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ALMOST COMPLEX METRIC CONNECTIONS ON ALMOST
HERMITIAN MANIFOLDS

Ekaterina ARNAUDOVA and Stancho DIMIEV

It is well known that the classical Kihler manifolds can be characterized in terms of the
Hermitian geometry by some torsionless connections defined by the metric. More precisely, an
almost Hermitian manifold (M, g,J) with an almost complex structure J, Hermitian metric g
and fundamental 2-form F’, admits a torsion-free almost complex connection if and only if the
fundamental form F is closed and the almost complex structure J is a torsionless structure
(N =0, where N is the Nijenhuis tensor), i.e. when (M,g,J) is a Kihler manifold.

In this note we give an example of a linear family (stratification) of almost complex metric
connections on an almost Hermitian manifold M dependent on two real parameters. The
well known characteristic connection of A.Lichnerowicz [6],[7]corresponds to one strata of the v

introduced family.
We develop an analogous characteristic for an almost Kahler manifold (M, g, J, F) (dF = 0)
with the help of a given almost complex connection with a torsion (VJ = 0 but N # 0).

1. Connections on almost Hermitian manifolds.

Let (M, g,J) be an almost Hermitian manifold endowed with an almost complex structure
J and a Riemannian metric g compatible with the almost complex structure J. By F is
denoted the fundamental 2-form of M, defined by F(X,Y) = g(X,JY) for each pair X,Y €
X(M), where X(M) is the Lie algebra of C* vector fields on M. Let N denote the torsion

tensor of the almost complex structure J, i.e.
NX,Y)=2(JX,JY]-J[JX,Y] - J[X,JY] - [X,Y])

for each pair X,Y € X(M) (see [5]).
It is well known that there exists unique metric connection D on M with a given torsion
tensor T'. This connection is defined by the following formula (see [4]):

29(DxY, Z) = X(¢(Y, 2)) + Y (9(Z, X)) - Z(9(X,Y))

+9([X, Y]+ T(X,Y), 2) + 9([2,X] + T(Z,X),Y) - g([Y, Z] + T(Y, Z), X)
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and if V is the Riemannian connection on M then
(1.1) 29(DxY,Z)=29(VxY,Z)+ g¢(T(X,Y),Z) + ¢(T(Z,X),Y) - 9(T(Y, Z), X).
We put
(1.2) P(X,Y,Z)=g(T(JY,Z)+T(Y,JZ),X)
-9(T(X,Y)+ JT(X,JY),JZ)- 9(T(Z,X)+ JT(JZ,X),JY).
Note that P is a skew-symmetric tensor with respect to the last two arguments and
P(X,JY,JZ) = -P(X,Y, Z).

We put also
(1.3) GN(X,Y,Z) = ¢g(N(X,Y),Z)+g(N(Y,Z),X)+g(N(Z,X),Y), |
(14) GNJ(X,Y,Z) = g¢g(N(X,Y),JZ)+g(N(Y,Z2),JX)+9(N(Z,X),JY),
where GN and GNJ are skew-symmetric tensors and the 3-forms
(1.5) a(X,Y,Z2) = dF(JX,JY,JZ)-dF(X,Y,JZ)-dF(X,JY,Z)-dF(JX,Y,Z),
(1.6) B(X,Y,2) = dF(X,Y,Z)-dF(X,JX,JZ)-dF(JX,JY,Z)—-dF(JX,Y,JZ).
Remind that from F(X,Y) = ¢(X, JY ) and the formula for dF it follows

3dF(X,Y,Z) = X(g(Y,JZ2))+Y(9(Z,JX))+ Z(9(X,JY))

—g([X,Y],JZ) - g([ZaXLJY) _g([YaZ]’JX)'

Lemma 1.1. Let D be a metric connection with torsion ténsor T on the almost Hermitian
manifold (M,g,J). Then

29(DxJY — JDxY,Z) = 3dF(X,JY,JZ) — 3dF(X,Y,Z) + %g(N(Y, Z),JX)- P(X,Y,2)
is satisfied for every X,Y, X € X(M).
Proof. From g(DxY,Z) = —g(DxY,JZ) we have

d(DxJY — IDxY, Z) = g(Dx JY, Z) + ¢(DxY, J Z)
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and using the above formula for D we obtain that
(1.7) 29(DxJY — JDxY,Z) = X(9(JY,Z)) + JY(9(Z, X)) — Z(g9(X,JY))
+9([X,IY)+ T(X,JY), Z) + 9([Z,X] + T(Z, X),JY)
- 9([JY,Z]+ T(JY,Z),X) + X (9(Y,J Z)) + Y (¢(J Z, X))
+9(VZ, X1+ T(JZ,X),Y) - o(IY, I Z) + T(Y, T Z), X)
-JZ(9(X,Y))+ 9([X,Y] + T(X,Y),J Z).
Taking account of the formula for dF we have
(1.8) 3dF(X,JY,JZ)-3dF(X,Y,Z) = X(9(Y,JZ)) + JY (9(Z,X)) — JZ(9(X, JY))
+9(J[X,JY),JZ) + ¢g(J[J Z,X),JY) — ¢([JY,J Z], JX)
- X(9(Y,JZ)) - Y(9(2,JX)) - Z(9(X,JY))
+9([X,Y],JZ) + 9([Z, X],JY) + ¢([Y, Z], J X).
Substituting (1.8) into the right hand side of (1.7). We have the required equality. Q.E.D.

Lemma 1.2. A metric connection D with torsion tensor T on the almost Hermitian manifold
(M,g,J) is an almost complex connection if and only if the torsion tensor T satisfies

P(X,Y,Z)=3dF(X,JY,JZ) - 3dF(X,Y, Z) + %g(N(Y,Z),JX)
for each X,Y,Z € X(M).

Proof. Let metric connection D be an almost complex connection, i.e.
DxJY —JDxY =0 forevery X,Y € X(M).

Then g(DxJY — JDxY,Z) = 0 for every X,Y,Z € X(M) and the equation for the torsion
tensor T follows from Lemma 1.1.
Let now the equation for the torsion tensor T be satisfied. Then

9(DxJY — JDxY,Z)=0 forevery Z € X(M),

so we obtain that Dx JY —JDxY = 0 for every X,Y € X(M). The last condition is equivalent
to DJ = 0. Q.E.D.

Lemma 1.3. Let (M,g,J) be an almost Hermitian manifold with a fundamental 2-form F.
Then the following identities are satisfied:
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a) GN(X,Y,Z) = 6a(X,Y, Z);
b) GNJ(X,Y,Z) = 68(X,Y, Z).

Proof. By using the formulas for F and dF we calculate a(X,Y, Z) to obtain the identity
a). The proof of the identity b) is similar.

Theorem 1.1. Let (M,g,J) be an almost Hermitian manifold and let F be the fundamental
2-form of M. There exists a family
D= {qu :(p,q) € R2}

of almost complex metric connection Dy, on M dependent on two parameters p,q € R. The

connections Dy, = D can be defined by the following equation:
20(DxY,2) = 29(VxY,Z)+ -;’-a(x, Y,2)- %g(N(Y, 2),X)
+(2¢ — 12p)dF(JX,JY,JZ) + (29 — 12p + 3)dF(J X,Y, Z)

for X,Y,Z € X(M), where V is the Riemannian connection on M.

Proof. Let D be a connection with a torsion tensor T', defined by
(1'9) g(T(X, Y)’ Z) = Al.q(IV()(’ Y)’ Z) + A29(]v(Y’ Z)':X)
+ X29(N(Z,X),Y)+ mdF(JX,JY,JZ) + p2dF(X,Y, JZ)

+ uadF(X,JY, Z) + usdF(JX,Y, Z)

for every X,Y,Z € X(M), where Ay, Az, 1, 42, 43 € R are arbitrary parameters.
By (1.2) and (1.9), we have

P(X,Y,Z) = (2M — 422)9(N(Y, 2),JX) — 20 g(N(X,Y ), Z)
—2M9(N(Z,X),JY) + 2u2dF(X,Y, Z) — 2p2d F(X, JY,J Z)
+ (i1 + 2 — 2p3)dF(JX, JY, Z) + (1 + pa — 2u3)dF(J X, Y, T Z).
If the parameters A1, Az, i1, 2, 43 satisfy the equations
22y — 4)g — % = —2);, 2uz—3=12\,

2p2 + 3 = —(p1 + p2 — 2p13),

then the condition of Lemma 1.2 reduces to
-MGNJ(X,Y,2)+ 6MB(X,Y,Z)=0

for every X,Y,Z € X(M) and A\, € R.
It follows form Lemma 1.3 that if we put
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1 3
AL =D, )\2=p—§, #2=6P—§,

3
13 = g, #1=2f1—18p+§,

where p,q € R are arbitrary parameters, then the connection D with the torsion tensor T,
defined by

(L10)  g(T(X,Y),2) = —3 (4(N (Y 2), X) + ¢(N(Z,X),Y)
+pGN(X,Y,Z) + (2q —18p + 2) dF(JX,JY,JZ)

+ (ﬁp - %) dF(X,Y,JZ)+ q(dF(X,JY,Z) + dF(JX,Y, Z))

is an almost complex connection.
The theorem follows after substituting (1.10) into the formula (1.1) of D and taking account

of Lemma 1.3. a). Q.E.D.

We have defined the family
D= {qu :(p,q) € R2}

dependent in a linear manner on a point (p,q) € R2. The parameter space R? admits an
elementary stratification defined as follows

(p@) ~(r,8) iff g(Tpo(X,Y),Z) = 9(T;+(X,Y), Z)

for all X,Y,Z € X(M).

An almost Hermitian manifold (M,g,J) is called a quasi-Kihler manifold if (VxJ)Y +
(VuxJ)JY = 0 for all X,Y € X(M). It is easily observed that (M,g,J) is a quasi-Kahler
manifold iff dF(X,JY,JZ) + dF(X,Y,Z) = 0 for all X,Y,Z € X(M). As it is well-known an
almost Kahler manifold (dF = 0) and a nearly Kihler manifold ( (VxJ)Y + (VyJ)X =0
for all X,Y € X(M) ) are quasi-Kéhler manifolds. For a quasi-Kihler manifold (M, g,J), we
may see that D, = D,, for all (p,q),(r,s) € R%. When (M,g,J) is not quasi-Kahler, then
it follows that D, , = D, , iff

g—s—6(p—r)=0 or g—6p=s—6r
We herewith write a proof for
“(A) (VxJ)Y +(VyxJ)JY =0 iff (B) dF(X,JY,JZ)+dF(X,Y,Z)=0"

It is evident that (A) implies (B). We shall show the converse. Indeed, dF(X,Y,Z) +
dF(X,JY,JZ) = 0 implies
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o(Vy )2, X) + 9(Vz)X,Y) + 9(Vay J)I Z,X) + 9((V32J) X, JY) = 0 (2)
Putting Z = JX in (a), we obtain
(VxI)X +(VyxJ)JX =0 (b)
Linearizing (b), we have
(VxJ)Y + (Vy )X + (VyxJ)JY + (VyyJ)JX =0 (o)
Replacing X by JX in (c), we get
(VixJ)Y + (VyJ)IX — (VxJ)WY — (VyyJ)X =0,

from which
J{VxJ)Y — (VyN)X + J(Vay )X = J(VyxJ)Y} =0,
and hence
(VxJ)Y — (VyD)X + (VixJ)IY = (VoyJ)IX = 0. (d)
Thus, from (c) and (d), we have finally
(VxJ)Y +(VixJ)JY =0 Q.E.D.

The almost complex metric connection D on an almost Hermitian manifold (M,g,J) is
called a characteristic connection, if its torsion tensor T satisfies the condition

T(X,Y) +T(JX,JY) =0

for all X,Y € X(M) (cf [2]). Moreover, in the same paper it is proved that there exists unique

characteristic connection on M.
Now we proved that the characteristic connection belongs to the family D.

Theorem 1.2. Let (M,g,J) be an almost Hermitian manifold and let F be the fundamental
2-form of M. Then the characteristic connection D belongs to the family D and is given by

the following equation:
8¢(DxY, Z) = 8¢(VxY, Z) - g(N (Y, Z), X)
+6(dF(JX,JY,JZ) - dF(X,Y,JZ)—-dF(X,JY,Z)+ dF(JX,Y,Z))
for every X,Y,Z € X(M), where V is the Riemannian connection on M.
Proof. Using the formula for g(T(X,Y),Z) in Theoreml1.1 we obtain that
W(T(X,Y) +T(JX,JY),Z) = (2¢ — 12p) (dF(X, Y, JZ) + dF(J X, JY, ] Z))

for every X,Y,Z € X(M).
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From the above result, it follows immediately that D is characteristic if (M, g,J) is quasi-
Kahler and that if (M, g,J) is not quasi-Kahler, D is characteristic if and only if ¢ — 6p = 0.

This means that the characteristic connection corresponds to these points (p,q) € R?
which varie on the line through the origin.

Now the torsion tensor T is defined by

o(T(X,Y),2) = Zo(N(X,¥),Z)+ {o(N(Z,X),Y) + (N (Y, 2), X))

+-§-{dF(Z, X,JY)+ dF(Z,JX,Y)}

and D in the desired connection.
We herewith write the proof of the above equality. By Lemma 1.2. we have

29(JT(JY, Z) - T(Y, Z),X)
= 3{dF(JX,Y, Z) - dF(X,Y,J Z) - dF(X,JY, Z) — dF(J X,JY,J Z)}
= 3{—dF(X,Y, Z) - 2(dF(X,JY, Z) + dF(X,Y,J Z))}
- 3{_%(g(N(X,Y), Z)+ g(N(Y,Z),X) + 9(N(Z,X),Y))

~2(dF(X,JY,Z) + dF(X,Y,JZ))}

On one hand, we have obtained the following
JT(JY,Z) + T(Y,2) = 4lN(Y, 2).
We have immediately
9T (¥, 2), 2) = 3N (¥, 2), X) + SN (X,Y),2) + 9N (Z, X),Y)}
+o{dF(X,Y,J2) + dF(X, JY, 2)} Q.ED.

Theorem 1.3. Let (M,g,J) be an almost Hermitian manifold and let F be the fundamental
2-form of M. Then the characteristic connection D is uniquely determined by the tensor fields
N and F.

Proof. As we know (see [7]) the torsion tensor T of an almost complex connection satisfies

the following identity:
1
TJX,JY)-JT(JX,Y)-JT(X,JY)-T(X,Y) = —§N(X,Y).
It follows from this identity and Gray condition that

JT(JY,Z)+T(Y,Z) = %N(Y, Z).
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Taking account of (1.2), we have
P(X,JY,Z)- P(JX,Y,Z)=29(JT(JY,Z)-T(Y, 2Z),X).
Thus by using Lemma 1.2 we have finally

(T(XY),2) = -3@N(Y,2),X) +9(N(Z,X),Y))

+g (dF(JX,JY,JZ) - dF(X,Y, ] Z)).

Thus we see that the characteristic connection D is uniquely determined by the tensor fields
N and F. Q.E.D.

2. Connections on almost Kahler manifolds.

Let now (M, g,J, F) be an almost Kihler manifold, i.e. (M,g,J) is an almost Hermitian
manifold and the fundamental 2-form F is closed (dF = 0).

Lemma 2.1. Let D be a metric connection with torsion tensor T on the almost Kahler
manifold (M, g,J, F). Then

2(DxJY ~ IDxY,2) = 39(N(Y, Z),JX) - P(X,Y,Z)

is satisfied for each X,Y, Z € X(M).
The proof follows from Lemmal.l and dF = 0.

Lemma 2.2. The metric connection D with torsion tensor 7" on an almost Kahler manifold
(M,gq,J, F) is an almost complex connection if and only if T satisfies

P(X,Y,2) = 29(N(Y, 2),JX)

for each X,Y,Z € X(M).
The proof follows immediately from Lemmal.2 and dF = 0.

Lemma 2.3. Let (M,g,J,F) be an almost Kahler manifold. Then the following identities
are satisfied:

a) GN(X,Y,Z) = 0;
b) GNJ(X,Y,Z) = 0.
The proof follows from Lemmal.3 and dF = 0.

Theorem 2.1. The metric connection D with the torsion tensor

T(X,Y) = %N(X,Y)
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on the almost Kahler manifolds M is an almost complex connection.

The proof follows from Theorem 1.1 and Lemma 2.3. a).

Theorem 2.2. If an almost Hermitian manifold (M, g,J) admits an almost metric connec-
1 R .
tion D with the torsion tensor 7'(X,Y) = gN(X, Y), then (M, g, J) is a quasi-Kahler manifold

and vice versa.

Proof. First we give the following

Lemma 2.4. Under the conditions of the above theorem we have that the fundamental
2-form F satisfies the following equation

dF(X,Y,Z) - dF(X,JY,JZ) + dF(JX,JY, Z) + dF(J X,Y,JZ) = 0
for all X,Y,Z € X(M).
Proof of the Lemma 2.4. We see that
21) P(X,Y,Z)= i—(g(N(Y, 2),7X) - g(N(X,Y),JZ) — g(N(Z, X),JY)).
~From Lemma 1.2 it follows that
(2.2) %GNJ(X, Y,Z) = 3dF(X,Y, Z) — 3dF(X, JY, ] Z).

The proof of the Lemma 2.4 can be finished using the Lemma 1.3.
Proof of the Theorem 2.2. Putting Y = JX in (2.2) and taking account of (1.4), we have

dF(X,JX,Z)=0 foral X,Z e X(M)
By linearizing the above equality, we have
dF(X,JY,Z)+dF(Y,JX,Z)=0

and hence
dF(X,Y,Z)+ dF(JX,JY,Z) = 0.

Therefore, (M, g,J) is a quasi- Kahler manifold.
Conversely, we assume that (M, g, J) is a quasi-Kahler manifold. Then, by the last equality
in the proof of theorem 1.2. we have

(23)  9(T(X,Y),2) = ~{g(N (Y, 2), X) + (N (2, X),Y)} - 3dF(X,Y, I Z).
On one hand, by (2.2) and the hypothesis, we get

(2.4) | i—GNJ(X, Y, Z) = 6dF(X,Y, Z).
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By (1.4) and (2.4), we get
(25)  3dF(X,Y,J2) = —{g(N(X,¥),2) + g(N (Y, 2), X) + g(N(Z, X),Y)}.

Thus, by (2.3) and (2.5), we have finally
o(T(X,Y),Z) = Lg(N(X,Y), 2). QED.

Remark 1. It is known that 4-dimensional quasi-Kadhler manifold is necessarily an almost
Kahler manifold [3]

Thus, form theorem 2.2. we have the following

Corollary 2.3. If a 4-dimensional almost Hermitian manifold (M, g,J) admits an almost

complex metric connection D with the torsion tensor N(X,Y) = §N (X,Y), then (M,g,J) is
an almost Kahler manifold and vice versa.

Example. Let H x S! be the cartesian product of the Heisenberg group H and the circle
S'. The Lie algebra L(H x S*) of all left invariant vector fields has a base {f1, f2, fa, fa} with

[fi’ f2] = fs and [fp) fQ] =0 for (p, Q) # (1x2)'

Let J be a left invariant almost complex structure of H x S!. As we know (see [1]) the
left invariant vector fields

f3, f&o Jfa, Jfs

are linearly independent for every non-integrable J.
We put
e1=1f3, e=/Jfs, esa=Jfs, es=Jf4
and now [e3,eq] = pe;, where u dependent on the structure J and u # 0 for every non-

integrable J.
We consider the left invariant metric g, defined by

g(ep,ep) =1 and g(ep,eq) = 0.

If the left invariant forms {e],e3,e3,e3} form the dual base of {e;,ez,e3,e4} then the
fundamental 2-form F is defined by

F=—(eNe;+e3Ae€)

and dF = 0.
We calculate N(e;,ez) = 2ue; and the Riemannian almost complex connection D is defined

by
Dye; = —5‘82, Dye; = —%61, Dze; = 0.
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Remark 2. Another approach was proposed by Prof. K. Sekigawa. It is based on a non-

metric connection defined as follows
1 1 1
DxY :=VxY — -2—J(VxJ)Y + ZJ(VyJ)X + Z(VJyJ)X,

(DxJ)Y := Dx(JY) - JDxY.

The proposed connection D satisfies DJ = 0, but Dg # 0. The condition Dg = 0 is equivalent
to the following equation

dF(JX,JY,JZ) +dF(X,Y,Z) =0
for all X,Y,Z € X(M).
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