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ABSTRACT

Let $A$ and $B$ be unital C’-algebras,

$CP(A, M_{n})=$ { $\phi|\phi$ is a pure completely positive map from $A$ to $M_{n}$ with $Tr\phi(I)=1$}

and $\alpha$ be a natural action induced by $SU(n)$ on $CP(A, M.)$ .
It is proved that

Theorem If $\psi:CP(B, M.)\cup\{0\}\rightarrow CP(A, M.)\cup\{0\},$ $(n\geq 3)$ , a bijection with
$\psi(0)=0$ , is a-invariant, preserves trasition probabilities and $\psi$ and $\psi^{-1}$ are uniformly
continuous, then $\psi$ gives rise to $a^{*}$-isomorphism between $A$ and $B$ .
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\S 1. INTRODUCTION

The starting point of this paper is Shultz’s paper[6] in which he proved:

Theorem Let $A$ and $B$ be C’-algebras. Suppose that $P(A)$ and $P(B)$ are pure state

spaces of $A$ and $B,$ $\psi:P(B)\cup\{0\}\rightarrow P(A)U\{0\}$ a bijection $wi$th $\psi(0)=0$ . Then $\psi$ is

induced by $a^{*}$-isomorphism of $A$ onto $B$ iff $\psi$ and $\psi^{-1}$ are uniformly continuous and $\psi$

preserves orientation and transition probabilities.

Let $A$ and $B$ be unital $C^{\cdot}$ -algebras, $n$ be fixed integer, $n\geq 3$ . Set

$CP(A,M_{\mathfrak{n}})=$ { $\phi|\phi$ is a pure completely positive map from $A$ to $M_{\mathfrak{n}}$ with $Tr\phi(I)=1$ }.

First of all, in section 3 we consider the non-commutative version of the above theorem,

that is, we cosider $CP(A,M_{n})$ in the place of $P(A)$ . Suppose that $\alpha$ is a natural action

induced by $SU(n)$ on $CP(A,M.)$ . Namely we define

$\alpha_{g}\phi(x)=g\phi(x)g^{-1}.\forall x\in A,g\in SU(n),$ $\phi\in CP(A, M_{n})$ .

Theorem If $\psi:CP(B,M.)U\{0\}\rightarrow CP(A, M_{n})U\{0\},$ $(n\geq 3)$ , a bijection with

$\psi(0)=0$ , is $\alpha$-invariant, preserves transition probabilities and $\psi$ and $\psi^{-1}$ are uniformly

continuous, then $\psi$ gives rise to $a^{*}$-isomorphism between $A$ and $B$ .
The motivation for the above theorem is as follows. Alfsen and Shultz [6] defined the

notion orientation of the state $space8$ of a $C^{\cdot}$-algebra, and proved that the state space

with the orientation can determine the structure of the $C^{\cdot}$-algebra. Author [1] considered

the matrix algebra of a $C^{\cdot}$ -algebra instead of the state space and defined the notion of $\alpha-$

invariance with which the matrix algebra can determine the structure of the C’-algebra. In

the theorem we used the $\alpha$-invariance in the place of the orientation and set $CP(A,M.)$

as the non-commutative version of the pure state space. The theorem obtained can be

regarded as a non-commutative Shultz theorem.

Recently the theory of pure completely bounded and completely positive maps is

developing rapidly. This is another motivation of our paper.

In section 4, we provide with a counterexample to show that the condition $n\geq 3$ in

Theorem 3.1 is essential.
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\S 2. PRELIMINARY

In [1] ,we considered the matrix algebra of a C’-algebra instead of the state space
and defines the notion of $\alpha$-invariance with which the matrix algebra can determine the
structure of the C’-algebra. For later use and completeness , we give a sketch of the proof.

Let $A,$ $B$ be unital $C^{\cdot}$ -algebras

$\mathcal{K}_{A}=$ { $\varphi|\varphi$ are completely positive maps from $M_{n}(C)\rightarrow A$ with $||a(\varphi)||\leq 1$ },

$a(\varphi)=\left(\begin{array}{lll}\varphi(e_{11}) & & \varphi(e]n)\\| & \ddots & |\\\varphi(e_{n1}) & & \varphi(e_{nn})\end{array}\right)$ ,

where $\{e_{ij}\}$ is the matrix unit of $M_{n}(C)$ .
Suppose that $SU(n)$ is the set of all $nxn$ unimodular unitary matrices and $\alpha$ is the

automorphism group on $M_{n}(C)$ defined by

$\alpha_{9}(x)=gxg^{-1}$ , $x\in M_{n}(C),$ $g\in SU(n)$ .

Using $(\alpha_{9}\varphi)(x)=\varphi(\alpha_{g}^{-1}(x))$ , $\varphi\in \mathcal{K}_{A},$ $x\in M_{n}(C),$ $\alpha$ induces an action on $\mathcal{K}_{A}$ .

Theorem 1 [1] Let $A,$ $B$ be C’-algebras. For $n\geq 3$ , if $\Phi$ is an $\alpha$ -invariant affine isomor-
phism from $\mathcal{K}_{A}$ to $\mathcal{K}_{B},$ $\Phi(0)=0,$ ( $\alpha$ -invariance means that $\alpha\Phi=\Phi\alpha$ ), then $A$ and $B$

are-isomorphic.

Proof.
$1)By$ Choi-Effros theory,

$\mathcal{K}_{A}=\{a\in(M_{n}\otimes A)^{+} : ||a||\leq 1\}$

$2)We$ can extend $\Phi$ as an $\alpha$-invariant positively preserving isometry from $M_{n}\otimes A$ onto
$M_{n}\otimes B$ .

$3)Ifx\in A$ , then $uxu=x$ for every $u\in SU(n)$ . From $\alpha$-invariance
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$\Phi(x)=u\Phi(x)u,$ $x\in A,$ $u\in SU(n)$

such that $\Phi(A)=B$ .

$4)Rom$ Kadison Isometry theory [8] p335, let $z$ be the central projection of $B$ such

that $x\in M_{n}\otimes A\rightarrow\Phi(x)z$ is multiplicative and $ f\rightarrow\Phi(x)z^{\perp}i\epsilon$ anti-multiplicative. By use

of $\alpha-$ invariance, we can prove $z^{\perp}=0$ . $O$

\S 3. MAIN TiiWRBM

In this section we consider pure completely positive maps in the place of pure states

and obtain a theorem as follows.

First of all we give some notations. Let $COP(A,B)$ be all completely positive maps

from $C^{\cdot}$ -algebra $A$ to C’-algebra $B$ .
Deflnition 3.1 A completely $po8itive$ map $\phi$ from $C^{\cdot}$-algebra $A$ to C’-algebra $B$ is said

to be pure if for every $\psi\in COP(A,B),$ $\psi\leq\phi$ implies $\psi=\lambda\phi$ for some $\lambda\geq 0$ .
Let $A$ and $B$ be unital C’-algebras, $n$ a fixed integer $(n\geq 3)$ .

$CP(A,M_{n})=$ { $\phi|\phi$ is a pure completely positive map from $A$ to $M_{\mathfrak{n}}$ with Trgb(I) $=1$ }.

If $SU(n)$ is the unimodular unitary group, we can define an action on $CP(A, M_{n})$ by

$SU(n)$ as follows.

$\alpha_{g}\phi(x)=g\phi(x)g^{-1}.\forall x\in A,g\in SU(n),$ $\phi\in CP(A, M_{n})$ .

Deflnition 3.2 If $x$ and $y$ are unit vectors in a Hilbert space, the transition probability

between the vector states $\omega_{P}$ and $\omega_{y}(\omega_{\iota}(\cdot)=(\cdot x|x))$ on $B(H)$ is defined to be $(\omega_{\epsilon}|w_{\nu})=$

$|(x|y)|^{2}$ .
If $\pi:A\rightarrow B(H)$ is an irreducible representation of $C^{\cdot}$ -algebra $A$ , then the transition

probability between the pure states $\omega$. $\cdot\pi$ and $\omega_{\nu}\cdot\pi$ is again defined to be $|(x|y)|^{2}$ .

If $\sigma$ and $f$ are arbitrary pure states on $A$ , let $u_{\sigma}$ and $u_{r}$ be their support projections

in $ A^{\cdot}\cdot$ , we then define $(\sigma|\tau)=<u_{\sigma},$ $\tau>=<u_{r},\sigma>$ . Let $L(A,M_{n})$ be the vector space
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of linear functions from $A$ to $M_{n}$ and $L(A,M_{n})^{\oplus}$ the cone of all completely positive maps
from $A$ to $M_{n}$ . From the theory of completely positive map, there is an order isomorphism
between $L(A,M.)$ and $(M_{n}(A))$ (with respect to $L(A,M_{n})^{\oplus}$ ). The restriction of this
order isomorphism to $CP(A,M_{n})$ can be viewed as a map from $CP(A,M_{n})$ to $P(A\otimes M_{n})$

$1$

(the pure state space of $A\otimes M_{\mathfrak{n}}$ ), which is denoted by $\gamma$ . The topology on $P(A\otimes M_{\mathfrak{n}})$ is
hereditied to $CP(A,M_{n})$ .
Deflnition 3.$3i\phi,$ $\psi\in CP(A,M_{n})$ , the transition probability between $\phi$ and $\psi$ is defined
to be $(\gamma(\phi),\gamma(\psi))$ .
Theorem 3.1 Suppose that $\Psi$ is a bijection

$\Psi;CP(B,M_{n})\cup\{0\}\rightarrow CP(A, M_{n})\cup\{0\}$

$\Psi(0)=0$ . $(n\geq 3)$

If $\Psi$ is $\alpha$-invariant, preserves $t\iota ansition$ probabilities, and $\Psi$ and $\Psi^{-1}$ are uniformly con-
tinuous, then $\Psi$ gives rise to $a^{*}- i8omorphi\epsilon m$ between $A$ and $B$ .

Proof. By the above remark, there exists a map 7 between $CP(A,M_{\mathfrak{n}})$ and $P(M_{\mathfrak{n}}(A))$ $($

the pure state space of $M_{n}(A))$ . $\Psi$ can be viewed as a bijection from $P(M.(B))U\{0\}$ to
$P(M_{n}(A))\cup\{0\}$ .

The atomic part of $M_{\mathfrak{n}}(A)$ is a direct sum of type I factors $c;M_{\mathfrak{n}}(A)$ $\cong B(H_{i})$ for
each $i$ ( $c$; is the central support of some pure state of $M_{n}\otimes A$ in $M_{n}\otimes A$ ). The pure states
in $c_{i}^{-1}(1)$ are a maximal set of mutually equivalent pure states, and all $8uch$ maximal sets
occur in this way. It follows that $\Psi$ carries the pure normal states of $c;M_{n}(A)$ onto those
of some type I factor $4M_{\mathfrak{n}}(B)$ , a direct summand of $M_{n}(B)$ .

By $Wigner’ 8$ theorem $[6,p.499]$ , there exists a unique affine isomorphism between nor-
mal state spaces of $c;M_{*}(4)$ and $d_{j}M_{n}(B)$ , and is induced by a $*$-isomorphism or
$*$-anti-isomorphism $\Phi;:c;M_{n}(A)$ “

$\rightarrow d_{i}M_{n}(B)$ , which induces $\Psi;:d_{i}^{-1}(1)\rightarrow c_{i}^{-1}(1)$ .
Since $\Psi_{i}$ is $\alpha$-invariant, $\Phi_{i}$ is $\alpha$-invariant. It follows that $\Phi_{i}$ is a $*$-isomorphism. Now
the direct sum $\Phi=\oplus\Phi_{i}$ will map the atomic part of $M_{n}(A)$

$*$-isomorphically onto that
of $M_{\mathfrak{n}}(B)$ , and induces $\Psi$ . If A $i8$ a C’-algebra, we denote by $A_{u}$ the set of elements
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$ a\in z_{A}A^{\cdot}\cdot$ ( $Z_{A}$ is the central projection in $A^{\cdot}$ . such that $z_{4}A^{\cdot}$
. is the atomic part of $ A^{\cdot}\cdot$ )

such that $a,$ $a$ $a,$ $aa$ are uniformly continuous on $P(A)\cup\{0\}$ . We say that $A$ is weakly

perfect if $A_{u}=z_{A}A$ .
Let $p_{M_{\hslash}(A)}$ denote the central projection in $M_{n}(A)$ such that $z_{M_{*}(4)}M_{n}(A)$

$ i\epsilon$ the

atomic part of $M_{n}(A)$ .
By [$6,Theorem1$ ,p.507], every C’-algebra is weakly perfect so that $M_{\mathfrak{n}}(A)$ is weakly

perfect. Since $\Psi$ and $\Psi^{-1}$ are uniformly continuous, $\Psi$ induces an isometry from
$Z_{M.(A)}M_{\mathfrak{n}}(A)$ to $z_{M_{*}(B)}M_{n}(B)$ . Since $P(M_{n}(A))$ annihilate$s(I-zu.(4))M_{\hslash}(A),$ $\Psi$ in-

duces an isometry from $M_{\mathfrak{n}}(A)$ to $M_{\mathfrak{n}}(B)$ , which is $\alpha$-invariant. By Theorem 1 we can
conclude that $A\underline{\simeq}$ B. $\square $

If we $con8iderM_{\mathfrak{n}}\infty$ in the place of $M_{n}$ (where $M_{n^{\infty}}$ is a UHF-algebra of type $n^{\infty}$ ),

we can get $a$ generalization of above theorem. We give some notations. Let $A$ be a unital

C’-algebra.

$CP(A,M_{n}\infty)=$ { $\phi|\phi$ is a completely positive map from $A$ to $M_{\mathfrak{n}\infty}$ with $Tr\phi(I)=1$ }

($Tr$ is the trace in $ M_{*}\infty$ )
$M_{\mathfrak{n}^{\infty}}=\overline{\bigcup_{l=1}^{\infty}\varphi_{k}(M_{\mathfrak{n}^{k}})}$,

where $\{\varphi_{k}\}$ are embedings from $M_{n^{k}}$ to $ M_{\mathfrak{n}}\infty$ .

$SSU(\infty)=\bigcup_{l=1}^{\infty}\varphi\iota(SU(n^{1}))$ .

By use of $SSU(\infty)$ , we can define anatural action on $CP(A, M_{n}\leftrightarrow)$ as follows,

$\alpha_{g}\phi(x)=g\phi(x)g^{-1}.\forall x\in A,g\in SSU(\infty),$ $\phi\in CP(A,M_{n}\infty)$ ,

which denoted by $\alpha$ .
When we consider $M_{n^{\alpha}}$ in the place of $M_{\mathfrak{n}}$ , we can obtain an order isomorphism

between $L(A,M_{*}\infty)$ and $(M_{1}\infty\otimes A)$ (with respect to $L(A,M_{n^{\infty}})^{\oplus}$ )$[2]$ . The restriction

of this order isomorphism to $CP(A,M_{\mathfrak{n}\infty})$ can be viewed as a map from $CP(A,M_{\mathfrak{n}\infty})$
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to $P(A\otimes M_{n\infty})$ (the pure state space of of $ A\otimes M_{n}\infty$ ). In the same way we can define
the transition probabilities between the elements in $CP(A,M_{n}\infty)$ . Then we can get the
following theorem.

Theorem 3.2 Suppose that $\Psi$ is a bijection

$\Psi:CP(B,M_{n\infty})\cup\{0\}\rightarrow CP(A, M_{\mathfrak{n}}\infty)\cup\{0\}$

$\Psi(0)=0$ .

If $\Psi$ is $\alpha$-invariant, preserves transition probabilities and $\Psi$ and $\Psi^{-1}$ are uniformly contin-
uous, then $\Psi$ induces $a^{*}$-isomorphism between $A$ and $B$ .

Proof. $\Psi$ can be viewed as a bijection from $P(B\otimes M_{\mathfrak{n}}\infty)\cup\{0\}$ to $P(A\emptyset M_{n}\infty)U\{0\}$ with
$\Psi(0)=0$ . Following the proof in Theorem 3.1, we can get an $\alpha$-invariant isometry between
$A\emptyset M_{n^{\alpha}}$ and $ B\otimes M_{\mathfrak{n}}\infty$ .

Fixing an integer $n^{k}\geq 3$ , there is an isomorphism $\kappa$ from $ M_{n}\infty$ to $ M_{\mathfrak{n}^{k}}\otimes M_{n}\infty$ . we
have a diagram as follows:

$M_{n}\infty\otimes A$
$\rightarrow\Psi$

$M_{\hslash}\infty\otimes B$

$\kappa\otimes I\downarrow$ $\downarrow\kappa\otimes I$

$M_{n^{k}}\otimes M_{\mathfrak{n}}\infty\otimes A$
$\rightarrow\Psi^{\prime}$

$M_{n^{h}}\otimes M_{n}\infty\otimes B$

in which

$\Psi^{\int}=(\kappa\otimes I)0\Psi o(\kappa^{-1}\otimes I)$

Since $SU(n^{k})\otimes SU(\infty)\subset SU(\infty)$ , so $\Psi^{\ell}$ is an $\alpha$‘-invariant map, where $\alpha^{l}$ is a natural
action induced by $SU(n^{k})\otimes SU(\infty)$ , that is

$\alpha_{u_{1}\otimes u_{2}}$ : $x\mapsto(u_{1}\otimes u_{2})(x)(u:\otimes u_{2})$ ,

$u_{1}\in SU(n^{k}),$ $u_{2}\in SU(\infty),$ $x\in M_{\mathfrak{n}^{k}}\otimes M_{n}\infty\otimes A$ .
Next thing we should prove is $\Psi^{l}(M_{n^{k}}\otimes A)\subseteq M_{\mathfrak{n}}\otimes B$ . We set $\alpha‘=\alpha_{1}^{\prime}\otimes\alpha_{2}^{\int}$ in

which $\alpha_{1}^{\prime}$ is an action induced by $SU(n^{k}),$ $\alpha_{2}^{l}$ is the one induced by $SU(\infty)$ . $\alpha_{2}^{l}$-invariance
implies that
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$(I_{n^{k}}\otimes u)\Psi^{\prime}(x)(I_{n^{k}}\otimes u)=\Psi^{l}(x)$ .

$u\in SU(\infty),$ $x\in M_{n^{h}}\otimes A$ ( $I.h$ is the identity in $M_{n^{h}}(\mathbb{C})$ ) such that $\Psi^{l}(x)\in M_{\mathfrak{n}^{k}}\otimes B$ .
It follows that $\Psi^{\prime}(M_{\mathfrak{n}^{k}}\otimes A)\subseteq M_{\mathfrak{n}^{k}}\otimes B$ and $\Psi$ ‘ is $\alpha_{1}^{l}$ -invariant. We can arrive that $A$

is-isomorphic to B. $O$

\S 4. COUNTER-EXAMPLE

In this section, we will present an example to show that the condition $n\geq 3$ is essential

for theorem 3.1.

Theorem 4.1 There are $\sigma$ -algebras $A$ and $B$ , and map $\Psi$ from $CP(B,\dot{M}_{2})\cup\{0\}to$

$CP(A,M_{2})U\{0\}$ , with $\Psi(0)=0$ , such that $\Psi$ preserves the transition probabilities, $\Psi$ and
$\Psi^{-1}$ are uniformly continuous, $\Psi$ is $\alpha$-invariant, but $\Psi$ does not give rise to $a^{*}$-isomorphism

between $A$ and $B$ .

Proof. Suppose that $A$ and $B$ are $C^{\cdot}$-algebras such that $A$ is anti-isomorphic to $B$ ,

$\pi:A\rightarrow B$ .

In $M_{2}$ , define
$\sigma(\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right))=\left(\begin{array}{ll}\delta & -\beta\\-\gamma & \alpha\end{array}\right)$ .

Then $\sigma$ is an anti-automorphism of $M_{2}$ of order 2 such that $\sigma(u)=u,$ $u\in SU(2)$ . Then
$\Psi$. $=\sigma\otimes\pi$ induces an $\alpha$-invariant isomorphism from $M_{2}(A)_{1}^{+}$ to $M_{2}(B)_{1}^{+}$ with $\Psi.(0)=0$ .
If $\Psi_{1}=(\Psi.)^{t}$ and $\Psi=\Psi_{1}|_{CP(B,lf,)\cup\{0\}},$ $\Psi$ is an $\alpha$-invariant isometry so that $\Psi,$ $\Psi^{-1}$ are
uniformly continuous.

Following the proof of Theorem 3.1, for $n=2,$ $\Phi;:c;M_{2}(A)$ $\rightarrow d;M_{2}(B)$ , induced

by $\Psi;:d_{i}^{-}1$ (1) $\rightarrow c_{i}^{-1}(1),$ will.be $a^{*}$-isomorphism or a-anti-isomorphism. Note That every
$*$-isomorphism (or-anti-isomorphism) induces an affine isomorphism of their state space,

which then preserves transition probabilities for pure states. So $\Psi$ preserves transition
probabilities. But $\Psi$ induces $a^{*}\leftrightarrow anti$-isomorphism between $A$ and B. $O$
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