Bellman equations for discrete time two-parameter optimal stopping problems

Teruo Tanaka

Abstract

We study Bellman equations associated with two-parameter optimal stopping problems for discrete time bi-Markov processes. The existence and the uniqueness of a solution of the Bellman equation for our problem are investigated by using the concept of the bi-excessive function.

Keywords: Bellman equation * bi-excessive function * bi-Markov process * strategy * tactic * two-parameter optimal stopping problem

1 Introduction

Throughout this paper we consider the stochastic processes indexed by \mathbb{N}^2 . Let $\mathbf{T} = \mathbb{N}^2$. The index set \mathbf{T} is extended to its one-point compactification $\mathbf{T} \cup \{\infty\}$ endowed with the following partial order: for all $z = (s, t), z' = (s', t') \in \mathbf{T}$,

$$z \le z'$$
 if and only if $s \le s', t \le t'$, $z < z'$ if and only if $s < s', t < t'$, $z < \infty$ for all $z \in T$.

For i = 1, 2, let $X^i = (\Omega^i, \mathcal{F}^i, \mathcal{F}^i, X^i(t), P^i_x)$ be a time homogeneous Markov chain with a state space (E^i, \mathcal{B}^i) . We assume that X^1 and X^2 are mutually independent.

We define a bi–Markov process introduced in Mazziotto [8], that is, the family of a two–parameter process taking values in $E=E^1\times E^2$

$$X(z) = (X^{1}(s), X^{2}(t)) \quad z = (s, t) \in \mathbf{T}$$

on the probability space $(\Omega = \Omega^1 \times \Omega^2, \mathcal{F} = \mathcal{F}^1 \otimes \mathcal{F}^2, P_{(x,y)} = P_x^1 \otimes P_y^2, (x,y) \in E)$ endowed with the smallest two-parameter filtration $\{\mathcal{F}_z, z \in \mathbf{T}\}$ which contains $\{\mathcal{F}_s^1 \otimes \mathcal{F}_t^2, (s,t) \in \mathbf{T}\}$ and satisfies the conditions

$$\mathcal{F} = \sigma(\bigcup_z \mathcal{F}_z),$$

 $\{\mathcal{F}_z, z \in \mathbf{T}\}$ is complete.

A strategy is the family of stopping points $\{\sigma_t, t \geq 0\}$ satisfying the conditions:

$$\sigma_0=z$$

$$\sigma_{t+1} = \sigma_t + e_1$$
 or $\sigma_t + e_2$,

 σ_{t+1} is measurable with respect to \mathcal{F}_{σ_t} ,

where $e_1 = (1,0)$, $e_2 = (0,1)$ and $\mathcal{F}_{\sigma_t} = \{A \in \mathcal{F} | A \cap \{\sigma_t \leq z\} \in \mathcal{F}_z, \forall z\}$.

A tactic is the pair (σ_t, τ) of a strategy $\{\sigma_t\}$ and a stopping time τ with respect to \mathcal{F}_{σ_i} .

We shall denote by ${f B},\,{f B}(A^-)$ and ${f B}(A^+)$ the set of all ${\cal B}={\cal B}^1\otimes {\cal B}^2$ -measurable functions taking on values in $(-\infty, +\infty]$, the functions f in B which satisfy the conditions

$$A^-$$
: $E_{(x,y)}[\sup_z f^-(X(z))] < \infty$, $(x,y) \in E$,
 A^+ : $E_{(x,y)}[\sup_z f^+(X(z))] < \infty$, $(x,y) \in E$,

$$A^+ : E_{(x,y)}[\sup f^+(X(z))] < \infty, (x,y) \in E,$$

respectively, and also write $B(A^-, A^+) = B(A^-) \cap B(A^+)$, $L(A^-) = L \cap B(A^-)$, $L(A^+) = L \cap B(A^+)$, and $L(A^-, A^+) = L(A^-) \cap L(A^+)$ where L is the set of all functions $f \in \mathbf{B}$ with $E_{(x,y)}[f^{-}(X(e_i))] < \infty$, $(x,y) \in E$, i = 1, 2.

Let $\bar{\Sigma}$ be the set of all tactics with $P_{(x,y)}(\tau \leq \infty) = 1$, $(x,y) \in E$, Σ the set of all tactics with $P_{(x,y)}(\tau < \infty) = 1, (x,y) \in E$.

The two-parameter optimal stopping problem studied in this paper is to find $(\sigma_t^*, \tau^*) \in \Sigma(\text{resp.}\Sigma)$ such that

$$S(x,y) = E_{(x,y)}[g(X(\sigma_{\tau^*}^*))] = \sup_{(\sigma_t,\tau)\in\Sigma} E_{(x,y)}[g(X(\sigma_{\tau}))]$$

$$\bar{S}(x,y) = E_{(x,y)}[g(X(\sigma_{\tau^*}^*))] = \sup_{(\sigma_t,\tau)\in\bar{\Sigma}} E_{(x,y)}[g(X(\sigma_{\tau}))]$$

$$\bar{S}(x,y) = E_{(x,y)}[g(X(\sigma_{\tau^*}^*))] = \sup_{(\sigma_t,\tau)\in\bar{\Sigma}} E_{(x,y)}[g(X(\sigma_\tau))]$$

where $g(X(\infty)) = \limsup_{z\to\infty} g(X(z))$. We shall call S and \bar{S} the optimal value function.

These problems have been studied by several authors (see Krengel and Sucheston [3], Lawler and Vanderbei [4], Mandelbaum [6], Mandelbaum and Vanderbei [7]). Mandelbaum and Vanderbei [7] introduced the concept which is called the multi-excessive function. Mazziotto [8] also introduced the concept which is called the bi-excessive function, and developed the potential theory associated to the continuous time bi-Markov processes.

By the way, it is well known that the Bellman equation associated to the twoparameter optimal stopping problem is the following type:

$$f(x,y) = \max\{g(x,y), T^1 f(x,y), T^2 f(x,y)\}$$

$$= \max\{g(x,y), \max_{i=1,2} T^i f(x,y)\}. \tag{1}$$

Here T^i be a transition operator of X^i , then,

$$T^1 f(x,y) = E_{(x,y)}[f(X(1,0))],$$
 (2)

$$T^{2}f(x,y) = E_{(x,y)}[f(X(0,1))].$$
(3)

Our aim in this paper is to study the existence of the solution of (1) by using the successive approximation and the relation between a solution of (1) and the optimal value function, and also to give the sufficient condition in order that (1) has a unique solution.

As for classical one-parameter optimal stopping problems, the excessive functions play an important role in studying the properties on the optimal value functions. Shiryayev [10] has given the excessive characterization of the optimal values functions. In this paper we shall also give the bi-excessive characterization of the values S and \bar{S} in accordance with the line of Shiryayev [10].

2 Bi-excessive functions and optimal value functions

In this section we shall give some results of bi-excessive functions and smallest bi-excessive majorants.

Let $\{X(z), \mathcal{F}_z, P_{(x,y)}\}_{z \in T}$ be a bi-Markov process with the state space (E, \mathcal{B}) introduced in section 1.

DEFINITION 2.1 A function $f \in \mathbf{B}$ is said to be a bi-excessive function (with respect to T^1 and T^2) if for all $(x,y) \in E$ and i=1,2, $T^i f(x,y)$ defined by (2) and (3) is well defined and $T^i f(x,y) \leq f(x,y)$.

Let $\{f_n\}$ be a nondecreasing sequence of bi–excessive functions of L. Then $\lim_{n\to\infty} f_n$ is also bi-excessive.

DEFINITION 2.2 A bi-excessive function $f \in \mathbf{B}$ is said to be the smallest bi-excessive majorant of $g \in \mathbf{B}$ if $f \geq g$ and for any bi-excessive function h such that $h \geq g$, $f \leq h$.

DEFINITION 2.3 Let a function f be a solution of the equation (1). A tactic (σ_t, τ) is said to be an admissible tactic associated with f if (σ_t, τ) has the following properties:

$$\sigma_0 = (0,0),$$

$$\sigma_{t+1} = \sigma_t + e_i \quad \text{if} \quad X(\sigma_t) \in A^i,$$

$$\tau = \inf\{t \ge 0 : X(\sigma_t) \in B\},$$

where $B = \{f = g\}$, $A^1 = \{f = T^1 f\} \setminus B \text{ and } A^2 = \{f = T^2 f\} \setminus (A^1 \cup B)$.

Here is a fundamental result obtained by Mandelbaum and Vanderbei [7].

LEMMA 2.1 Let $g \in \mathbf{B}$ and V the smallest bi-excessive majorant of g. Then

$$V = \max\{g, T^1V, T^2V\}.$$

Let the operator Q be defined by

$$Qg = \max\{g, T^1g, T^2g\}.$$

Then the function $V = \lim_{n \to \infty} Q^n g$ is the smallest bi-excessive majorant of g.

LEMMA 2.2 Let $g \in \mathbf{B}$, f a solution of the equation (1) and (σ_t, τ) an admissible tactic associated with f. Put

$$\tau_{\epsilon} = \inf\{t \geq 0 : f(X(\sigma_t)) \leq g(X(\sigma_t)) + \epsilon\}, \quad \epsilon \geq 0.$$

Then, if $(x, y) \in E$ is such that $f(x, y) < \infty$, for any $t \in \mathbb{N}$,

$$E_{(x,y)}[f(X(\sigma_{\tau_{\epsilon} \wedge t}))] = f(x,y).$$

Proof. τ_{ϵ} is a stopping time with respect to \mathcal{F}_{σ_t} . Then we have

$$f(x,y) = E_{(x,y)}[f(X(0))]$$

$$= E_{(x,y)}[f(X(0))1_{\{\tau_{\epsilon}=0\}} + f(X(0))1_{\{\tau_{\epsilon}>0\}}]$$

$$= E_{(x,y)}[f(X(0))1_{\{\tau_{\epsilon}=0\}} + f(X(\sigma_{1}))1_{\{\tau_{\epsilon}>0\}}],$$

since $f(X(0)) = E_{(x,y)}[f(X(\sigma_1))|\mathcal{F}_0]$ on $\{\tau_{\epsilon} > 0\}$. Similar considerations show that

$$f(x,y) = E_{(x,y)}[f(X(\sigma_{\tau_{\epsilon}}))1_{\{\tau_{\epsilon} \leq 1\}} + f(X(\sigma_{1}))1_{\tau_{\epsilon} > 1}]$$

$$= E_{(x,y)}[f(X(\sigma_{\tau_{\epsilon}}))1_{\{\tau_{\epsilon} \leq 1\}} + f(X(\sigma_{2}))1_{\{\tau_{\epsilon} > 1\}}]$$

$$\vdots$$

$$= E_{(x,y)}[f(X(\sigma_{\tau_{\epsilon}}))1_{\{\tau_{\epsilon} \leq t\}} + f(X(\sigma_{t}))1_{\{\tau_{\epsilon} > t\}}]$$

$$= E_{(x,y)}[f(X(\sigma_{\tau_{\epsilon}}))]$$

We define the operator G by

$$Gf = \max\{g, T^1f, T^2f\}.$$

LEMMA 2.3 Let $g \in \mathbf{B}(A^+)$ and $\varphi(x,y) = E_{(x,y)}[\sup_z g(X(z))]$. Then $G^{n+1}\varphi(x,y) \leq G^n\varphi(x,y)$, and $\tilde{V} = \lim_{n\to\infty} G^n\varphi$ satisfies the equation (1).

This lemma is obtained by the same arguments as in Shiryayev [10, Chapter 2 Lemma 9].

Lemma 2.4 Let $g \in \mathbf{B}(A^+)$, V its smallest bi-excessive majorant and (σ_t, τ) an admissible tactic associated with V. If

$$\limsup g(X(z)) \ge \limsup V(X(z)), \tag{4}$$

then for any $\epsilon > 0$,

$$P_{(x,y)}(\tau_{\epsilon} < \infty) = 1$$

where $\tau_{\epsilon} = \inf\{t \geq 0 : V(X(\sigma_t)) \leq g(X(\sigma_t)) + \epsilon\}.$

Noting the condition (4), this lemma is obtained by the same arguments as in Shiryayev [10, Chapter 2 Lemma 8].

REMARK 2.1 If the reward process $\{g(X(z))\}\$ satisfies

$$\sup_{z \geq w} E_{(x,y)}[\sup_{p \geq w} g(X(p))|\mathcal{F}_z] \leq \sup_{p \geq w} g(X(p)),$$

then the condition (4) is satisfied.

We state another condition in order that the condition (4) be satisfied. Suppose that our filtration \mathcal{F}_z defined in section 1 satisfy the Vitali condition (see Nevev [9, Chapter V Proposition V -1-3]). Then it is known that

$$\limsup_{z} E[Y|\mathcal{F}_{z}] = \liminf_{z} E[Y|\mathcal{F}_{z}] = E[Y|\sigma(\cup_{z}\mathcal{F}_{z})] \quad a.s.$$

for an integrable random variable Y (see Neveu [9, Chapter V Proposition V -1-3]. Using this fact and $\mathcal{F} = \sigma(\cup_z \mathcal{F}_z)$, we can prove that the condition (4) is satisfied.

Lemma 2.5 (i) Let $g \in \mathbf{B}(A^+)$, $\tilde{V} = \lim_n G^n \varphi$ and (σ_t, τ) an admissible tactic associated with \tilde{V} . If

$$\limsup g(X(z)) \ge \limsup \tilde{V}(X(z)),$$

then, for any $\epsilon > 0$,

$$\tilde{V}(x,y) \leq E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon}}))],$$

where

$$\tilde{\tau}_{\epsilon} = \inf\{t \ge 0 : \tilde{V}(X(\sigma_t)) \le g(X(\sigma_t)) + \epsilon\}, \quad \epsilon \ge 0.$$

(ii) Let $g \in \mathbf{B}(A^-, A^+)$. If

$$\limsup g(X(z)) \ge \limsup \tilde{V}(X(z)),$$

then,

$$\tilde{V}(x,y) = E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon}}))],$$

and $\tilde{V} = V$, where V is the smallest bi-excessive majorant of g.

Proof.

(i) By Lemma 2.1 and Lemma 2.3, we can take an admissible tactic (σ_t, τ) associated with \tilde{V} , and then

$$\tilde{V}(x,y) = E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t}))]
= E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t}))1_{\{\tilde{\tau}_{\epsilon} \leq t\}} + \tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t}))1_{\{\tilde{\tau}_{\epsilon} > t\}}].$$
(5)

By Lemma 2.3, we have, for $(x, y) \in E$,

$$V(X(\sigma_t)) \leq G^n(X(\sigma_t))$$

$$\leq \varphi(X(\sigma_t))$$

$$= E_{X(\sigma_t)}[\sup_{z} g(X(z))]$$

$$\leq E_{(x,y)}[\sup_{z} g^+(X(z))|\mathcal{F}_{\sigma_t}].$$

From which, we obtain

$$E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t}))1_{\{\tilde{\tau}_{\epsilon} > t\}}]$$

$$= E_{(x,y)}[E_{(x,y)}[\tilde{V}(X(\sigma_{t}))|\mathcal{F}_{\sigma_{t}}]1_{\{\tilde{\tau}_{\epsilon} > t\}}]$$

$$\leq E_{(x,y)}[\sup_{z} g^{+}(X(z))1_{\{\tilde{\tau}_{\epsilon} > t\}}].$$

By using the same arguments as that of Lemma 2.2, we can get

$$P(\tilde{\tau}_{\epsilon} < \infty) = 1. \tag{6}$$

By (6) and Fatou's lemma,

$$\limsup_{t} E_{(x,y)} [\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t})) 1_{\{\tilde{\tau}_{\epsilon} > t\}}]$$

$$\leq \limsup_{t} E_{(x,y)} [\sup_{z} g^{+}(X(z)) 1_{\{\tilde{\tau}_{\epsilon} > t\}}]$$

$$\leq E_{(x,y)} [\limsup_{t} \sup_{z} g^{+}(X(z)) 1_{\{\tilde{\tau}_{\epsilon} > t\}}]$$

$$= 0.$$

Therefore

$$\begin{split} \tilde{V}(x,y) & \leq \limsup_{t} E_{(x,y)} [\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t})) 1_{\{\tilde{\tau}_{\epsilon} \leq t\}}] + \limsup_{t} E_{(x,y)} [\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t})) 1_{\{\tilde{\tau}_{\epsilon} > t\}}] \\ & \leq E_{(x,y)} [\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon}})) 1_{\{\tilde{\tau}_{\epsilon} < \infty\}}] \\ & = E_{(x,y)} [\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon}}))]. \end{split}$$

(ii) If $g \in \mathbf{B}(A^-)$, by using the same arguments as that of (i), we can get

$$\liminf_{t} E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t})) 1_{\{\tilde{\tau}_{\epsilon} > t\}}] \geq 0.$$

Hence if $g \in \mathbf{B}(A^-, A^+)$,

$$\lim_{t} E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon} \wedge t}))1_{\{\tilde{\tau}_{\epsilon} > t\}}] = 0.$$

By (5), we have

$$\tilde{V}(x,y) = E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon}}))].$$

By the definition of $\tilde{\tau}_{\epsilon}$,

$$\tilde{V}(x,y) = E_{(x,y)}[\tilde{V}(X(\sigma_{\tilde{\tau}_{\epsilon}}))]
\leq E_{(x,y)}[g(X(\sigma_{\tilde{\tau}_{\epsilon}}))] + \epsilon
\leq E_{(x,y)}[V(X(\sigma_{\tilde{\tau}_{\epsilon}}))] + \epsilon
\leq V(x,y) + \epsilon,$$

and then $\tilde{V} \leq V$. On the other hand, by Lemma 2.1 and Lemma 2.3, we have $V \leq \tilde{V}$.

The following theorem gives the bi-excessive characterization of S and \bar{S} under the condition A^- .

THEOREM 2.1 Let $g \in L(A^-)$. Then

- (i) S is the smallest bi-excessive majorant of q.
- (ii) S = S.
- (iii) $S = \max\{g, T^1S, T^2S\}.$

(iv)
$$S = \lim_{n \to \infty} Q^n g = \lim_{b \to \infty} \lim_{n \to \infty} Q^n g^b$$
 where $g^b(x, y) = \min\{g(x, y), b\}$.

Proof. Let V be the smallest bi-excessive majorant of g and (σ_t, τ) an admissible tactic associated with V. Since $\limsup_z V(X(z)) \ge \limsup_z g(X(z))$, for any \mathcal{F}_{σ_t} -stopping time η ,

$$E_{(x,y)}[g(X(\sigma_{\eta}))] \leq E_{(x,y)}[V(X(\sigma_{\eta}))] \leq V(x,y).$$

Therefore we have

$$S(x,y) \le \bar{S}(x,y) \le V(x,y). \tag{7}$$

Let Q be the operator introduced in Lemma 2.1 and S_n be the optimal value function for an n-stage two-parameter optimal stopping problem:

$$S_n(x,y) = \sup_{(\sigma_t,\tau) \in \Sigma(n)} E_{(x,y)}[g(X(\sigma_\tau))]$$

where $\Sigma(n) = \{(\sigma_t, \tau) | \tau \leq n, E_{(x,y)}[g^-(X(\sigma_\tau))] < \infty \}.$

Then it is well-known that

$$S_n(x,y) = Q^n g(x,y),$$

 $S_{n+1}(x,y) = \max\{g(x,y), T^1 S_n(x,y), T^2 S_n(x,y)\}.$

Therefore we can define the function S^* by

$$S^* = \lim_n S_n,$$

and from the assumption $g \in \mathbf{L}(A^{-})$, we get

$$S^*(x,y) \leq S(x,y), S^*(x,y) = \max\{g(x,y), T^1 S^*(x,y), T^2 S^*(x,y)\}.$$
 (8)

By Lemma 2.1, we have

$$S^* = V. (9)$$

Therefore, by (7), (8) and (9), we have

$$S = \bar{S} = S^* = V.$$

THEOREM 2.2 Let $g \in \mathbf{L}(A^-, A^+)$, V its smallest bi-excessive majorant and (σ_t, τ) an admissible tactic associated with V. If

$$\limsup g(X(z)) \ge \limsup V(X(z)),$$

then

(i) for any $\epsilon > 0$, $(\sigma_t, \tau_{\epsilon})$ is ϵ -optimal in Σ , that is,

$$S(x,y) \leq E_{(x,y)}[g(X(\sigma_{\tau_{\epsilon}}))] + \epsilon.$$

- (ii) (σ_t, τ) is optimal in $\bar{\Sigma}$. (iii) if E^1 and E^2 are finite, then $P_{(x,y)}(\tau < \infty) = 1$.

Proof. The assertion (i) follows from Lemma 2.4, Lemma 2.5 (ii) and Theorem 2.1. By Lemma 2.2 and Theorem 2.1 (iii),

$$E_{(x,y)}[V(X(\sigma_{\tau \wedge t}))] = V(x,y) = S(x,y).$$

$$E_{(x,y)}[V(X(\sigma_{\tau \wedge t}))]$$

$$= E_{(x,y)}[V(X(\sigma_{\tau}))1_{\{\tau < t\}} + V(X(\sigma_{t}))1_{\{t \le \tau < \infty\}} + V(X(\sigma_{t}))1_{\{\tau = \infty\}}]$$

$$\leq E_{(x,y)}[g(X(\sigma_{\tau}))1_{\{\tau < t\}} + \sup_{z} g^{+}(X(z))1_{\{t \le \tau < \infty\}} + V(X(\sigma_{t}))1_{\{\tau = \infty\}}].$$

By virtue of Fatou's lemma, we have

$$V(x,y) \leq E_{(x,y)}[g(X(\sigma_{\tau}))],$$

from which we obtain (ii).

At last we can obtain the assertion (iii) by using the same arguments as in Shiryayev[10, Chapter 2 Theorem 4].

Next we shall give the regular characterization of S and \bar{S} under the condition A^+ .

DEFINITION 2.4 A function $f \in \mathbf{B}$ is said to be a regular function if for any $(\sigma_t, \tau) \in \bar{\Sigma}$, $(x, y) \in E$, $E_{(x,y)}[f(X(\sigma_\tau))]$ is well defined, and for any strategy $\{\sigma_t\}$, \mathcal{F}_{σ_t} -stopping times τ_1 and τ_2 with $\tau_1 \geq \tau_2$,

$$E_{(x,y)}[f(X(\sigma_{\tau_1}))] \leq E_{(x,y)}[f(X(\sigma_{\tau_2}))].$$

A regular function $f \in \mathbf{B}$ is said to be the smallest regular majorant of $g \in \mathbf{B}$ if $f \geq g$ and for any regular function h such that $h \geq g$, $f \leq h$.

LEMMA 2.6 Let $f \in \mathbf{L}(A^-)$ be bi-excessive. Then f is a regular function.

Proof. Noting that σ_{t+1} is \mathcal{F}_{σ_t} -measurable, we have

$$E_{(x,y)}[f(X(\sigma_{t+1}))|\mathcal{F}_{\sigma_t}] = E_{(x,y)}[\sum_{i=1}^2 f(X(\sigma_t + e_i)) 1_{A_i} | \mathcal{F}_{\sigma_t}]$$

$$= \sum_i 1_{A_i} E_{X(\sigma_t)}[f(X(e_i))]$$

$$= \sum_i 1_{A_i} T^i f(X(\sigma_t))$$

$$\leq \sum_i 1_{A_i} f(X(\sigma_t))$$

$$= f(X(\sigma_t)),$$

where $A_i = \{\sigma_{t+1} = \sigma_t + e_i\} \in \mathcal{F}_{\sigma_t}$. Therefore $\{f(X(\sigma_t)), \mathcal{F}_{\sigma_t}\}$ is a one-parameter supermartingale. By the assumption $f \in \mathbf{L}(A^-)$ and the martingale convergence theorem, there exists an integrable variable $Y(=V(X(\infty)))$ such that

$$\lim_{t\to\infty}f(X(\sigma_t))=Y.$$

Then by virtue of Fatou's lemma, we have for any s,

$$f(X(\sigma_s)) \geq E_{(x,y)}[Y|\mathcal{F}_{\sigma_s}].$$

Applying the optional sampling theorem for one-parameter stochastic process, we conclude the proof.

THEOREM 2.3 Let $g \in \mathbf{B}(A^+)$. If for any $a \leq 0$

$$\limsup g_a(X(z)) \ge \limsup V_a(X(z))$$

where $g_a(x,y) = \max\{g(x,y), a\}$ and V_a is the smallest bi-excessive majorant of g_a , then

- (i) S is the smallest regular majorant of g.
- (ii) $S = \bar{S}$.
- (iii) $S = \max\{g, T^1S, T^2S\}.$
- (iv) $S = \lim_{b\to\infty} \lim_{a\to-\infty} \lim_{n\to\infty} Q^n g_a^b$ where $g_a^b(x,y) = \min\{\max\{g(x,y),a\},b\}$.

Proof. The proof is given by the same lines as that in Shiryayev [10]. Here we shall given an outline of the proof.

Put

$$S_a(x,y) = \sup_{\Sigma} E_{(x,y)}[g_a(X(\sigma_\tau))],$$

$$S_*(x,y) = \lim_{a \to -\infty} S_a(x,y).$$

By our assumption, then we have

$$S_* \geq \bar{S} \geq S \geq g,$$

$$S_a = \max\{g_a, T^1 S_a, T^2 S_a\},$$

and therefore

$$S_* = \max\{g, T^1 S_*, T^2 S_*\}.$$

By Lemma 2.6, S_* is a regular majorant of g.

Next we shall show that $S_* \leq S$. Let $\{A_t, \xi\}$ is an admissible tactic associated with S_a , we put

$$\eta^{a} = \inf\{t \ge 0 | S_{*}(X(A_{t})) \le g_{a}(X(A_{t})) + \epsilon\}
\tau^{a} = \inf\{t \ge 0 | S_{a}(X(A_{t})) \le g_{a}(X(A_{t})) + \epsilon\}
\tau = \inf\{t \ge 0 | S_{*}(X(A_{t})) \le g(X(A_{t})) + \epsilon\}$$

By Lemma 2.4 and Lemma 2.5, we have

$$P_{(x,y)}(\tau^a < \infty) = 1$$

 $S_a(x,y) = E_{(x,y)}[S_a(X(A_{\tau^a}))]$

By using the same arguments as that in Shiryayev [10] we can get

$$P_{(x,y)}(\tau < \infty) = 1$$

 $S_*(x,y) \le E_{(x,y)}[S_*(X(A_\tau))]$

Then

$$S_*(x,y) \leq E_{(x,y)}[S_*(X(A_\tau))]$$

$$\leq E_{(x,y)}[g(X(A_\tau))]$$

$$\leq S(x,y) + \epsilon$$

Therefore we have $S_* \leq S$. At last we shall show that \bar{S} is the smallest regular majorant. Let f be any regular majorant of g. Then

$$f \geq g,$$

 $f(x,y) \geq E_{(x,y)}[f(X(\sigma_{\tau}))].$

Hence

$$f(x,y) \ge E_{(x,y)}[f(X(\sigma_{\tau}))] \ge E_{(x,y)}[g(X(\sigma_{\tau}))],$$

and then $f \geq \bar{S}$. Therefore \bar{S} is the smallest regular majorant of g.

3 Uniqueness conditions of the equation (1)

In this section we shall give the sufficient condition in order that the equation (1) has a unique solution.

Bellman equations for the case of classical one-parameter optimal stopping problems are the following type:

$$f = \max\{g, Tf\}. \tag{10}$$

Grigelionis and Shiryayev [2] and Grigelionis [1] gave the uniqueness conditions of the solution of the Bellman equation (10).

In contrast to the two-parameter optimal stopping problem, the main difference is the existence of a nonlinear (degenerate) operator in (1):

$$\max_{i=1,2} T^i \tag{11}$$

which appears in the stochastic continuous control problem.

Here, by regarding each operator T^i as an operator defined on the whole space E, we shall show that, under the condition given by Grigelionis [1], the equation (1) has a unique solution.

We put for $G \in \mathcal{B}$,

$$\hat{T}_G f(x,y) = \max \{ T^1 1_G f(x,y), T^2 1_G f(x,y) \}
\rho_n(G) = \sup_{(x,y) \in G} (\hat{T}_G)^n 1(x,y).$$

THEOREM 3.1 Let f_1 and f_2 be two solutions of (1) belonging to the class L, such that

$$\sup_{(x,y)}|f_1(x,y)-f_2(x,y)|<\infty.$$

If there exists a set $G \in \mathcal{B}$ such that

$$\rho_n(G) < 1 \quad \text{for some} \quad n$$
 $f_1(x,y) = f_2(x,y) \quad \forall (x,y) \in E \setminus G,$

then $f_1 = f_2$ on E.

The proof of Theorem 3.1 is just the same as that of Grigelionis [1].

COROLLARY 3.1 If $\sup_{(x,y)\in E} \max\{T^11_{E^1}(x,y), T^21_{E^2}(x,y)\} < 1$, then the solution of (1) is unique in the class of measurable bounded functions.

Proof. Let f_1 and f_2 be two solutions of (14). Put $r(x,y) = |f_1(x,y) - f_2(x,y)|$. Then, by using the similar arguments as in Grigelionis [1, Theorem 1], we can get

$$r(x,y) \le (\hat{T}_E)^n r(x,y)$$
 for each n .

By assumption,

$$\hat{T}_{E}1(x,y) = \max\{T^{1}1_{E}(x,y), T^{2}1_{E}(x,y)\}
= \max\{T^{1}1_{E^{1}}(x,y), T^{2}1_{E^{2}}(x,y)\}
< 1,$$

from which $\rho_n(E) < 1$ for each n. Hence we have

$$\sup_{(x,y)} r(x,y) \leq \rho_n(E) \cdot \sup_{(x,y)} r(x,y).$$

Therefore we obtain $f_1(x, y) = f_2(x, y)$.

Next we shall give another uniqueness condition. Put

$$M(t,(x,y),A) = \frac{1}{t} \sum_{k=1}^{t} (T^1 + T^2)^k 1_A(x,y)$$

for $t \in \mathbb{N}$, $(x, y) \in E$ and $A \in \mathcal{B}$.

Suppose that there exists a finite measure M on E such that, for any bounded measurable function f on E,

$$\int_{E} f(q)M(t, p, dq) \longrightarrow \int_{E} f(q)M(dq)$$
 (12)

as $t \to \infty$ for all $p \in E$.

For $\lambda = (\lambda_1, \lambda_2)$ satisfying

$$\lambda_i : E \to [0,1]$$

$$\lambda_1(x,y) + \lambda_2(x,y) = 1,$$

we define a linear operator T_{λ} by

$$T_{\lambda}f(x,y) = \sum_{i=1}^{2} \lambda_{i}(x,y)T^{i}f(x,y). \tag{13}$$

Then Mandelbaum and Vanderbei [7] gave the following characterization of the bi-excessive function.

PROPOSITION 3.1 A function $f \in \mathbf{B}$ is bi-excessive with respect to T^1 and T^2 if and only if it is excessive with respect to the operator T_{λ} defined by (13) for all λ , that is,

$$T_{\lambda}f(x,y) \leq f(x,y)$$

for all $(x, y) \in E$ and $\lambda = (\lambda_1, \lambda_2)$.

$$\frac{1}{t} \sum_{k=1}^{t} (T_{\lambda})^{k} f \leq \frac{1}{t} \sum_{k=1}^{t} (T^{1} + T^{2})^{k} f.$$

We consider the following equation:

$$f = \max\{g, T_{\lambda}f\}. \tag{14}$$

Then we obtain the same result as that in Grigelionis and Shiryayev [2] under the condition (12).

THEOREM 3.2 Let f_1 and f_2 be two solutions of (14) belonging to the class L, such that

$$\sup_{(x,y)}|f_1(x,y)-f_2(x,y)|<\infty.$$

If there exists a set $\Lambda \in \mathcal{B}$ such that

$$M(\Lambda) < 1$$

 $f_1(x,y) = f_2(x,y) \quad \forall (x,y) \in E \setminus \Lambda,$

then $f_1 = f_2$ on E.

Proof. Let f_1 and f_2 be two solutions of (14). Put $r(x,y) = |f_1(x,y) - f_2(x,y)|$. Then, by using the similar arguments as in Grigelionis [1, Theorem 1], we can get

$$r(x,y) \leq (T_{\lambda})^t r(x,y)$$
 for each t .

$$r \le \frac{1}{t} \sum_{k=1}^{t} (T_{\lambda})^{k} r \le \frac{1}{t} \sum_{k=1}^{t} (T^{1} + T^{2})^{k} r.$$

By assumption,

$$r(x,y) \leq \int_{E} r(q)M(t,(x,y),dq) \longrightarrow \int_{E} r(q)M(dq)$$

as $t \to \infty$. Hence we have

$$\sup_{(x,y)} r(x,y) \leq \int_{\Lambda} r(q) M(dq) \leq M(\Lambda) \cdot \sup_{(x,y)} r(x,y).$$

Therefore we obtain $f_1(x, y) = f_2(x, y)$.

4 Solutions of the equation (1)

In this section we shall discuss the expression of the Bellman equations (1).

At first we give the boundary condition at ∞ which is the sufficient condition in order that a solution of (1) be equal to the optimal value function S.

PROPOSITION 4.1 Let $g \in \mathbf{L}(A^-, A^+)$ and f be a solution of (1) such that $f \in \mathbf{L}(A^+)$. A sufficient condition for this solution to coincide with the optimal value function S is that f satisfy the following condition:

$$\limsup_{z} g(X(z)) \ge \limsup_{z} f(X(z)). \tag{15}$$

Proof. Let (σ_t, τ) be an admissible tactic associated with f and for $\epsilon > 0$, $\tau_{\epsilon} = \inf\{t \geq 0 | f(X(\sigma_t)) \leq g(X(\sigma_t)) + \epsilon\}$.

Then, by using the same arguments as that in Lemma 2.4, we have $P_{(x,y)}(\tau_{\epsilon} < \infty) = 1$. The assumption $f \in \mathbf{L}(A^+)$ implies that, for any $(x,y) \in E$, $f(x,y) < \infty$. Hence by Lemma 2.2

$$S(x,y) \geq E_{(x,y)}[g(X(\sigma_{\tau_{\epsilon}}))]$$

$$\geq E_{(x,y)}[f(X(\sigma_{\tau_{\epsilon}}))] - \epsilon$$

$$= f(x,y) - \epsilon$$

Therefore $S \ge f$. On the other hand, let V be the smallest bi-excessive majorant of g. By Lemma 2.1, then $f \ge V$. From which

$$\limsup_{z} g(X(z)) \ge \limsup_{z} V(X(z)).$$

By Theorem 2.1, S = V. Therefore we get $S \leq f$.

REMARK 4.1 In the case of the one-parameter optimal stopping problem, the condition of the type (15) is necessary and sufficient (see Shiryayev [10]).

We shall conclude this section by discussing the two-parameter version of the solution of the Bellman equation studied by Lazrieva [5].

Let $g \in \mathbf{L}(A^-)$ and C be \mathcal{B} -measurable function with $E_{(x,y)}[|\limsup_z C(X(z))|] < \infty$. We define the function S_C by

$$S_C(x,y) = \sup_{\bar{\Sigma}} \left\{ \int_{\{\tau < \infty\}} g(X(\sigma_\tau)) dP_{(x,y)} + \int_{\{\tau = \infty\}} \limsup_z C(X(z)) dP_{(x,y)} \right\}.$$

THEOREM 4.1 We assume that

$$\limsup_{z} \bar{g}(X(z)) \geq \limsup_{z} \bar{V}(X(z))$$

where $\bar{g}(x,y) = \max\{g(x,y), E_{(x,y)}[\limsup_z C(X(z))]\}$ and \bar{V} is the smallest bi-excessive majorant of \bar{g} .

(i) We have for any $(x, y) \in E$

$$S_{C}(x,y) = \sup_{\bar{\Sigma}} \{ \int_{\{\tau < \infty\}} \bar{g}(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{\tau = \infty\}} \limsup_{z} \bar{g}(X(z)) dP_{(x,y)} \}.$$

(ii) S_C satisfies the equation

$$S_C = \max\{g, T^1 S_C, T^2 S_C\}.$$

Proof.

(i) By assumption, $\bar{g} \in \mathbf{L}(A^{-})$. and

$$\limsup_{z} \bar{g}(X(z)) = \limsup_{z} C(X(z)).$$

Then, by Theorem 2.1,

$$\sup_{\Sigma} \left\{ \int_{\{\tau < \infty\}} \bar{g}(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{\tau = \infty\}} \limsup_{z} \bar{g}(X(z)) dP_{(x,y)} \right\}$$

$$= \sup_{\Sigma} E_{(x,y)} [\bar{g}(X(\sigma_{\tau}))]$$

$$= \sup_{\Sigma} \left\{ \int_{\{g(X(\sigma_{\tau})) \geq E_{X(\sigma_{\tau})}[\limsup_{z} C(X(z))]\}} g(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{g(\sigma_{\tau}) < E_{X(\sigma_{\tau})}[\limsup_{z} C(X(z))]\}} E_{X(\sigma_{\tau})} [\limsup_{z} C(X(z))] dP_{(x,y)} \right\}$$

$$= \sup_{\Sigma} \left\{ \int_{\{g(X(\sigma_{\tau})) \geq E_{X(\sigma_{\tau})}[\limsup_{z} C(X(z))]\}} g(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{g(X(\sigma_{\tau})) < E_{X(\sigma_{\tau})}[\limsup_{z} C(X(z))]\}} \lim_{z} C(X(z)) dP_{(x,y)} \right\}$$

$$= \sup_{\Sigma} \left\{ \int_{\{\eta_{\tau} < \infty\}} g(X(\sigma_{\eta_{\tau}})) dP_{(x,y)} + \int_{\{\eta_{\tau} = \infty\}} \limsup_{z} C(X(z)) dP_{(x,y)} \right\}$$

$$\leq \sup_{\Sigma} \left\{ \int_{\{\tau < \infty\}} g(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{\tau = \infty\}} \limsup_{z} C(X(z)) dP_{(x,y)} \right\}$$

$$= S_{C}(x, y),$$

where

$$\eta_{\tau} = \left\{ \begin{array}{ll} \tau & \text{on} & \{g(X(\sigma_{\tau})) \geq E_{X(\sigma_{\tau})}[\limsup_{z} C(X(z))]\} \\ \infty & \text{on} & \{g(X(\sigma_{\tau})) < E_{X(\sigma_{\tau})}[\limsup_{z} C(X(z))]\} \end{array} \right.$$

Therefore

$$S_{C}(x,y) \geq \sup_{\bar{\Sigma}} \left\{ \int_{\{\tau < \infty\}} \bar{g}(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{\tau = \infty\}} \limsup_{z} \bar{g}(X(z)) dP_{(x,y)} \right\}$$

$$\geq \sup_{\bar{\Sigma}} \left\{ \int_{\{\tau < \infty\}} \bar{g}(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{\tau = \infty\}} \limsup_{z} C(X(z)) dP_{(x,y)} \right\}$$

$$= S_{C}(x,y)$$

(ii) Let S^* be the optimal value function for \bar{g} . By Theorem 2.1, we have $S^* = \max\{\bar{g}, T^1S^*, T^2S^*\}.$

From the definition of \bar{g} ,

$$S^*(x,y) \geq T^i E_{(x,y)}[\limsup C(X(z))]$$

$$T^i S^*(x,y) \geq T^i E_{(x,y)}[\limsup_z C(X(z))] = E_{(x,y)}[\limsup_z C(X(z))]$$

Therefore we get

$$S_C = S^*$$

= $\max\{g, T^1S^*, T^2S^*\}$
= $\max\{g, T^1S_C, T^2S_C\}$.

THEOREM 4.2 Let $g \in L(A^-, A^+)$ and $f \in L(A^+)$ be a solution of (1) such that $f_{(x,y)} \geq E_{(x,y)}[\limsup_z f(X(z))]$. Then

$$f(x,y) = \sup_{\Sigma} \{ \int_{\{\tau < \infty\}} g(X(\sigma_{\tau})) dP_{(x,y)} + \int_{\{\tau = \infty\}} \limsup f(X(z)) dP_{(x,y)} \}.$$

Proof. We put

$$\bar{g}(x,y) = \max\{g(x,y), E_{(x,y)}[\limsup_z f(X(z))]\}.$$

Then, by assumption, f satisfies the equation

$$f = \max\{\bar{g}, T^1 f, T^2 f\}.$$

Noting that $\limsup_{z} f(X(z)) = \limsup_{z} \bar{g}(X(z))$, by Proposition 4.1,

$$f(x,y) = \sup_{\Sigma} E_{(x,y)}[\bar{g}(X(\sigma_{\tau}))].$$

Therefore we get the assertion.

Acknowledgement

The author would like to thank the editor and the referee for their valuable comments.

References

[1] B.I. Grigelionis. Conditions for the uniqueness of the solution of Bellman's equations. Litovsk. Maternat. Sbornik, 8(1968),47-52.

- [2] B.I. Grigelionis and A.N. Shiryayev. On stefan's problem and optimal stopping rules for Markov processes. *Theory Prob. Application*, 11(1966),541-558.
- [3] U. Krengel and L. Sucheston. Stopping rules and tactics for processes indexed by a directed set. J. Multivariate Anal., 11(1981),199-229.
- [4] G.F. Lawler and R.J. Vanderbei. Markov strategies for optimal control over partially ordered sets. *Ann. Probab.*, 11(1983),642-647.
- [5] N.L. Lazrieva. Solutions of the Wald-Bellman equation. Litovsk. Matem. Sbornik, 19(1974),79-88.
- [6] A. Mandelbaum. Discrete multi-armed bandits and multi-parameter processes. *Probab.Th.Rel.Fields*, 71(1986),129-147.
- [7] A. Mandelbaum and R.J. Vanderbei. Optimal stopping and supermaringales over partially ordered sets. Z. Wahrsch. verw. Geiete, 57(1981),253-264.
- [8] G. Mazziotto. Two parameter optimal stopping and bi-Markov processes. Z. Wahrsch. verw. Geiete, 69(1985), 99-135.
- [9] J. Neveu. Discrete parameter martingales. North-Holland, Amsterdam, 1975.
- [10] A.N. Shiryayev. Optimal stopping rules. Springer-Verlag, Berlin, 1979.

Teruo Tanaka
Department of Mathematics
Faculty of Science
Kyushu University
Fukuoka 812, JAPAN

Received Nov. 15 1992