Nihonkai Math. J.
Vol. 6 (1995), 129-134

PARAMETERIZED KANTOROVICH INEQUALITY FOR POSITIVE OPERATORS

Masatoshi Fujif * Eizaburo Kamei ** and Akemi Matsumoto ***

Abstract. The Kantorovich inequality says that if A is a positive operator on \boldsymbol{H} such that $0<m \leq A \leq M$ for some $M \geq m>0$, then

$$
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}
$$

for all unit vectors $x \in H$. We generalize it by the use of a family of power means, which gives us a parameterization of the Kantorovich inequality. Moreover we give a parameteriation of the Pólya-Szegö inequality.

1. Introduction. Let a, g and h be the arithmetic, geometric and harmonic mean respectively. It is known that these means are unified by the family of power means $\left\{m_{r} ;-1 \leq r \leq 1\right\}$, i.e.,

$$
\begin{equation*}
\alpha m_{r} \beta=\left(\frac{\alpha^{r}+\beta^{r}}{2}\right)^{\frac{1}{r}} \quad \text { for } \alpha, \beta>0 . \tag{1}
\end{equation*}
$$

It is easily seen that $m_{1}=a, m_{0}=g$ and $m_{-1}=h$. The family of power means plays an interesting role, e.g., $[1,3,5,7]$. We refer to [6] for the theory of operator means.

Now Kantorovich established the following inequality in his study on applications of functional analysis to numerical analysis, cf. [2] : If $\left\{a_{k}\right\}$ is a sequence in \mathbb{R} such that $0<m \leq a_{k} \leq M$ for some m and M, then

$$
\sum_{k} a_{k} x_{k}^{2} \sum_{k} \frac{1}{a_{k}} x_{k}^{2} \leq \frac{(M+m)^{2}}{4 M m}\left(\sum_{k} x_{k}^{2}\right)^{2}
$$

holds for all $x=\left\{x_{k}\right\}$ in $l^{2}(\mathbb{N})$.
If we define the diagonal operator A by $A=\operatorname{diag}\left(a_{k}\right)$, then we have

$$
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}\|x\|^{4} \quad \text { for } x \in l^{2}(\mathbb{N})
$$

if $0<m \leq A \leq M$. As a matter of fact, the following inequality is proved by Greub and Rheinboldt [2], which we call the Kantorovich inequality.

[^0]The Kantorovich inequality. If A is a positive operator on a Hilbert space H such that $0<m \leq A \leq M$ for some $M \geq m>0$, then

$$
\begin{equation*}
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m} \tag{2}
\end{equation*}
$$

for all unit vectors $x \in H$.

From the mean theoretic view, the Kantorovich inequality (2) is seen as follows :

$$
\begin{equation*}
(A x, x) m_{0}\left(A^{-1} x, x\right) \leq \frac{M+m}{2 \sqrt{M m}} \tag{3}
\end{equation*}
$$

for all unit vectors $x \in H$.
In this note, we give a parameterization of the Kantorovich inequality by the use of power means which includes (3) as the case $r=0$. In the proof, the convexity of the function t^{-1} on ($0, \infty$) is effective. Moreover we parameterise the Polya-Szegö inequality [2 ; Theorem 2] which is equivalent to the Kantorovich inequality.
2. Parameterized Kantorovich inequality. The Kantorovich inequality has the following parameterization by power means.
Theorem 1. Let A be a positive operator on a Hilbert space H such that $0<m \leq A \leq M$ for some $M \geq m>0$. Then, for power means $m_{r}(-1 \leq r \leq 1)$

$$
\begin{align*}
& (A x, x) m_{r}\left(A^{-1} x, x\right) \\
& \leq \begin{cases}2^{-\frac{1}{r}}\left(M^{r}+M^{-r}\right)^{\frac{1}{r}} & \text { if } M^{1-2 r} \leq m \\
2^{-\frac{1}{r}}(M+m)\left(1+(M m)^{\frac{r}{r-1}}\right)^{\frac{1-r}{r}} & \text { if } m^{2} \leq(M m)^{\frac{1}{1-r}} \leq M^{2} \\
2^{-\frac{1}{r}}\left(m^{r}+m^{-r}\right)^{\frac{2}{r}} & \text { if } M \leq m^{1-2 r}\end{cases} \tag{4}
\end{align*}
$$

for all unit vectors $x \in H$. The bound is optimal.
Remark. In the case $r=0$, i.e., m_{0} is the geometric mean, the right hand side in the above (4) is regarded as the limit by taking $r \rightarrow 0$; namely

$$
\lim _{r \rightarrow 0} 2^{-\frac{1}{r}}(M+m)\left(1+(M m)^{\frac{r}{r-1}}\right)^{\frac{1-r}{r}}=\frac{M+m}{2 \sqrt{M m}}
$$

It is clear that the second case in (4) only happens and so it is the Kantorovich inequality (3). On the other hand, if $r=1$, i.e., $m_{1}=a$, then the second case happens if and only if $M m=1$. Therefore we have

$$
(A x, x) a\left(A^{-1} x, x\right) \leq \frac{1}{2} \max \left\{m+\frac{1}{m}, M+\frac{1}{M}\right\} .
$$

for all unit vectors $x \in H$. As a matter of fact, we can directly compate it. Finally, if $r=-1$, i,e., $m_{-1}=h$, then the mixed type iequality (4) happens;

$$
(A x, x) h\left(A^{-1} x, x\right) \leq\left\{\begin{array}{lll}
2\left(M+M^{-1}\right)^{-1} & \text { if } & M^{3} \leq m \\
\frac{2(M+m)}{(1+\sqrt{M m})^{2}} & \text { if } & m^{4} \leq M m \leq M^{4} \\
2\left(m+m^{-1}\right)^{-1} & \text { if } & M \leq m^{3}
\end{array}\right.
$$

for all unit vectors $x \in H$.
Now the computational part of the proof is concentrated to the following lemma. For this, we prepare the functions f_{r} on $[0, M+m]$ for $-1 \leq r \leq 1$;

$$
\begin{aligned}
f_{r}(t) & =t m_{r} g(t) \\
& =\frac{1}{M m} 2^{-\frac{1}{r}}\left((M m t)^{r}+(M+m-t)^{r}\right)^{\frac{1}{r}}
\end{aligned}
$$

where

$$
g(t)=\frac{M+m-t}{M m}
$$

Lemma. Let f_{r} be as in above and put $\alpha_{r}=\frac{M+m}{1+(M m)^{\prime} /(r-1)}$. Then

$$
\max _{m \leq t \leq M} f_{r}(t)= \begin{cases}f_{r}(M) & \text { if } M^{1-2 r} \leq m \\ f_{r}\left(\alpha_{r}\right) & \text { if } m^{2} \leq(M m)^{\frac{1}{r-r}} \leq M^{2} \\ f_{r}(m) & \text { if } M \leq m^{1-2 r} .\end{cases}
$$

Incidentally,

$$
\max f_{1}(t)=\max \left\{f_{1}(m), f_{1}(M)\right\}
$$

Proof. Since

$$
f_{r}^{\prime}(t)=\frac{1}{M m} 2^{-\frac{1}{r}}\left((M m t)^{r}+(M+m-t)^{r}\right)^{\frac{1-r}{r}}\left((M m)^{r} t^{r-1}-(M+m-t)^{r-1}\right)
$$

it follows that $f_{r}^{\prime}(t)>0$ for $0 \leq t<\alpha_{r}, f_{r}^{\prime}\left(\alpha_{r}\right)=0$ and $f_{r}^{\prime}(t)<0$ for $\alpha_{r}<t \leq M+m$. Therefore we have

$$
\max f_{r}(t)= \begin{cases}f_{r}(M) & \text { if } M<\alpha_{r} \\ f_{r}\left(\alpha_{r}\right) & \text { if } m \leq \alpha_{r} \leq M \\ f_{r}(m) & \text { if } \alpha_{r}<m\end{cases}
$$

Finally we remark that $m \leq \alpha_{r} \leq M$ if and only if $m^{2} \leq(M m)^{\frac{1}{1-r}} \leq M^{2}$. Actually the former is rephrased that

$$
M(M m)^{\frac{r}{r-1}} \geq m \quad \text { and } \quad M \geq m(M m)^{\frac{r}{r-1}}
$$

or equivalently

$$
M^{2}(M m)^{\frac{1}{1-r}} \geq 1 \quad \text { and } \quad 1 \geq m^{2}(M m)^{\frac{1}{1-r}}
$$

Furthermore it is equivalent to the desired inequality. In addition, the other cases are easily checked.

Proof of Theorem 1. Let $A=\int t d E_{t}$ be the spectral decomposition of A. Then, for a fixed unit vector $x \in H$,

$$
\begin{aligned}
(A x, x) m_{r}\left(A^{-1} x, x\right) & =\int t d\left(E_{t} x, x\right) m_{r} \int t^{-1} d\left(E_{t} x, x\right) \\
& \leq t_{0} m_{r} g\left(t_{0}\right)
\end{aligned}
$$

for some $t_{0} \in[m, M]$ because the function t^{-1} is convex and g is the straight line through the points (m, m^{-1}) and (M, M^{-1}). Recalling that $f_{r}(t)=t m_{r} g(t)$, we have the required inequality (4) by combining with Lemma.

The following theorem is another direct generalization of the Kantorovich inequality as $r=1 / 2$, which is pointed out by the referee.
Theorem 2. Let A be a positive operator on a Hilbert space H such that $0<m \leq A \leq M$ for some $M \geq m>0$ and $0<r<1$. Then

$$
\begin{aligned}
& (A x, x)^{r}\left(A^{-1} x, x\right)^{1-r} \\
& \leq \begin{cases}m^{2 r-1} & \text { if } 0<r<\frac{m}{M+m} \\
(M+m)(M m)^{r-1} r^{r}(1-r)^{1-r} & \text { if } \frac{m}{M+m} \leq r \leq \frac{M}{M+m} \\
M^{2 r-1} & \text { if } \frac{M}{M+m} \leq r<1\end{cases}
\end{aligned}
$$

for all anit vectors $x \in H$,. The bound is optimal.
The proof of Theorem 2 can be done similarly to that of Theorem 1 by putting $f_{r}(t)=$ $t^{r} g(t)^{1-r}$.
3. Parameterized Pólya-Szegö inequality. The Kantorovich inequality is equivalent to the following inequality [2 ; Theorem 2]. Since it is an operator version of an inequality due to Pólya and Szegö, we may call it the Pólya-Szegö inequality.
The Pólya-Szegö inequality. Let A and B be commating positive operators on H such that
(5)

$$
0<m_{1} \leq A \leq M_{1} \quad \text { and } \quad 0<m_{2} \leq B \leq M_{2} .
$$

Then

$$
\begin{equation*}
\left(A^{2} x, x\right)\left(B^{2} x, x\right) \leq \frac{\left(M_{1} M_{2}+m_{1} m_{2}\right)^{2}}{4 M_{1} M_{2} m_{1} m_{2}}(A x, B x)^{2} \tag{6}
\end{equation*}
$$

for all $x \in H$.

The Polya-Szegö inequality will be parameterized as well as the K antorovich one. In the below, we suppose that A and B satisfy the condition (5) for some m_{i} and $M_{i}(i=1,2)$. For the sake of convenience, we put the constant K_{r} for $-1 \leq r \leq 1$;

$$
K_{r}= \begin{cases}2^{-\frac{1}{r}}\left(\left(\frac{M_{1}}{m_{2}}\right)^{r}+\left(\frac{m_{2}}{M_{1}}\right)^{r}\right)^{\frac{1}{r}} & \text { if } M_{1}^{1-2 r} M_{2} \leq m_{1} m_{2}^{1-2 r} \\ 2^{-\frac{1}{r}} \frac{M_{1} M_{2}+m_{1} m_{2}}{M_{2} m_{2}}\left(1+\left(\frac{M_{1} m_{1}}{M_{2} m_{2}}\right)^{r-r}\right)^{\frac{1-r}{r}} \\ & \text { if } m_{1} m_{2} \leq M_{2} m_{2}\left(\frac{M_{1} m_{1}}{M_{2} m_{2}}\right)^{\frac{1}{2(1-r}} \leq M_{1} M_{2} \\ 2^{-\frac{1}{r}\left(\left(\frac{m_{1}}{M_{2}}\right)^{r}+\left(\frac{M_{2}}{m_{1}}\right)^{r}\right)^{\frac{1}{r}}} \quad \text { if } M_{1} M_{2}^{1-2 r} \leq m_{1}^{1-2 r} m_{2} .\end{cases}
$$

Theorem 3. Let A and B be commuting positive operators satisfying (5). Then

$$
\begin{equation*}
\left(A^{2} x, x\right) m_{r}\left(B^{2} x, x\right) \leq K_{r}(A x, B x)^{2} \tag{7}
\end{equation*}
$$

for all $x \in H$.
Proof. The proof is quite similar to [2; Theorem 2]. We pat $C=A B^{-1} ; m=\frac{m_{1}}{M_{2}}$ and $M=\frac{M_{1}}{m_{2}}$. Then we have $0<m \leq C \leq M$. Hence Theorem 1 implies that

$$
\begin{aligned}
& \frac{(C x, x) m_{r}\left(C^{-1} x, x\right)}{\|x\|^{4}} \\
& \leq \begin{cases}2^{-\frac{1}{r}}\left(M^{r}+M^{-r}\right)^{\frac{1}{r}} & \text { if } M^{1-2 r} \leq m \\
2^{-\frac{1}{r}}(M+m)\left(1+(M m)^{\frac{r}{r-1}}\right)^{\frac{1-r}{r}} & \text { if } m^{2} \leq(M m)^{\frac{1}{1-r}} \leq M^{2} \\
2^{-\frac{1}{r}}\left(m^{r}+m^{-r}\right)^{\frac{1}{r}} & \text { if } M \leq m^{1-2 r}\end{cases}
\end{aligned}
$$

for all $x \in H$. It is easily checked that the right hand side of the above is just K_{r}, and the left hand side becomes

$$
\frac{\left(A^{2} x, x\right) m_{r}\left(B^{2} x, x\right)}{(A x, B x)^{2}}
$$

by replacing x to $(A B)^{\frac{1}{2}} x$, which completes the proof.
Remark. Theorem 3 is implied by Theorem 1, as seen in the proof of it. Conversely Theorem 1 follows from Theorem 2. In fact, for a given C with $0<m \leq C \leq M$, we take

$$
A=C^{\frac{1}{2}}, B=C^{-\frac{1}{2}} ; m_{1}=m^{\frac{1}{2}}, M_{1}=M^{\frac{1}{2}}, m_{2}=M^{-\frac{1}{2}}, M_{2}=m^{-\frac{1}{2}},
$$

and apply it to Theorem 3.
Finally we consider a noncommotative generalization of the Polya-Szegö inequality and Theorem 3.

Theorem 4. Let A and B be positive operators satisfying (5). Then

$$
\left\|B^{-\frac{1}{2}} A B^{\frac{1}{2}} x\right\|\|B x\| \leq \frac{M_{1} M_{2}+m_{1} m_{2}}{2 \sqrt{M_{1} M_{2} m_{1} m_{2}}}\left\|A^{\frac{1}{2}} B^{\frac{1}{2}} x\right\|^{2}
$$

for all $x \in H$.
Proof. We pat $C=A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}$. Then we have

$$
\begin{equation*}
0<m=\frac{m_{1}}{M_{2}} \leq C \leq M=\frac{M_{1}}{m_{2}} . \tag{8}
\end{equation*}
$$

The Kantorovich inequality implies that

$$
\begin{equation*}
(C x, x)\left(C^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}\|x\|^{4} \tag{9}
\end{equation*}
$$

for all $x \in H$. If we replace x in (9) by $A^{\frac{1}{2}} B^{\frac{1}{2}} x$ and M, m by $M_{i}, m_{i}(i=1,2)$, then the desired inequality is obtained.

Theorem 5. Let A and B be positive operators satisfying (5). Then

$$
\left\|B^{-\frac{1}{2}} A B^{\frac{1}{2}} x\right\|^{2} m_{r}\|B x\|^{2} \leq K_{r}\left\|A^{\frac{1}{2}} B^{\frac{1}{2}} x\right\|^{4}
$$

for all $x \in H$.
Proof. We also put $C=A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}$ and so we have (8). Hence it follows from Theorem 1 that

$$
(C x, x) m_{r}\left(C^{-1} x, x\right) \leq K_{r}\|x\|^{4}
$$

for all $x \in H$. Replacing x in the above by $A^{\frac{1}{2}} B^{\frac{1}{2}} x$ and M, m by $M_{i}, m_{i}(i=1,2)$, we have the desired inequality, as in the proof of Theorem 3.
4. A concluding remark. Generalizations of the Kantorovich inequality are discussed by several anthors, for which we refer to [8] and [4]. Though the former is somewhat complicated, the latter is simple as follows :
Theorem K. (Kijima) Let A and B be positive operators satisfying (5). Then

$$
M_{1} m_{1}\left(A^{-1} x, x\right)(B y, y)+M_{2} m_{2}(A x, x)\left(B^{-1} y, y\right) \leq M_{1} M_{2}+m_{1} m_{2}
$$

for all unit vectors $x, y \in H$.
The proof of Theorem K is reduced to the following elementary inequality : If $0<m_{1} \leq$ $a \leq M_{1}$ and $0<m_{2} \leq b \leq M_{2}$, then

$$
\frac{M_{2} a}{m_{1} b}+\frac{M_{1} b}{m_{2} a} \leq 1+\frac{M_{1} M_{2}}{m_{1} m_{2}}
$$

He also gave a path of results whose starting point is Theorem K and final one is the Pólya-Szegö inequality.

Acknow ledgement. The authors would like to express their thanks to the referee for his useful comment and suggestion.

References

1. J.LFujii and E.Kamei, Uhlmann's interpolational method for operator means, Math. Japon., 84 (1989), 541-547.
2. W.Greub and W.Rheinboldt, On a generalization of an inequality of L.V.Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407-415.
3. E.Kamei, Paths of operators parameterized by operator means, Math. Japon., 39 (1994), 395-400.
4. Y.Kijima, On some operator inequalities, Proc. of Symposium on Funct. Anal., 1 (1966), 25-29.
5. F.Kubo, On Logarithmic operator means, 10 th Symp. Appl. Funct. Anal. Sci. Univ. Tokyo, (1987), 47-61.
6. F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 248 (1980), 205-224.
7. T.P.Lin, The power mean and the logarithmic mean, Amer. Math. Monthly, 81 (1974), 879-883.
8. B.Mond, An inequality for operafors in a Hilbert space, Pacific J. Math., 18 (1966), 161-163.

* Department of Mathematios, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582, Japan
** Momodani Senior Highsohool, Ikuno, Osaka 544, Japan
*** Tennoji Senior Highsohool, Osaka Kyoiku University, Tennoji, Osaka 543, Japan

Received June 27, 1994, Revised June 21, 1995

[^0]: 1991 Mathematics Subject Classification. 47A63 and 47B15.

