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ABSTRACT. Marcus and Thompsnn proved that $t1,$. spectrum of the Hadamard product of
normal matrices is contained in the polygon spanned by the product $s$ of eigenvalues of the
rnatrices. We give it an extension to hyponormal operators on a IIilbert $sI$)$ace$ by virtue of a
recently established extension of thc ToyaIna-Marcus-Khan tlleoreln due to J.I.Fujii.

1. Introduction. The Hadamard product $A*B$ , the entrywise product of matrices $A$

and $B$ , is studied in detail. T.Ando [1] gave a beautiful perspective on inequalities involving
Hadamard product : For operators $\Lambda$ and $B$ acting on a Hilbert space $H$ , being expressed
as infinit. $e$ matrices for a fixed orthonormal base $\{e_{n}\}$ , the Hadamard product $A*B$ is also
defined by the ent.rywise product, liowever it is less studied than matrix case.

Main difference of t.hem lies in t.he fact that the Hadamard product $A*B$ of matrices $A$

and $B$ obtained by filtering the tensor product $A\otimes B$ through a positive contractive linear
mapping, being assured by t.he Toyama-Marcus-Khan theorem. Unfortunately, there was
no corresponding theorem for operators.

Very recently, J.I. Fujii [8] gives an elegant constructive proof to the theorem for operators
(Theorem $B$ in the below), and he extends Ando’s inequalities for operators, cf. [2]. In [10],
we give also certain comments oI1 it.

In the present note, we extend the Marcus-Thompson theorem for normal matrices to
hyponormal operators (Theorem 4). In connection with graph theory and characters of
operator algebras, we also observe around that theorem.

2. The Marcu\S -Thompson tlleoreln. In the below, we follow mainly notations and
t.erminologies due to Halmos [13]. An operat.or means a bounded linear operator acting on
a Itilbert space. The spectrum, numerical range and closed numerical range of an operator
$A$ are denoted by $\sigma(A),$ $\dagger’\dagger(A)$ and $\overline{I\cdot V}(A)$ respectively. The convex and closed convex hull
of a sub$et $X$ in the plane are denoted by co $X$ and $\overline{co}X$ respectively. For subsets $X$ and
$\}$
’ in the plane, $XY$ stands for the subset $\{xy;x\in X, y\in Y\}$ .

We first cite the Marcus-Thompson theorem [15].

Theorem A. Let $A$ and $B$ be normal matri($res$ with eigenvalues $a_{1},$ $\cdots$ , $a_{n}$ and $b_{1},$ $\cdots$ , $b_{n}$

respectively. Then the eigenval $u$es of the $Had$amard product $A*$ B. lie in the convex
polygon in $\mathbb{C}$ supported by $\{a_{i}b_{j} ; i,j=1,2, \cdots , n\}$ .

For the sake of convenience, we rephrase it as follows :

Theorem A. Let $A$ and $B$ be $n$ormal operators on a finite dimensional Hilbert space.
Then $\sigma(A*B)$ is contain $ed$ in $co\sigma(A)\sigma(B)$ .

Now, to extend Theorem A to that of operators, an operator version of the Toyama-
Marcus-Khan theorem due to J.I.Fujii [8] is quite useful. For a fixed orthonormal base, it
is done by the following way.
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Theorein B. Let $\{e_{n}\}$ be an orthonnormal $|$) $ j\iota s\iota$ on a lIil $|$)$rrt$ spac $c$ Il an$|dU$ an isometry
of $JJ$ into $H\otimes H$ such that $Ue_{n}=c_{\mathfrak{n}}\otimes c_{n}$ . $z’\tau 1Ct1$ th $e$ Iladamard procluct of $A$ and $B(wi$ th
respect to $\{e_{\mathfrak{n}}\}$) is expressed as

$A*B=U^{\cdot}(A\otimes B)U$ .

He proved Theorem $B$ very recently and afterwards heard that his method has been
al $r\epsilon ady$ employed by Paulsen [17].

Paying attention to the tensor product $A\otimes B$ of operators $A$ and $B$ , the subset $\sigma(A)\sigma(B)$

is nothing but $\sigma(A\otimes B)$ by Brown and Pearcy [5]. Hence the conclusion of Theorem $A$ ’

can be replaced by

$(^{*})$ $\sigma(A*B)\subseteq co\sigma(A\otimes B)$ .

In the next section, we give a weaker condition than Theorem $A$ ’ to enjoy the inclusion $(^{*})$

by the help of Theorem B.
Here we remark that the celebrat.ed Schur theorem is easily followed from Theorem

B. Therefore t.he spectrum of the Ilndnmarcl product of positive operators is also positive.
Theorem A is a generalization of the Schur theorem in this sense, which might be illustrated
by the following simple example :

$A=\left(\begin{array}{ll}0 & l\\1 & 0\end{array}\right)$ and $B=1$ .

3. Main results. This section is devoted to applications of Theorem $B$ for spectra of
Hadamard products of operators.

The folIowing theorem is a direct consequence of the Toyama-Marcus-Khan theorem in
the form of Paulsen-Fujii :

Theorem 1. The $nu$merical range $W(A*B)$ is contained in $W(A\otimes B)$ for arbitrary
operators $A$ and $B$ , i.e.,

$(\uparrow)$ $W(A*B)\subseteq W(A\otimes B)$ .

Proof. Since $U$ in Theorem $B$ is an isometry, we have

$((A*B)x, x)=(U(A\otimes B)Ux, x)=((A\otimes B)Ux, Ux)\in W(A\otimes B)$

for all unit vectors $x\in H$ , so that (\dagger ) is obtained.
At once, we have the following weak form of the $Marcu*Thompson$ theorem for arbitrary

operators:

Theorem 2. The spec $tr$um $\sigma(A*B)$ is contained in $\overline{W}(A\otimes B)$ for arbitrary operators
$A$ and $B$ , i.e.,

$(\ddagger)$ $\sigma(A*B)\subseteq\overline{W}(A\otimes B)$ .

Proof. Since $\sigma(T)\subseteq\overline{W}(T)$ in generaI, we have $\sigma(A*B)\subseteq\overline{W}(A*B)$ and consequently
it is contained in $\overline{W}(A\otimes B)$ by Theorem 1.
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$\mathbb{R}$ ernnrk. We cannot repIace (\ddagger ) in ? $1\iota eorelll2$ by t.h $e$ st.roriger inclusion $(^{*})$ . In fact, the
following example due to H.Choda in [7] is available as a counterexample of this.

$A=\left(\begin{array}{ll}1 & 1\\-1 & -1\end{array}\right)$ and $B=1$ .

Then $\sigma(A*1)=\{1, -1\}$ whereas $\sigma(A\otimes 1)=\{0\}$ since $A^{2}=0$ .

The above remark suggests us t,he requirement of additional assumption for $t^{*}$ ). An
operator $T$ is called convexoid if $\overline{|\cdot V}(T)=$ co $\sigma(T),$ [ $13$ ; Prob. 219]. Hence we have the
following corollary by (i).

Corollary 3. If $A\otimes B$ is convexoid, then $(^{*})$ holds for $A$ and $B$ .
However it is insufficient that $\backslash \backslash \cdot e$ regard Corollary 3 as an extelIsion of the Marcus-

Thompson theoreIn since $A\otimes B$ is not ahvays convexoid even if both $A$ and $B$ are convexoid
by Saito [18 ; Addendum].

On t.he other hand, an operator $T$ is hyponormal if $T^{\cdot}T\geq TT^{\cdot}$ . It is known that every
hyponormal operat.or is convexoid, cf. Halmos [13 $j$ Prob. 205]. Thus t.he following theorem
might be an operator version of the Marcus-Thompson theorem:

Theorem 4. If $A$ and $B$ are hyponormal operators, then $(^{*})$ holds for $A$ and $B$ .

Proof. As a matter of fac $t$ , not.ing CoroIlary 3 and the fact that every hyponormal operator
is convexoid, it is enough to check that if $A$ and $B$ are hyponormal operators, then so is
$A\otimes B$ . It is shown in [18 ; CoroIIary].

Investigating the proof of Theorem 4, we actually find some conditions on $A$ and $B$

implying

(1) $\overline{W}(A\otimes B)\subseteq co(\sigma(A)\cdot\sigma(B))$ .

In connection with (1), Saito [18] discussed sonie conditions implying

(2) $\overline{W}(A\otimes B)=\overline{co}(\gamma V(A)\cdot W(B))$ .

He showed that (2) holds for hyponormal operators $A$ and $B$ [ $18$ ; Cor.]. Afterwards, Furuta
and one of the authors [12] gave an equivalent condition to (2) under the assumption that
both $A$ and $B$ are convexoid, which is closely relat.ed to Corollary 3 : If both $A$ and $B$ are
convexoid, then $A\otimes B$ is convexoid if and only if (2) holds for $A$ and $B$ .

On the other hand, Shiu [19] proved the following theorem which is an operator version
of a result by Johnson [14].

Theorem C. If either $A$ or $B$ is normal, then (2) holds for $A$ and $B$ .

Here we comment that a variant of Theorem 4 is obtained by Theorem C.
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Theorem 5. IfA and $B$ are convexoid operators and one of tllen1 is normal, then $(^{*})$ holds
for $A$ and $B$ .

Proof It follows from Theorems 1 and $C$ tbat

$\sigma(A*B)\subseteq\overline{W}(A*B)\subseteq\overline{W}(A\otimes B)=\overline{co}(W(A)\cdot W(B))$ .
Moreover, since $A$ and $B$ are convexoid, we have

$\infty(W(A)\cdot W(B))=\overline{co}$ (co $\sigma(A)\cdot\infty\sigma(B)$ ) $=co(\sigma(A)\cdot\sigma(B))=co\sigma(A\otimes B)$ ,

where the second equality is assured in [12; Lemma 2].

Remark. (1) Comparing with TIleorelns $C$ and 5, we might be able to expect that if $A$ and
$B$ are commuting operators and one of them is normal, then $(^{*})$ holds. For this, Choda’s
example $A$ and $B$ stated in Remark after Theorem 2 is aIso suitable, that is, $(^{*})$ does not
hold for the matrices $A$ and $B$ . Actually, it is presented as a negative answer to the spectral
inclusion $\sigma(\Phi(A))\subseteq co\sigma(A)$ for an expectation $\Phi$ .

(2) Next we mention a generalization of Tbeorem 5. Shiu [19] showed that Theorem $C$

has the following corollary by using dilation theorem: If $\Omega i8$ a spectral set for $A$ , then

$\overline{I\prime V}(A\otimes B)=\overline{co}(\Omega\cdot W(B))$ .

Therefore we have also generalizations of Theorem 5, e.g., if $A$ is convexoid and $\sigma(B)$ is a
spectral set for $B$ , then $t^{*}$ ) holds for $A$ and $B$ .

4. Examples by graphs. In this section, we employ the notation and terminologies
due to Watatani and his followers, cf. [9] for further references, who extend Mohar’s theory
of infinite graphs.

In short, a directed graph $G$ is a pair of the set $V(G)$ of vertices and $E(G)$ of edges or
arrows. $V(G)$ is represented by a base of Hilbert space $\ell^{2}(G)$ and each arrow is expressed as
a dyad $e_{v}\otimes e_{u}$ for $u,$ $v\in V(G)$ , where $(e$. $\otimes e.)x=(x,e.)e$ . for $x\in\ell^{2}(G)$ . The adjacency
operator $A(G)$ of $G$ is defined by

$A(G)=\sum_{(u,v)\epsilon B(G)}e_{v}\otimes e_{u}$
.

lf $G$ has bounded valency, then $A(G)$ is an operator on $\ell^{2}(G)$ . Several notion of operators
are converted into that of graphs by their adjacency operators, for example, spectrum,
numerical range, spectral radius, numerical radius, etc.

For graphs $G$ and $F$ with the same vertices, we introduce the Hadamard product $G*F$
of $G$ and $F$ by the adjacency operator ;

(S) $A(G*F)=A(G)*A(F)$ .

It is obvious that the definition is equivalent to

$(\int\int)$ $E(G*F)=E(G)\cap E(F)$ .

We show by graphs the following theorem.
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Theorem 6. There are normal operators $\Lambda$ and $B$ such that $\Lambda*B$ is nilpotent and

$\overline{W}(A*B)\neq\overline{co}(W(A)\cdot W(B))$ .

Proof. Let $G$ and $F$ be graphs whose figures are

$G:0\rightarrow 0\swarrow\nwarrow 0$ and $F:0$
$\circ\searrow 0$

respectively. Then $A=A(G)$ is unitary and $B=\Lambda(F)$ are selfadjoint, whereas $A*B$ is
nilpotent.

In addition, if we consider the tensor products $G\otimes U$ and $F\otimes U$ by the bilateral shift
$U$ , then we have examples of infinite graphs.

In the previous note [10], we discussed the diagonalization

$\Phi(A)=A*1$

for operators $A$ . In the remainder of this section, we give certain remarks on the case of
$\Phi(A(G))=0$ . that is, on graphs without selfloop. Let $G$ be a finite graph without selfloop.
Since the spect.rum $\sigma(G)$ is $contait\iota edilt$ t.he closed numerical range $\overline{W}(G)$ , the disk $w(G)D$

and $r(G)D$ contain $\sigma(G)$ , where $m(G)$ (resp. $(G)$ ) is the numcrical (resp. spectral) radius
of $G$ and $D$ is the closed unit disk in the plane. However, it is hard to calculate their radii,
in general.

Let $\gamma(G)$ be the maximum of numbers of arrows terminate to a vertex, i.e.,

$\gamma(G)=\max\#\{u\in V(G)v\epsilon V(G) ; (u, v)\in E(G)\}$ .

In other words, the Gersgorin constant $\gamma(G)$ is the maximum of numbers of 1 in a row. By
the well-known Gersgorin t.heorem, we have the following theorem:

Theorem 7. The spectrum $\sigma(G)$ ofa graph $G$ without sellloop is contained in $\gamma(G)D$, the
disk center$ed$ at the origin and radius $\gamma(G)$ .

The t.heorem is sat.isfactory for the complete graph $K(n)$ since $\gamma(K(n))=n-1$ is just
t.he norm of $K(n)$ , whereas in generaI it is unsatisfactory : For this, let

$A(G)=\left(\begin{array}{lll}0 & 0 & 0\\1 & 0 & 1\\l & 1 & 0\end{array}\right)$ .

Then we have $\gamma(G)=2$ whereas $r(G)=1$ and $||G||=\sqrt{3}$ .

Remark. Suppose that a graph $G$ has no selfloop, i.e., $\Phi(A(G))=0$ . Then it follows froln
Theorems 2 and $C$ that

$\{O\}=\sigma(\Phi(A(G)))\subseteq\overline{W}(A(G)\otimes 1)=\overline{W}(G)$ ,

which has a slight extension. But it does not claim that $\Phi(A(G))=0$ implies $0\in\sigma(G)$ .

5. An approacll via characters of C’-algebras. A character $\chi$ of a (unital) C’-
algebra $A$ is a multiplicative state, i.e., a positive linear functional on $A$ with $\chi(1)=1$ and
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$\chi(AB)=\chi(A)\chi(B)$ for $A,$ $B\in A$ . The set of aI1 states an.$d$ aII characters are denoted by
$\Sigma$ and $X$ respectively.

For an operator $A$ , let $A=C^{\cdot}(\Lambda)$ be the $C^{\cdot}$ -aIgebra generated by $A$ and the identity
1. The set $\pi_{n}(A)$ of all normal approximate propervalues of $\Lambda$ is identical with the image
$X(A)=\{\varphi(A) ; \varphi\in X(A)\},$ $[11]$ and [6].

If $A$ is normal, then $\pi_{n}(A)=\sigma(A)$ and $C^{*}(A)=C(\sigma(A))$ , the algebra of all complex-
valued continuous functions on the spectrum $\sigma(A)$ of $A$ . Furthermore, if $\mathcal{B}$ is a unital $C^{\cdot}-$

algebra, then t.he t.ensor product $C=C^{\cdot}(A)\otimes_{\alpha}\mathcal{B}$ is identicaI with the algebra $C(\sigma(A);B)$

of all continuous B-valued functions on $\sigma(A)$ , cf. [20].
If ( is a character of t.he tensor product $C$ , then it incIuces a character of $\mathcal{B}$ and that of

$C^{\cdot}(A)$ , so that $\chi$ is the product character : $\chi=\chi 1\otimes\chi_{2}$ , where $\chi_{1}$ and $\chi_{2}$ are characters
of $C^{\cdot}(A)$ and $B$ respectively.

Replacing $B$ by $C^{\cdot}(B)$ , we have the following theorem, which might be implicitly mo-
tivated by Theorem $C$ due to Shiu. IncidentaIIy the reverse inclusion $\pi_{\mathfrak{n}}(A\otimes B)\supseteq$

$\pi_{\mathfrak{n}}(A)\cdot\pi_{n}(B)$ holds without any assumption, [11].
Theorem 8. IfA is a normal opera $tor$, then

$\pi_{\mathfrak{n}}(A\otimes B)=\pi_{n}(A)\cdot\pi_{n}(B)$

for an operator $B$ .
As a consequence, it follows that if $A$ is normal, then

co $\pi_{n}(A\otimes B)=co[\pi_{\mathfrak{n}}(A)\cdot\pi_{\mathfrak{n}}(B)]$

for an operator $B$ . Assume furthermore that $A\otimes B$ is convexoid, that is,
$\overline{W}(A\otimes B)=co\pi_{n}(A\otimes B)$

by [11]. Thus we wilI arrive at a version of the Marcus-Thompson theorem. A sufficient
condition for which $A\otimes B$ is convexoid is given by [12].

The discussion in Theorem 8 is also applicable to prove Theorem $C$ by vertue of the
Berberian-Orland theorem [3].

Theorem D. The closed numerical range $\overline{W}(A)$ ofA is identical with the image $\Sigma(A)=$

$\{\varphi(A) ; \varphi\in\Sigma(A)\}$ .
Related to Theorem $C$ , Shiu [19] gave the following theorem on numerical ranges of

products of operators.

Theorem E. If $A$ and $B$ are commuting operators such that one of them is normal, then
$\overline{W}(AB)\subseteq\overline{co}(W(A)\cdot W(B))$ .

Theorem $E$ might be a generalization of the following theorem due to Bouldin [4] :
$1’ 1_{1c\cdot\tau}rem$ F. IfA and $B$ are commutin$g$ operators such that one of them is positive, then

$W(AB)\subseteq W(A)\cdot W(B)$ .
In [16], Nakamoto presented a proof of Theorem $F$ by a simple calculation, which is

actually shown by rephrasing as follows : If $A$ is an operator and $B$ is positive, then
$W(B^{1/2}AB^{1/2})\subseteq W(A)\cdot W(B)$ ,

cf. [14; Theorem 1]. This obviously implies that
$\sigma(AB)\subseteq\overline{W}(A)\cdot\overline{W}(B)$

under the same $ae8umption$ as above.
Finally we give an intermediate result between Theorems $E$ and $F$ as follows :
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Theorem 9. If $A$ and $B$ a$reconlnluting$ operators such,that one of them is selfadjoint,
then

$W(AB)\subseteq co(\nu V(A)\cdot W(B))$ .

Proof. We assume that $A$ is selfadjoint. Let $A=A_{+}-A_{-}$ be the Hahn decomposition and
$P$ the associated projection, i.e., $PA=AP=-A_{-}$ and $(1-P)A=A(1-P)=A+\cdot$ Then,
putting $y=A_{+}^{1/2}x/||A_{+}^{1/2}x||$ and $z=A_{-}^{1/2}x/||A_{-}^{1/2}x||$ , we have

$(ABx, x)=(A_{+}Bx, x)-(A_{-}Bx,x)$

$=(A+x,x)(By, y)-(A_{-}x,x)(Bz, z)$

$=((1-P)Ax, x)(By,y)+(PAx, x)(Bz, z)$ .

We here put $\alpha=||(1-P)x||,$ $\beta=||Px||$ and $u=(1-P)x/\alpha,$ $ v=Px/\beta$ . Then $u$ and $v$

are unit vectors and $\alpha^{2}+\beta^{2}=1$ . Finally we have

$(ABx, x)=\alpha^{2}(Au, u)(By, y)+\beta^{2}(Av, v)(Bz, z)\in co(W(A)\cdot W(B))$ .
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