\partial}\neg$ for a suitable function $a(y)$ .

And since $\eta$ is characteristic for (4) and hence for (16), in view of (5) the rank of the
system

$\omega^{k}(dy)=0,$ $\partial\omega^{k}(\eta, dy)=0$ , $k=1,2$

equal$s2$ , i.e the equations $\partial\omega^{k}(\eta, dy)=0,$ $k=1,2$ are linear combinations of the equations
of (16). It remains to note that

$\partial\omega^{1}(\eta, dy)=\partial\omega^{1}(a(y)\partial_{7}, dy)=a(y)(-\partial_{7}Fdy^{1}-\partial_{7}Gdy^{2})$ ,

$\partial\omega^{2}(\eta, dy)=\partial\omega^{2}(a(y)\partial_{7}, dy)=a(y)$ ( $-\partial_{7}$ Hdy $-\partial_{7}Kdy^{2}$ ),

and the required result follows.
Since (4) an$d(16)$ are equivalent, the existence of functions $u^{1}=x^{6}(x^{1}, x^{2}, x^{3})$ and

$u^{2}=x^{7}(x^{1}, x^{2}, x^{3})$ , for which $\partial_{1}x^{6}=m_{1},$ $\partial_{2}x^{6}=m_{2},$ $\partial_{1}x^{7}=n_{1}$ and $\partial_{2}x^{7}=n_{2}$ , is
equivalent to the existence of functions $y^{3}=v^{1}(y^{1}, y^{2})$ and $y^{4}=v^{2}(y^{1}, y^{2})$ , which reduce
the equations of (16) to identities, or, in other words, which satisfy the system of PDEs

$\frac{\partial v^{1}}{\partial y^{1}}=F$, $\frac{\partial v^{1}}{\partial y^{2}}=G$ , $\frac{\partial v^{2}}{\partial y^{1}}=H$ , $\frac{\partial v^{2}}{\partial y^{2}}=K$ ,

where $F,$ $G,$ $H$ and $K$ depend on $y^{1},$ $y^{2},$ $v^{1}=y^{3},$ $v^{2}=y^{4},$ $y^{S}$ and $y^{6}$ and, according to
Lemma 2, do not depend on $y^{7}$ . Eliminating $y^{S}$ an$dy^{6}$ , we obtain an equivalent system of
the form

$|_{Q(y^{1},y^{2},v^{1},v^{2},\partial_{1}v^{1},\partial_{2}v^{1},\partial_{1}v^{2},\partial_{2}v^{2})=0}^{P(y^{1},y^{2},v^{1},v^{2},\partial_{1}v^{1},\partial_{2}v^{1},\partial_{1}v^{2},\partial_{2}v^{2})=0}$ (17)

where $\partial_{1}=\frac{\partial}{\partial y^{1}}$ and $\partial_{2}=\frac{\partial}{\partial y^{2}}$ .
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Let $y^{3}=v^{1}(y^{1}, y^{2}),$ $y^{4}=v^{2}(y^{1}, y^{2})$ be a solution of (17). Then the system

$\Phi^{3}=v^{1}(\Phi^{1}, \Phi^{2})$ , $\Phi^{4}=v^{2}(\Phi^{1}, \Phi^{2})$ (18)

determines the implicit functions $u^{1}=x^{6}(x^{1}, x^{2}, x^{3})$ , $u^{2}=x^{7}(x^{1}, x^{2}, x^{3})$ , which form a
solution of (1); note that, since the functions $\Phi^{k}$ , $k=1,2,3,4$ satisfy (14), tfen they do
not depend on $x^{4}$ and $x^{5}$ , and hence (18) involves $x^{1},$ $x^{2},$ $x^{3},$ $x^{6}$ and $x^{7}$ only.

Thus we proved
Theorem 2. The change of the variables $x\rightarrow y$ reduces the Mizohata system (1) to

the system (17).
Now we wil apply the above results to the system

$|_{\& u=ix^{2}\& u+x^{2}(\phi((x^{1})^{2}+(x^{2})^{2},x^{3})+ax^{2}+ibx^{1})+aix^{3}}^{\partial_{1}u=ix^{1}\& u+x^{1}(\phi((x^{1})^{2}+(x^{2})^{2},x^{3})+ax^{2}+ibx^{1})-bx^{3}}$

,
(19)

where $u(x)=u(x^{1},x^{2},x^{3})$ is the unknown complex function of $x=(x^{1}, x^{2},x^{3})\in R^{3}$ ,
$\phi=\phi^{1}+i\phi^{2}$ is a given smooth complex function of two real variables, and $a$ and $b$ are
given constants.

This system is a particular case of (1) with $\epsilon_{1}=\epsilon_{2}=1,$ $f=x^{1}(\phi+ax^{2}+ibx^{1})-bx^{3}$

and $g=x^{2}(\phi+ax^{2}+ibx^{1})+iax^{3}$ .
We have

$f^{1}=x^{1}(\phi^{1}((x^{1})^{2}+(x^{2})^{2},x^{3})+ax^{2})-bx^{3}$ , $f^{2}=x^{2}(\phi^{2}((x^{1})^{2}+(x^{2})^{2}, x^{3})+bx^{1})$ ,

$g^{1}=x^{2}(\phi^{1}((x^{1})^{2}+(x^{2})^{2},x^{3})+ax^{2})$ , $g^{2}=x^{2}(\phi^{2}((x^{1})^{2}+(x^{2})^{2},x^{3})+bx^{1})+ax^{3}$ ,

and hence
$\eta=-x^{2}\partial_{1}+x^{1}$ &+bx $\partial_{4}+ax^{1}\partial_{S}+bx^{2}x^{3}\partial_{6}+ax^{1}x^{3}\partial_{T}$ .

Further we calculate

$\Phi_{1}=(x^{1})^{2}+(x^{2})^{2}$ , $\Phi_{2}=x^{3}$ , $\Phi_{3}=x^{6}+bx^{1}x^{3}$ ,

$\Phi_{4}=x^{7}-ax^{2}x^{3}$ , $\Phi_{5}=bx^{1}+x^{4}$ ,

$\Phi_{6}=ax^{2}-x^{S}$ , $\Phi_{7}=x^{1}$ .

These functions imply the following formulas for the change of the variables:

$x^{1}=y^{7}$ , $x^{2}=\sqrt{y^{1}-(y^{7})^{2}}$, $x^{3}=y^{2}$ ,

$x^{4}=y^{S}-by^{7}$ , $x^{S}=ax^{2}-y^{6}=a\sqrt{y^{1}-(y^{7})^{2}}-y^{6}$ ,

$x^{6}=y^{3}-by^{2}y^{7}$ , $x^{7}=y^{4}+ay^{2}x^{2}=y^{4}+ay^{2}\sqrt{y^{1}-(y^{7})^{2}}$.

In the new variables the system (15) becomes

–212–



$|_{\omega^{2}(dy)\equiv dy^{4}-\frac{1}{2}y^{S}+\phi^{2})dy^{1}+y^{6}dy^{2}=0}^{\omega^{1}(dy)\equiv dy^{3}-\frac{1}{2(}(y^{6}+\phi^{1})dy^{1}-y^{5}dy^{2}=0}$

Consequently (1) is equivalent to the system

$|v_{\& v^{2}=-y^{6}}^{2}av^{1}=y^{S}$

which after eliminating $y^{5}$ and $y^{6}$ reduces to

$|_{2\partial_{1}v^{2}-\& v^{1}=\phi^{2}}^{2\partial_{1}v^{1}+\& v^{2}=\phi^{1}}$

.

This is a system of a well known type and can be treated by standard methods. From
any of its solutions $v^{1}=Y^{3}(y^{1}, y^{2})$ , $v^{2}=Y^{4}(y^{1}, y^{2})$ we obtain the respective solution
$u^{1}=Y^{3}((x^{1})^{2}+(x^{2})^{2}, x^{3})-bx^{1}x^{3},$ $u^{2}=Y^{4}((x^{1})^{2}+(x^{2})^{2}, x^{3})+ax^{2}x^{3}$ of (19).

In particvlar, taking $\phi=a=b=0$ , we obtain the following result.
Theorem 3. The homogeneous Mizohata system

$|_{\& u=ix^{2}\partial_{3}u}^{\partial_{1}u=ix^{1}\partial_{3}u}$ (20)

reduces by the change of the variables described above to the real system

$|_{2\partial_{1}v^{2}-\& v^{1}=0}^{2\partial_{1}v^{1}+\partial_{2}v^{2}=0}$ (21)

Theorem 3 expresses the following well known fact: the Mizohata system (20) possesses
the solution $Z(x^{1}, x^{2}, x^{3})=[(x^{1})^{2}+(x^{2})^{2}]/2-ix^{3}$ and any other local solution $u$ of (20), say
of class $C^{1},$ $c$an be written as $u=VoZ$ , where $V$ is a $C^{1}$ function in a neighbourhood
of the origin in $C$ , holomorphic for $Rez>0$ . This follows from the Baouendi-Treves
approximation theorem ([3], [4]). Writing $V=V_{1}-iV_{2}$ and $v_{1}(y^{1}, y^{2})=V_{1}(2y^{1}, y^{2})$ ,
$v_{2}(y^{1}, y^{2})=V_{2}(2y^{1}, y^{2})$ , we obtain-from the Cauchy-Riemann equation satisfied by $V-$

a pair of solutions of (21).
Similar results can be derived for the homogeneous Mizohata systems in $R^{3}$ with other

combinations of the signs of $\epsilon_{1}$ and $\epsilon_{2}$ .
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