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Bellman equations for discrete time
two—parameter optimal stopping problems

Teruo Tanaka

Abstract

We study Bellman equations associated with two-parameter optimal stopping
problems for discrete time bi-Markov processes. The existence and the unique-
ness of a solution of the Bellman equation for our problem are investigated by
using the concept of the bi—excessive function.

Keywords : Bellman equation * bi-excessive function * bi-Markov process *
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1 Inti'oduction

Throughout this paper we consider the stochastic processes indexed by N2, Let T ==
N2. The index set T is extended to its one—point compactification T U {oco} endowe{
with the following partial order : for all z = (s,t), 2’ = (¢',¢') € T,

2<7z ifandonlyif s<s, t<t,
2<z' ifandonlyif s<s',t<?,
z<oo forall ze€T.

For i = 1,2, let X* = (O, F*, Fi, X'(t), P}) be a time homogeneous Markov chain
with a state space (E*, B'). We assume that X! and X2 are mutually independent.

We define a bi-Markov process introduced in Mazziotto [8] , that is, the family of
a two—parameter process taking values in E = E! x E?

X(z)=(X"(s), X?(t)) z=(s,t) €T
on the probability space (2 = Q! x O, F = F! ® F*,P,,y = P! ® P2,(z,y) €

E) endowed with the smallest two-parameter filtration {F,,z € T} which contains
{F! ® F2,(s,t) € T} and satisfies the conditions
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F =0(U,F,),
{F.,z € T} is complete.
A strategy is the family of stopping points {o¢,¢ > 0} satisfying the conditions :
Jg = 2,
O¢y1 = 0¢+ €3 or Oy + ez,
O¢4+1 is measurable with respect to F,,,
where e; = (1,0), e = (0,1) and F,, = {4 € Fl[AN{o: < z} € F,,Vz}.
A tactic is the pair (oy, 7) of a strategy {o.} and a stopping time 7 with respect to
For- '
We shall denote by B, B(A™) and B(A*) the set of all B = B’ ® B>~measurable
functions taking on values in (—oco, +00], the functions f in B which satisfy the con-
ditions

A E(,,y)[sgp fF(X(2))] < o0, (z,y) €E,
A* i Beylsup fH(X(2))l < oo, (z,9) € E,

respectively, and also write B(47,A%) = B(A™) N B(At), L(A™) = L N B(A7),
L(A*) = LN B(A*'), and L(A™,A%) = L(A™) N L(A*) where L is the set of all
functions f € B with E¢, ,)[f~(X(e:))] < 00, (z,9) € E, i =1,2.

Let Tbe the set of all tactics with P;4)(7 < o0) = 1, (z,y) € E, T the set of all
tactics with P, ) (7 < 00) =1, (z,y) € E.

The two—parameter optimal stopping problem studied in this paper is to find
(o7, 7*) € Z(resp.Z) such that

5(z,y) = Eewlg(X(o7.)] = sup Egy)[9(X(0-))]

(‘71 ,r)GE

S(z,y) = Eeyplg(X(07.))] =Juw Bz 9(X (a5))]
where g(X(o0)) = limsup,_ . g(X(z)). We shall call S and S the optimal value
function.

These problems have been studied by several authors ( see Krengel and Sucheston
[3], Lawler and Vanderbei [4], Mandelbaum [6], Mandelbaum and Vanderbei [7]). Man-
delbaum and Vanderbei [7] introduced the concept which is called the multi-excessive
function. Mazziotto [8] also introduced the concept which is called the bi-excessive
function, and developed the potential theory associated to the continuous time bi-
Markov processes.

By the way, it is well known that the Bellman equation associated to the two-
parameter optimal stopping problem is the following type :

f(z,y) = max{g(z,y),T" f(z,y),T*f(z, )}
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= max{g(z,y), max T"f(z, y)}. (1)
Here T" be a transition operator of X*, then,

T'f(z,9) = E@y[f(X(1,0))], (2)
Tzf(m7y) = E(a:,y)[f(X(O:l))]' (3)

Our aim in this paper is to study the existence of the solution of (1) by using the
successive approximation and the relation between a solution of (1) and the optimal
value function, and also to give the sufficient condition in order that (1) has a unique
solution.

As for classical one-parameter optimal stopping problems, the excessive functions
play an important role in studying the properties on the optimal value functions.
Shiryayev [10] has given the excessive characterization of the optimal values functions.
In this paper we shall also give the bi—excessive characterization of the values S and
S in accordance with the line of Shiryayev [10].

2 Bi—excessive functions and optimal value func-
tions

In this section we shall give some results of bi-excessive functions and smallest bi-
excessive majorants.

Let {X(z),F., Pzy)}:eT be a bi-Markov process with the state space (E, B) in-
troduced in section 1.

DEFINITION 2.1 A function f € B is said to be a bi—excessive function ( with respect
to T* and T? ) if for all (z,y) € E and i = 1,2, T*f(z,y) defined by (2) and (3) is
well defined and T* f(z,y) < f(z,v)-

Let {f.} be a nondecreasing sequence of bi—excessive functions of L. Thenlim,_ fn
is also bi-excessive.

DEFINITION 2.2 A bi-excessive functionf € B is said to be the smallest bi-excessive
majorant of g € B if f > g and for any bi-excessive function h such thath > g, f < h.

DEFINITION 2.3 Let a function f be a solution of the equation (1). A tactic (0¢,T) is
said to be an admissible tactic associated with f if (0., 7) has the following properties :

oo = (0,0),
Tyl = Orte if X(o) € A,
r = inf{t > 0: X (o) € B},
where B={f =g}, A'={f=T'f}\ B and A2={f =T%f}\ (A'UB).
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Here is a fundamental result obtained by Mandelbaum and Vanderbei [7].
LEMMA 2.1 Let g € B and V the smallest bi—excessive majorant of g. Then
V = max{g, TV, T?V}.
Let the operator Q be defined by
Qg = max{g,T"g, T?g}.
Then the function V = lim,_,, Q"¢ is the smallest bi-ezcessive majorant of g.

LEMMA 2.2 Letg € B, f a solution of the equation (1) and (0., 7) an admissible tactic
associated with f. Put

7e=inf{t > 0: f(X(0¢)) < 9(X(0e)) + €}, €e>0.
Then, if (z,y) € E is such that f(z,y) < oo, for anyt € N,
Ey)f(X(0rae))] = f(z,9).

Proof. 7. is a stopping time with respect to F,,. Then we have

f(z,9) = Eeylf(X(0)
= Eey)f(X(0))1{r,=0} + £(X(0))1re>0]
= E@un[f(X(0))1{r,=0) + F(X(01))1{r>0}]s

since f(X(0)) = E(z,)[f(X(01))|F o] on {7 > 0}. Similar considerations show that

f(z,y) = E(z.v)[f(X(afc))l{nsl} + f(X(01))17>1]
E(,,,)[f(X(a,‘))l{,‘Sl} + f(X(U2))1{‘r¢>l}]

= Eiyu)[f(X(0s.)) Lrege) + A(X(0:))1750]
E(z,y)[f (X (o'rd\t) )]

We define the operator G by
Gf = max{g, T"f, T?f}.

LEMMA 2.3 Let g € B(A%) and ¢(z,y) = E(,y)[sup, 9(X(2))]. Then G*+lyp(z,y) <
G"p(z,y), and V = lim,_, o, G™¢ satisfies the equation (1).
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This lemma is obtained by the same arguments as in Shiryayev [10, Chapter 2
Lemma 9].

LEMMA 2.4 Let g € B(A*), V its smallest bi-ezcessive majorant and (o, 7) an ad-
massible tactic associated with V. If

limsup g(X(z)) > limsup V(X (2)), (4)
then for any e > 0,
Pizy)(1e < 00) =1
where 7. = inf{t > 0: V(X (0¢)) < 9(X(0¢)) + €}.
Noting the condition (4), this lemma is obtained by the same arguments as in
Shiryayev {10, Chapter 2 Lemma 8§].
REMARK 2.1 If the reward process {g(X(z))} satisfies
sup E(. )[sup (X (p))| F.] < sup g(X (p)),
2w p>w pw

then the condition (4) is satisfied.

We state another condition in order that the condition (4) be satisfied. Suppose
that our filtration F, defined in section 1 satisfy the Vitali condition ( see Nevev
[9, Chapter V Proposition V —1—3] ). Then it is known that

limsup E[Y |F,] = liminf E[Y |F,] = E[Y|o(U.F.)] as.

for an integrable random variable Y ( see Neveu [9, Chapter V Proposition V — 1 — 3]
)- Using this fact and F = (U, F,), we can prove that the condition (4) is satisfied.

LEMMA 2.5 (i) Let g € B(A*), V = lim, G*¢ and (0, 7) an admissible tactic associ-
ated with V. If _
limsup g(X(2)) > limsup V(X(2)),

then, for any € > 0, _ _
V(z,9) < BV (X(0:))],

where _
Fe=inf{t > 0: V(X(0:)) < 9(X(0¢)) +¢}, e>0.

(ii) Let g € B(A™, AY). If
limsup g(X(z)) > limsup V(X (z)),

then, _ _
V(z,y) = E(z,y)[V(X(U‘Fe))];

and V =V, where V is the smallest bi-ezcessive majorant of g.
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Proof.
(i) By Lemma 2.1 and Lemma 2.3, we can take an admissible tactic (o¢, 7) associated
with V', and then

V(z,9) = EanlV(X(05.40))] )
= E(I,y)[V(X(U;(M))1{;(9} + V(X(U;‘M))l{;ot}]. (5)

By Lemma 2.3, we have, for (z,y) € E,

V(X(a¢)) G™(X (a¢))
©(X (0¢))
Ex(oylsup 9(X(2))]

Ezplsup g7 (X(2))| F o]

HIA A

IA

From which, we obtain

E V(X (07a0)) 178
EGy)[EaplV(X(0)|Fo]lizon)
E(z)lsup 97 (X(2))1z>9)

IA I

By using the same arguments as that of Lemma 2.2, we can get
P(¥¢ < o0)=1. (6)
By (6) and Fatou’s lemma,
lim sup B[V (X (0z,a0)) 1]

limsup Ezy)[sup g* (X (2))1(z.>6)]

IA

IA

E(z [lim supsup g (X (2)1z>4]
0.

Therefore
V(z,y) < limsup EanlV(X (0;‘Ae))1{f‘5t}]+1imtsup Ep)lV (X (05.00))1(7.58]

E(-"’,!I)[I?(X(U‘T’c))l{h(oo}]
E(z [V (X (03.))]-

IA
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(ii) If g € B(A™), by using the same arguments as that of (i), we can get
liminf EGpV(X(05.a8)1{z55] > 0.
Hence if g € B(A™, A%),
lim E,,)[V (X (07.0)) 1(z.>0] = 0.
By (5), we have

V(z,y) = EeylV (X (03,)))-
By the definition of 7.,

17(“’: y) E(z,y)[v(X(U-h))]
Ezp)[9(X(05.))] + €
EplV(X(0z,))] +¢

V(z,y) +e

IA A IA I

and then V < V. On the other hand, by Lemma 2.1 and Lemma 2.3, we have V < V.
O

The following theorem gives the bi—excessive characterization of S and S under the
condition A~.

THEOREM 2.1 Let g € L(A™). Then
(i) S is the smallest bi—excessive majorant of g.
(i) S=S.
(iii) S = max{g, TS, T2S}.
(iv) § = limpo0 Q"¢ = limy oo limy 0o Q"¢ where  g*(z,y) = min{g(z,y), b}

Proof. Let V be the smallest bi~excessive majorant of g and (o¢, 7) an admissible
tactic associated with V. Since limsup, V(X (z)) > limsup, g(X (z)), for any F,,—
stopping time 7,

E(r,y)[g(X(Un))] < EplV(X(09))] £ V(z,y).

Therefore we have
S(z,y) < S(z,y) < V(,y). (7
Let Q be the operator introduced in Lemma 2.1 and S, be the optimal value
function for an n—stage two—parameter optimal stopping problem :

S,,(m, y) sup E(:r y)[g(X(O'.,))]
(o¢,7)ET(n)
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where £(n) = {(o, 7)|7 < n, Eynlg™(X(0,))] < oo}
Then it is well-known that

Sa(z,9) = Q"9(z,y),

Sn+1(zyy) = ma‘x{g(z)y)’TlSﬂ(z’y)3T2Sn(z1 y)}'

Therefore we can define the function S* by

S* = li,r‘n Sh,
and from the assumption g € L(A™), we get

S*(z,y) < S(z,9),
S*(z,y) = max{g(z,y),T'S*(z,y), T°S*(z,v)}.

By Lemma 2.1, we have
S*=V.

Therefore, by (7), (8) and (9), we have
S=8=85"=V.

THEOREM 2.2 Let g € L(A™, A*), V its smallest bi-excessive majorant and (o¢, 7) ar

admissible tactic associated with V. If
limsup g(X (2)) > limsup V(X(z)),

then
(i) for any € > 0, (o¢, T) is e—optimal in X, that is,

5(2,9) < Ez)l9(X(07.))] + .

(ii) (o¢, 7) is optimal in .
(iii) if E' and E? are finite, then P (7 < 00) = 1.

(8)

(9)

a

Proof. The assertion (i) follows from Lemma 2.4, Lemma 2.5 (ii) and Theorem 2.1.

By Lemma 2.2 and Theorem 2.1 (iii),

Eq )[V(X(0:a0))] = V(z,9) = S(z,y).
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E [V (X(07a))]
= E(x,y)[V(X(UT))l{r«} + V(X(at))l{t31<oo] + V(X(at))l{,=oo}]
< E(,,y)[g(X(or,))l{,.q} + stzlp 9+(X(Z))1{t5r<oo} + V(X (0¢)) 1{T=oo}]-

By virtue of Fatou’s lemma, we have

V(:l:, y) < E'(,,,,)[g(X(a,))],

from which we obtain (ii).
At last we can obtain the assertion (iii) by using the same arguments as in Shiryayev[10,

Chapter 2 Theorem 4].
O

Next we shall give the regular characterization of S and S under the condition A*.

DEFINITION 2.4 A function f € B is said to be a regular function if for any (o, 7) €
L, (z,y) € E, E)[f(X(0,))] is well defined, and for any strategy {0}, F o, —stopping
times 11 and 7, with 11 > 13,

Eaplf(X(on))] £ E@ylf(X(on))]-

A regular function f € B is said to be the smallest regular majorant of g € B if
f = g and for any regular function h such that h > g, f < h.

LEMMA 2.6 Let f € L(A™) be bi-excessive. Then f is a regular function.

Proof. Noting that 0.4, is F,,~measurable, we have

Eqylf(X(0e))|Fs] = E@.y)[i f(X(o: + €:))14,|F5,]

5 1a Bx ool (X (e)]
= T (0)

< T 1AX()

= f(X(),

where A; = {041 = 0¢ + ¢;} € F,,. Therefore {f(X(0:)), F+} is a one—parameter
supermartingale. By the assumption f € L(A™) and the martingale convergence the-
orem, there exists an integrable variable Y (= V(X (00))) such that

lim f(X(o1) = Y.
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Then by virtue of Fatou’s lemma, we have for any s,

f(X(0.)) 2 E@y[Y|Fo.]

Applying the optional sampling theorem for one-parameter stochastic process, we con-
clude the proof.

O
THEOREM 2.3 Let g € B(A*). If for anya <0
lim sup ga(X (2)) > limsup Vo (X (2))

where g,(z,y) = max{g(z,y), a} and V, is the smallest bi-excessive majorant of g,
then

(i) S is the smallest regular majorant of g.

(i) S=S.

(iii) S = max{g,T'S,T?S}.

(iv) S = limp o0 liMg oo limy 00 Qg% where gb(z, y) = min{max{g(z,y), a},}.

Proof. The proof is given by the same lines as that in Shiryayev [10]. Here we shall
given an outline of the proof.
Put

Sa(z,y) = Slép E(z 4)[9a(X (7)), |
Su(z,y) = lim S.(z,y).
By our assumption, then we have

S.>5>S2>y,
S, = max{g,,T'S,, T?S.},

and therefore
S, = max{g, T*S.,T?S.}.

By Lemma 2.6, S, is a regular majorant of g.

Next we shall show that S, < S. Let {A¢, £} is an admissible tactic associated with
S,., we put

n* = inf{t > 0|S.(X(A)) < ga(X(A)) + €}
* = inf{t > 0|Su(X(Ar) < ga(X(4r)) + €}
inf{t > 0|S.(X(4)) < 9(X(A:)) + €}

\‘
i

\‘
I
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By Lemma 2.4 and Lemma 2.5, we have

P(,,y)(f" < OO) =1
Sa(m; y) = E(I,y)[Sa(X(AT"))]

By using the same arguments as that in Shiryayev [10] we can get

P('-',y)('r < °°) =1
S5:(2,Y) < Ez,y)[Se(X(4,))]

Then

< E(z,y)[S*(X(Ar))]
< Eeynle(X(45))]
< S(z,y)+e

S.(z,y)

Therefore we have S, < S. At last we shall show that S is the smallest regular
majorant. Let f be any regular majorant of g. Then

f 2 g
f(.’l!, y) 2 E(I.!I)[f(X(ar))]'

Hence
f(z,y) 2 Eplf(X(0:))] 2 E@yls(X(a))],
and then f > S. Therefore S is the smallest regular majorant of g.

3 Uniqueness conditions of the equation (1)

In this section we shall give the sufficient condition in order that the equation (1) has
a unique solution.
Bellman equations for the case of classical one-—parameter optimal stopping prob-
lems are the following type :
f =max{g,Tf}. (10)
Grigelionis and Shiryayev [2] and Grigelionis [1] gave the uniqueness conditions of the
solution of the Bellman equation (10).

In contrast to the two—parameter optimal stopping problem, the main difference is
the existence of a nonlinear ( degenerate ) operator in (1) :

max T* (11)

t=1,2



which appears in the stochastic continuous control problem.
Here, by regarding each operator T* as an operator defined on the whole space E,
we shall show that, under the condition given by Grigelionis [1], the equation (1) has

a unique solution.
We put for G € B,

Taf(z, y) = ma'x{Tile(z’ y)’ T2le(zv y)}
pa(G) = sup (T'6)"Uz,y).

(x,9)EG

THEOREM 3.1 Let f; and f; be two solutions of (1) belonging to the class L, such that

sup lfl(m) y) - f2(zv y)l < oo.

(z,y

If there exists a set G € B such that

pa(G) <1  for some n
fl(a:a y) = f2(za y) V(z) y) € E\ G:

then fi = f, on E.
The proof of Theorem 3.1 is just the same as that of Grigelionis [1].

COROLLARY 3.1 If sup(, ek max{T 15 (z,y),T?1p:(z,y)} < 1, then the solution of
(1) is unique in the class of measurable bounded functions.

Proof. Let f; and f; be two solutions of (14). Put r(z,y) = |fi(z,y) — fo(z, y)|.
Then, by using the similar arguments as in Grigelionis [1, Theorem 1], we can get

r(z,y) < (TEg)*r(z, ) for each n.
By assumption,

TEl(x)y) = ma‘x{TllE(z’y);TzlE(zay)}
= ma‘x{Tl 1p (2,‘y),T2152($, y)}
< 1,

from which p,(E) < 1 for each n. Hence we have

sup r(z,y) < pa(E) - sup r(z,y).
Y

(-""vy) (z)
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Therefore we obtain fi(z,y) = fa(z,y).
Next we shall give another uniqueness condition.
Put .
1
Mt (z,9),4) = 7 D 2(T" + T?)*14(z, y)
k=1
fort € N, (z,y) € F and A4 € B.

Suppose that there exists a finite measure M on E such that , for any bounded
measurable function f on E, :

J, f@M(t.p,dg) — [ f(g)M(dg) (12)

ast — oo forall pe E.
For A = (A, A;) satisfying

Ai ¢+ E—0,1]

Al(m’ y) + A2("13, y) =1,
we define a linear operator T) by

2 -
Taf(z,9) =Y Az, y) T f (=, y). (13)
=1

Then Mandelbaum and Vanderbei {7] gave the following characterization of the
bi—excessive function.

PROPOSITION 3.1 A function f € B is bi~ezcessive with respect to T* and T? if and
only if it is excessive with respect to the operator Ty defined by (13) for all A, that is,

‘ ka(x’y) Sf(z)y)
for all (z,y)‘€ E and X = (), )2).

|

t 1 t
Y (D) f <23 (T + T2
k=1 ¢ k=1
We consider the following equation :

f=max{g,Thf} (14)

Then we obtain the same result as that in Grigelionis and Shiryayev [2] under the
condition (12).
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THEOREM 3.2 Let f; and f, be two solutions of (14) belonging to the class L, such
that

?llp) Ifl(m, y) - f2(m’ y)l < oo.
zy
If there exists a set A € B such that

M(A) <1
fl(zay) = fZ(zxy) V(z,y) € E\A)

then fi = f2 on E.

Proof. Let f; and f; be two solutions of (14). Put r(z,y) = |fi(z,y) — fa(z, v)|.
Then, by using the similar arguments as in Grigelionis [1, Theorem 1], we can get

r(z,y) < (Th)'r(z,y)  foreach t.

¢t 1 ¢
<1 ST < § S+ T
t k=1 t=
By assumption,

r@,9) < [ @M, (z,9),dg) — [ rlg)M(dg)
as t — oo. Hence we have

supr(z,9) < [ r(9)M(dg) < M(A) - sup r(z,).

(z,y)

Therefore we obtain fi(z,y) = fa(z,y). : a

4 Solutions of the equation (1)

In this section we shall discuss the expression of the Bellman equations (1).
At first we give the boundary condition at oo which is the sufficient condition in
order that a solution of (1) be equal to the optimal value function S.

PROPOSITION 4.1 Let g € L(A~, A%) and f be a solution of (1) such that f € L(AY).
A sufficient condition for this solution to coincide with the optimal value function S is
that f satisfy the following condition :

limzsup 9(X(2)) > limzsup f(X(2)). (15)
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Proof. Let (o, 7) be an admissible tactic associated with fand for e > 0, 7. =
inf{t > 0| f(X(0+)) < g(X (o)) + €}

Then, by using the same arguments as that in Lemma 2.4, we have P yy(me <
oo) = 1. The assumption f € L(A*) implies that, for any (z,y) € E, f(z,y) < oo.
Hence by Lemma 2.2

S(z,y) Ez)9(X(0+.))]

Ey)[f(X(o:))] — ¢

. f (2: 'Y ) —€

Therefore S > f. On the other hand, let V be the smallest bi—excessive majorant of
g. By Lemma 2.1, then f > V. From which

v v

limsup g(X(z)) > limsup V(X(2)).
By Theorem 2.1, S = V. Therefore we get S < f. O

REMARK 4.1 In the case of the one-parameter optimal stopping problem, the condition
of the type (15) is necessary and sufficient (see Shiryayev [10]).

We shall conclude this section by discussing the two—parameter version of the so-
lution of the Bellman equation studied by Lazrieva [5].

Let g € L(A™) and C be B-measurable function with E, ,)[|limsup, C(X ()] <
co. We define the function S¢ by

Sc(z,y) = X(o,))dP,, li C(X(2))dPn}-
o(2,y) = sup{ /{Km} 9(X(97))dPz,y) + /{mo} imsup C(X (2))dFa)}
THEOREM 4.1 We assume that
limsup §(X (z)) > limsup V(X (2))
where §(z,y) = max{g(z, y), E(z4)lim sﬁpz C(X(2))]} and V is the smallest bi-excessive
majorant of g.
(i) We have for any (z,y) € E
Sc(z, = §(X(0,))dP, li (X (2))dP..n}-
oe,) = sup{[  9(X(e)dPuyy+ [ limsup(X(:))dPey}
(ii) Sc satisfies the equation

SC = ma.x{g, TISC,TZSc}.
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Proof.
(i) By assumption, § € L(A™). and

limsup (X (2)) = limsup C(X(z)).
Then, by Theorem 2.1,

g X T PI l. 7] X P
SuP{/;f( }g( (0 ))d (z.v) t /{1_ } unlsupg( (z))d (z,v)}
| - supE(,,y)[g(X (Or)]

= su X g, dPx’
2p{_{g(x(,,))zsx(,,)ﬂimmp’ XN 9(X(0-))dPzy)

+/ . Ex(;pllimsup C(X(2))]dFs,
{9(01)<Ex(,,)[limoup,C(X(z))]} X( )['1 z 1% ( ())] (V)}

= sup{

9(X(o,))dPe,
z /;g(x("'))ZEX('r)[limlup. c(X (=N} (X (0+))dFz)

+/ limsup C(X(2))dP,
{Q(X(O'r))<Ex(,,)[limsup,C(X(z))]} z P ( ()) ( V)}

= sl o(X(ondPap+ [ limsupC(X(2)dFem}
sup [ 9(X())dPe + ..., imsup C(X())dPee}
= SC(zay)a

IA

where

n {'r on {9(X(0r)) = Ex(e[limsup, C(X(2))]}

oo on {g(X(0,)) < Ex(onflimsup, C(X(2))]}
Therefore

Sc(il:, y)

v

§(X(0,))dPy) + li (X (2))dF
sup{ [ I(X(o)dPep+ [ limsupg(X(2)dPey}

> sup([  G(X(o)dPay+ [ limsupC(X(2))dPey)

SC (z1 y)
(ii) Let S* be the optimal value function for §. By Theorem 2.1, we have
S* = max{g, T'S*,T?S"*}.

From the definition of g,
5*(z,9) 2 T'Eyllimsup C(X(2))]
T'S'(2,5) > T'EyllimsupC(X())] = Bepllimsup C(X ()]
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Therefore we get

Sec = S
max{g, T" S*, T%S*}
= max{g,T"'S¢,T?Sc¢}.

a

THEOREM 4.2 Let ¢ € L(A™,A*) and f € L(A*) be a solution of (1) such that
f.) 2 E(zy)limsup, f(X(2))]. Then

fle ) =sup{ [ _ o(X(o:)dPey+ [ limsup f(X())dPra}
Proof. We put
9(z,y) = max{g(s, ), Bellimsup f(X (2))]}.

Then, by assumption, f satisfies the equation

f = max{g, T f,T*f}.
Noting that limsup, f(X(2)) = limsup, §(X(z)), by Proposition 4.1,

f(=,9) = s1p Eia[g(X (o7))].

Therefore we get the assertion. O
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