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Abstract

Comparing the classifications of almost Hermitian structures and almost Hermi-
tian homogeneous structures, we obtain some geometrical results about different
classes of almost Hermitian homogeneous manifolds. In particular we study the
Lie groups endowed with left invariant metrics and compatible almost complex
structures. Some examples are discussed in detail.

1. Introduction

Let $(M,g, J)$ be an almost Hermitian homogeneous manifold, that is an almost
Hermitian manifold which admits a transitive and effective Lie group $G$ of holo-
morphic isometries acting on it.

In 1978, K. Sekigawa proved the following

THEOREM 1.1 [Se]. A connected, $simply-connected$ and complete almost Hermi-
tian manifold $(M,g, J)$ is homogeneous if and only if there exists a tensor field $T$
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of type $(1, 2)$ on $M$ which satisfies the following condition $s$ :

(1) $\tilde{\nabla}g=0$ ,

(2) $\tilde{\nabla}R=0$ ,

(3) $\tilde{\nabla}T=0$ ,
(4) $\overline{\nabla}J=0$ ,

where $\tilde{\nabla}=\nabla-T,$ $\nabla$ is the $Levi-Civita$ connection of $M$ an$dR$ is the Riemannian

curvature tensor of $\nabla$ .

Such a tensor $T$ is called an almost Hermitian homogeneous structure and The-

orem 1.1 provides a characterization of the almost Hermitian homogeneous man-

ifolds, extending a similar result obtained by W. Ambrose and I.M. Singer in the

case of Riemannian manifolds [AS].

In 1988, we decomposed the vector space generated by the tensors with the

same algebraic symmetries of the almost Hermitian hombgeneous structures into

eight subspaces, irreducible and invaniant under the action of the unitary group
(see [AG]). This decomposition is related to the classffication of Riemannian ho-

mogeneous structures, given by F. Tricerri and L. Vanhecke [TV], and to the clas-

sffication of almost Hermitian manifolds, due to A. Gray and L. Hervela [GH].

Comparing these three decompositions, some geometrical results about almost

Hermitian homogeneous manifolds are obtained. For example, it is proved that

a naturally reductive quasi-K\"ahler manifold is nearly K\"ahler, and a naturally

reductive $\mathcal{G}_{2}$-manifold is Hermitian.

In section 4, we consider the case of a Lie group endowed with a left invariant

metric and a compatible almost complex structure. Applying the previous results,

we find intersting characterizations of some classes of almost Hermitian Lie groups.
It is proved that an almost Hermitian Lie group with a bi-invariant metric is nearly

Kffier if and only if the adjoint representation anti-commutes with the almost

complex structure. As a direct consequence, we show that an almost Hermitian

Lie group with a bi-invariant metric is K\"ahler if and only if it is abelian. In the

last section we discuss some examples of Lie groups belonging to different classes.

We wish to thank S.M. Salamon and L. Vanhecke for several useful discussions

and K. Sekigawa for showing us the examples of nearly K\"ahler Lie groups described

at the end of section 5.
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2. Almost Hermitian homogeneous structure $s$

Let $(M,g, J)$ be an almost Hermitian manifold of dimension $2n,$ $n\geq 2$ , that is an
almost complex manifolds $(M, J)$ endowed with a Riemannian metric $g$ compatible
with $J$ . If $F$ denotes the K\"ahler form of $M$ , defined by

(2.1) $F(X, Y)=g(JX, Y)$ ,

it is well known that the covariant derivative $\nabla F$ verifies the properties

(2.2) $(\nabla_{X}F)(Y, Z)=-(\nabla_{X}F)(Z,Y)=-(\nabla xF)(JY, JZ)$ ,

for al vector fields $X,$ $Y,$ $Z$ on $M$ .

In [GH] A. Gray and L. Hervella decomposed the vector space $\mathcal{W}$ of all tensors
of type $(0,3)$ with the same algebraic symmetries of $\nabla F$ into four irreducible
subspaces $\mathcal{W}_{i},$ $i=1,2,3,4$ , which are invariant under the action of the unitary
group $U(n)$ . In this way, the almost Hermitian manifolds have been classified into
sixteen classes. Here we recall the most interesting ones:

$\{0\}$ K\"aMer manifolds,
$\mathcal{W}_{1}$ nearly K\"ahler manifolds,
$\mathcal{W}_{2}$ almost K\"ahler manifolds,
$\mathcal{W}_{3}$ Hermitian semi-K\"ahler manifolds,
$\mathcal{W}_{4}$ locally conformal K\"ahler manifolds,
$\mathcal{W}_{1}\oplus \mathcal{W}_{2}$ quasi-K\"aMer manifolds,
$\mathcal{W}_{3}\oplus \mathcal{W}_{4}$ Hermitian manifolds,
$\mathcal{W}_{2}\oplus \mathcal{W}_{4}$ locally conformal almost K\"ahler manifolds,
$\mathcal{W}_{1}\oplus \mathcal{W}_{2}\oplus \mathcal{W}_{3}$ semi-K\"aMer manifolds,
$\mathcal{W}_{1}\oplus \mathcal{W}_{3}\oplus \mathcal{W}_{4}$ $\mathcal{G}_{1}$-manifolds,
$\mathcal{W}_{2}\oplus \mathcal{W}_{3}\oplus \mathcal{W}_{4}$ $\mathcal{G}_{2}$-manifolds.

If $\dim(M)=4$ , some of the above classes are trivial. For more details and
examples, we refer to [GH], [Gr2] and their references.

As it is shown in [AS], a connected $m$-dimensional homogeneous Riemannian
manifold $(M,g)$ admits a Riemannian homogeneous structure $T$ , i.e. a tensor field
of type $(1, 2)$ which satisfies the conditions (1), (2) and (3) of Theorem 1.1. In
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1983, F. Tricerri and L. Vanhecke considered the vector space $\mathcal{T}$ of all tensors with

the same algebraic symmetries of $T$ and decomposed $\mathcal{T}$ into three irreducible com-

ponents $T_{1},$ $i=1,2,3$ , invariant under the action of the orthogonal group $O(m)$ .
In this way, they obtained a complete classification of Riemannian homogeneous

structures into eight classes. For example, the class $\mathcal{T}_{3}$ characterizes the naturally

reductive homogeneous manifolds (for more details, see [TV]).

If $(M,g, J)$ is an almost Hermitian homogeneous manifolds, it is possible to

relate the above two decompositions. In fact, from condition (4) of Theorem 1.1

it follows

(2.3) $(\nabla_{X}F)(Y, Z)=g(T_{X}JY, Z)+g(T_{X}Y, JZ)$

and this suggests to consider the homomorphism $\Psi$ : $\mathcal{T}\rightarrow \mathcal{W}$ defined by

(2.4) $\Psi(T)xYZ=g(T_{X}JY, Z)+g(TxY, JZ)$ .

Let $\Psi_{i}$ : $T_{i}$ $\rightarrow$ $\mathcal{W}$ denote the restriction of $\Psi$ to the subspace $T_{i}$ ,

$i=1,2,3$ . We recall the following result, proved in [AG].

THEOREM 2.1. The homomorphisms

(2.5) $\Psi_{1}$ : $T_{1}\rightarrow \mathcal{W}_{4}$ , $\Psi_{3}$ : $\mathcal{T}_{3}\rightarrow \mathcal{W}_{1}\oplus \mathcal{W}_{3}\oplus \mathcal{W}_{4}$

are isomorphisms and

(2.6) $\Psi_{2}$ : $\mathcal{T}_{2}\rightarrow \mathcal{W}_{2}\oplus \mathcal{W}_{3}\oplus \mathcal{W}_{4}$

is surjective. Moreover, $T$ splits into eight irreducible $su$bspaces, invarian $t$ under
the action of $U(n)$ :

(2.7) $T=\mathcal{T}_{1}\oplus ker\Psi_{2}\oplus \mathcal{W}_{2}^{\prime}\oplus \mathcal{W}_{3}^{\prime}\oplus \mathcal{W}_{4}^{l}\oplus \mathcal{W}_{1}^{\prime\prime}\oplus \mathcal{W}_{3}^{\prime\prime}\oplus \mathcal{W}_{4}^{\prime\prime}$ ,

where $\Psi_{2}(\mathcal{W}_{:}^{\prime})=\mathcal{W}_{i},$ $i=2,3,4;\Psi_{3}(\mathcal{W}_{j}^{\prime\prime})=\mathcal{W}_{j},$ $j=1,3,4$ .

For the explicit description of the above irreducible subspaces we refer to The-

orem 4.4 of [AG].

– 4 –



3. Geometrical results

Let $(M, g, J)$ be an almost Hermitian homogeneous manifold of dimension $2n$ .
For every point $p\in M$ , the tangent space $(T_{p}M, g_{p}, J_{p})$ is a Hermitian vector space.
Let $\mathcal{F}$ be an invariant subspace of $T$ . We say that $M$ is of type $\mathcal{F}$ if $T_{p}\in \mathcal{F}$ , for
all $p\in M$ , where $T$ is the corresponding almost Hermitian homogeneous structure
(see Theorem 1.1). Then we simply write $M\in \mathcal{F}$ . In the same way, if $\mathcal{D}$ is an
invariant subspace of $\mathcal{W}$ , then we say that $M\in \mathcal{D}$ , or $M$ is of type $\mathcal{D}$ , if $\nabla F\in \mathcal{D}$ .

Now we review some results which follows from the three decompositions de-
scribed in section 2.

THEOREM 3.1 [AG]. The connected, simply-connected, almost Hermitian natu-
rally reductive manifolds of dimension $2n,$ $n\geq 2$ , are classified into eight dasses
given by all the invariant subspaces of the decomposition

(3.1) $\mathcal{T}_{3}=\mathcal{W}_{1}^{\prime\prime}\oplus \mathcal{W}_{3}^{n}\oplus \mathcal{W}_{4}^{\prime\prime}$ .

REMARK 1. Rom the classification of almost Hermitian manifolds it folow $s$ that
$\mathcal{W}_{1}^{\prime l}$ is the class of naturally reductive nearly K\"ahler manifolds; $\mathcal{W}_{4}^{ll}$ is the class of
naturally reductive locally conformal K\"ahler manifolds and $\mathcal{W}_{3}^{\prime\prime}\oplus \mathcal{W}_{4}^{\prime\prime}$ is the class
of naturally reductive Hermitian manifolds.

THEOREM 3.2 [AG]. The almost Hernitian homogeneous structure of type $\mathcal{T}_{2}$

are classified into sixteen classes given by all the invarian$tsu$bspaces of the decom-
position

(3.2) $\mathcal{T}_{2}=ker\Psi_{2}\oplus \mathcal{W}_{2}^{l}\oplus \mathcal{W}_{3}^{\prime}\oplus \mathcal{W}_{4}^{\prime}$ .

REMARK 2. Note that if an almost Hermitian homogeneous manifold belongs to
ker $\Psi_{2}$ , then it is a K\"ahler manifold.

Comparing the decompositions described in the previous section, we get the
following results in addition to the ones obtained in [AG].

THEOREM 3.3. A naturally reductive $quasi-K\ddot{a}h1er$ manifold is nearly $K$ffler.

PROOF: A naturally reductive manifold $M$ admits a homogeneous structure $T$ of
class $T_{3}$ . From Theorem 2.1, it follows that, for a naturally reductive quasiK\"ahler

– 5 –



manifold, $\Psi_{3}(T)=\Psi(T)=\nabla F\in \mathcal{W}_{1}\oplus \mathcal{W}_{3}\oplus \mathcal{W}_{4}$ . Since a quasi-K\"ahler manifold

belongs to the class $\mathcal{W}_{1}\oplus \mathcal{W}_{2}$ , then necessarily $\Psi_{3}(T)\in \mathcal{W}_{1}$ , i.e. $M$ must be nearly
K\"ahler.

REMARK 3. The above result is an extension of Theorem 5.7 of [AG] and it has
also been obtained by M. Djori\v{c} and L. Vanhecke in [DV], by means of a direct

computation. Note that in this case $M$ is a -symmetric space with $J$ as canonical

almost complex structure.

The following properties of the naturally reductive almost Hermitian manifolds
are proved in a similar way.

THEOREM 3.4. An almost Hermitian naturally red$u$ctive $m$anifold is a $\mathcal{G}_{1}$ -mani-
fold.

A naturally reductive $\mathcal{G}_{2}$ -manifold is Hermitian.

A naturdly reductive locally conformal almost Kahler $m$anifold $m$anifold is lo-
cally conformal Kffier.

A naturally reductive $semi-K\ddot{a}hJerm$anifold belongs to the dass $\mathcal{W}_{1}\oplus \mathcal{W}_{3}$ .

About the almost Hermitian homogeneous manifold of type $\mathcal{T}_{2}$ , we have the

following

THEOREM 3.5. An almost Hermitian homogeneous $m$anifold of type $\mathcal{T}_{2}$ is $a$

$\mathcal{G}_{2}$ -manifold. in particular, a homogeneous $\mathcal{G}_{1}$ -manifold of type $\mathcal{T}_{2}$ is Hermitian.

A $quasi-Kdder$ manifold of type $\mathcal{T}_{2}$ is aimost Kahler.

A $semi-K\ddot{a}h1er$ homogeneous manifold of type $\mathcal{T}_{2}$ belongs to the class $\mathcal{W}_{2}\oplus \mathcal{W}_{3}$ .
A nearly K\"ahler homogeneous $m$anifold of type $\mathcal{T}_{2}$ is locally Hermitian sym-

metric.

4. Applications to Lie groups

Let $G$ be a connected Lie group of dimension $m$ , endowed with a left invariant
metric $g$ , and let $\mathfrak{g}$ denotes its Lie algebra. The left invariant tensor field $T$ defined
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by

(4.1) $2g(T_{X}Y, Z)=g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y)$ , $X,$ $Y,$ $Z\in \mathfrak{g}$ ,

is a Riemannian homogeneous structure on $G$ and the metric connection $\tilde{\nabla}=\nabla-T$

coincides with the (-) connection of Cartan-Schouten (see [TV], p. 83).
In this section, we consider only this Riemannian homogeneous structure.
Ftrom the definition, it follows that this $T$ is a naturally reductive homogeneous

structure (i.e. $T\in \mathcal{T}_{3}$ ) on a Lie group $G$ if and only if

(4.2) $g(X, [Y, Z])+g(Y, [X, Z])=0$ , $X,Y,$ $Z\in \mathfrak{g}$ ,

which means that the metric $g$ must be bi-invariant.
Moreover such a $T$ is of type $T_{2}$ if and only if

(4.3) $\mathfrak{S}XYzg([X, Y], Z)=0$ , $\sum_{i=1}^{m}g([e;,X], e;)=0$ , $X,$ $Y,$ $Z\in \mathfrak{g}$ ,

where $(e_{1}, \ldots, e_{m})$ is an arbitrary orthonormal basis of $\mathfrak{g}$ and $6xYZ$ denotes the
cyclic sum with respect to $X,$ $Y$ and $Z$ (see [TV]).

Finaly, we recall that a connected Lie group $G$ is unimodular if and only if
the endomorphism $ad_{X}$ has null trace, for all $X\in \mathfrak{g}$ . But if we define $c_{12}(T)=$

$\sum^{m}g([X, ei], e;)$ , from (4.1) it folows
$i=1$

(4.4) $trad_{X}=\sum_{i=1}^{m}g([X, e_{i}], e_{i})=c_{12}(T)$ .

Hence $G$ is unimodular if and only if $c_{12}(T)=0$ or, in other words, if and
only if $T\in \mathcal{T}_{2}\oplus \mathcal{T}_{3}$ . A similar result has been proved in [TV, section 8], for
three-dimensional unimodular Lie groups.

Let $(G, g, J)$ be al almost Hermitian Lie group of dimension $2n$ . It is easy to
see that the tensor field defined by (4.1) is an almost Hermitian homogeneous
structure on $G$ . Moreover, it follows from (2.3) that the covariant derivative of
the Kahler form $F$ of $(G, g, J)$ can be written as

$2(\nabla_{X}F)(Y, Z)=g([X, JY], Z)-g([JY, Z],X)+g([Z, X], JY)$

(4.5)
$+g([X, Y], JZ)-g([Y, JZ],X)+g([JZ,X],Y)$ , $X,$ $Y,$ $Z\in \mathfrak{g}$ .
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Using the above expression, it is possible to characterize some classes of almost
Hermitian homogeneous structures on $G$ .

THEOREM 4.2. Let $(G,g, J)$ be an almost Hermitian Lie group with a bi-invariant
metric $g$ . Then $G$ is nearly K\"ahler if and only if

(4.6) $ad_{X}oJ=-Joad_{X}$ , $X\in \mathfrak{g}$ .

PROOF: We first show that a bi-invariant metric on $G$ is nearly K\"ahler if and only
if [X, $JX$] $=0$ , for $X\in \mathfrak{g}$ . Rom formula (4.2), it folows that $T\in \mathcal{T}_{3}$ . Theorem
3.1 implies that $G$ is nearly K\"ahler if and only if $T\in \mathcal{W}_{1}^{l}$

‘ that is

(4.7) $TxY=-TYX=-TJXJY$ , $X,$ $Y\in \mathfrak{g}$ ,

(see [AG], Theorem 4.4). Because of (4.1), this condition is equivalent to

[X, $JY$] $=[JX,Y]$ , which can be rewritten as $ad_{X}(JY)=ad_{JX}(Y)$ . Now as-
sume that $G$ has a bi-invariant nearly $K\ddot{a}14er$ metric $g$ . Then

$g(adx(JY), Z)=g(ad_{JX}Y, Z)=-g(Y,ad_{JX}Z)=-g(Y, ad_{X}(JZ))$

(4.8)
$=g(ad_{X}Y, JZ)=-g(J(ad_{X}Y), Z)$ , $X,Y,$ $Z\in \mathfrak{g}$ ,

so (4.6) holds. The converse follows easily.

RBMARK 1. This property has also been found, in a more complicated way, by
J.A. Wolf and A. Gray (see [WG], Theorem 8.11).

REMARK 2. In the next section we shall give an example of a Lie group such that
(4.6) holds but which is not of class $\mathcal{W}_{1}^{l/}$ because it admits no bi-invariant metric
(see example $1.b$).

If $(G,g, J)$ is a complex Lie group, that is if

(4.9) $[JX, Y]=[X, JY]=J[X, Y]$ , $X,Y\in \mathfrak{g}$ ,

the following relation holds (see [AGr], formula (2.5))

(4.10) $(\nabla_{X}F)(Y, Z)=g(ad_{JZ}Y,X)$ , $X,Y,$ $Z\in \mathfrak{g}$ .
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Note that ifGisacomplex Lie group thenJ is integrable and $(G, J)$ isacomplex
manifold, but the converse is not necessarily true. In other words, $(G, J)$ can be a

complex manifold even if (4.9) does not hold.
A direct consequence of (4.10) is that for a complex Lie group we have

(4.11) $\sum_{:=1}^{2\mathfrak{n}}g(T_{e_{i}}e_{i},X)=\sum_{1=1}^{2n}[-g(T_{e;}Je_{i}, JX)+g(T_{e_{i}}e_{i},X)]$ ,

where $(e_{1}, \ldots , e_{2n})$ is an orthonormal basis of $\mathfrak{g}$ .
If we define $\overline{c}_{12}(T)(X)=\sum_{*=1}^{2n}g(T_{c_{i}}Je_{i}, X),$ $X\in \mathfrak{g}$ (see [AG], pag. 387), it follows

from (4.11) that $T\in ker\overline{c}_{12}$ . Moreover, if $G$ is also unimodular then $ T\in kerc_{12}\cap$

ker $\overline{c}_{12}=(\mathcal{T}_{2}\oplus \mathcal{T}_{3})\cap ker\overline{c}_{12}$ . But in [AGr], Theorem 2.2, it has been proved that a
complex Lie group is unimodular if and only if $G$ is Hermitian $semi-K\ddot{a}Mer$ , i.e. $G$

belongs to the class $\mathcal{W}_{3}$ . Finally, from the proof of Theorem 4.4 of [AG], we have
that a complex unimodular Lie group belongs to the class ker $\Psi_{2}\oplus \mathcal{W}_{3}^{\prime}\oplus \mathcal{W}_{3}^{l}$‘.

If $G$ is a (not necessarily complex) Lie group endowed with a bi-invariant nearly
K\"aMer metric, then the Nijenhuis tensor $N$ , defined by $N(X, Y)=$ [X, $Y$] $+$

$J[JX, Y]+J[X, JY]-[JX, JY]$ , becomes $N(X, Y)=4[X, Y]$ . If in addition
$G$ is $K\ddot{a}14er$ , then it is also abelian. Conversely, If $(G,g, J)$ is an abelian Lie group
with a bi-invariant metric, we have that $G$ is a nearly K\"aMer manifold (Theo-
rem 4.2) with $N=0$ . This implies that $(G,g, J)$ is K\"ahler. Hence the following
Corollary holds.

COROLLARY 4.3. Let $(G,g, J)$ be an almost Hermitian Lie group with a $bi-$

invxiant metric $g$ . Then $G$ is Kahler if and only if $G$ is abelian.

REMARK 3. A similar result has been obtained by M. Goto and K. Uesu in [GU],
where they assume that $G$ is a complex Lie group.

5. Examples

1) Let $H$ be the complex Heisenberg Lie group of real dimension six, defined as

(5.1) $H=\{\left(\begin{array}{lll}1 & z_{1} & z_{2}\\0 & 1 & z_{3}\\0 & 0 & 1\end{array}\right),$ $zJ=aj+ibj\in C,$ $j=1,2,3\}$
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We shall put two different almost Hermitian structures on $H$ , described in the

following subsections a) and $b$).

a) Let $g$ be the left invariant metric on $H$ such that

(5.2) $\alpha=dz_{1}$ , $\beta=dz_{3}$ , $\gamma=dz_{2}-z_{1}dz_{3}$

is an orthonormal basis for the complex l-forms. Let $J$ be the almost complex

structure given by $g(JX, Y)=F(X,Y)$ , where

(5.3) $F=i(\alpha\wedge\overline{\alpha}+\beta\wedge\overline{\beta}+\gamma\wedge\overline{\gamma})$ ,

and $\overline{\alpha},$

$\overline{\beta},$

$\overline{\gamma}$ are the complex conjugated forms of $\alpha,$
$\beta,$

$\gamma$ , respectively. It can be

shown that the almost Hermitian manifold $(H,g, J)$ belongs to the class $\mathcal{W}_{3}$ (for

more details see [FG]). It is possible to identify $H$ with $R^{6}$ in the following way
(see [AGr])

(5.4) $H=\{(000001$ $a_{0}b_{1}0011$ $a_{0}a_{1}b_{3}b_{2}32$

$000001$ $-b_{1}a_{1}o_{1}00$ $-b_{3}-b_{2}a_{1}a_{3}o_{2}),$

$a_{j},$ $b_{j}\in R,$ $j=1,2,3\}$

The Lie algebra $\mathfrak{h}$ of $H$ can be easily computed from the above representation.
If $(e_{1},e_{2}, e_{3},e_{4},e_{S}, e_{6})$ is the canonical basis of $\mathfrak{h}\cong R^{6}$ , we get

(5.5) $Je_{1}=e_{4}$ , $Je_{2}=e_{5}$ , $Je_{3}=e_{6}$ ,

and

(5.6) $[e_{1},e_{3}]=-[e_{4}, e_{6}]=e_{2}$ , $[e_{1},e_{6}]=-[e_{3}, e_{4}]=e_{5}$ ,

all other brackets being zero. Hence the non vanishing components of the almost

Hermitian homogeneous structure $T$ defined by (4.1) are (taking into account the
symmetries of $T$)

$T_{132}=T_{165}=T_{231}=T_{246}=T_{321}=T_{354}=T_{426}$

(5.7)
$=T_{43S}=T_{534}=T_{S61}=T_{642}=T_{651}=\frac{1}{2}$ ,
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where $T_{1jk}=g(T_{e_{i}}e_{j}, e_{k})$ . Because $H$ is unimodular, $T\in T_{2}\oplus T_{3}$ , but $T\not\in \mathcal{T}_{2}$ and
$T\not\in T_{3}$ since, for example, $\mathfrak{S}_{123}T_{123}\neq 0$ and $T_{123}\neq-T_{213}$ . Then from Theorem
2.1 we get that $ T\in$ ker $\Psi_{2}\oplus \mathcal{W}_{3}^{\prime}\oplus \mathcal{W}_{3}^{ll}$ . It is also possible to check that $T$ does
not belong to any invariant subspace of ker $\Psi_{2}\oplus \mathcal{W}_{3}^{l}\oplus \mathcal{W}_{3}^{\prime\prime}$ .

b) Following the same steps as in the previous example, let us consider the basis
$(\alpha, \beta, \gamma^{\prime}=\overline{\gamma})$ of left invariant l-forms on $H$ . The K\"ahler form $ F^{l}=i(\alpha$ A rv
$+\beta$ A $\overline{\beta}+\gamma^{\prime}A\overline{\gamma}$ ) defines a quasiK\"ahler structure $(H, g^{\prime}, J^{\prime})$ , that is a structure
which belongs to the class $\mathcal{W}_{1}\oplus \mathcal{W}_{2}$ . The almost complex structure $J^{\prime}$ is obtained
from $J$ by reversing the sign when applied to $\gamma;mor\infty ver$ note that $F^{\prime}=F-2\gamma\wedge\overline{\gamma}$.
In the same way, J. Eel$s$ and S. Salamon [ES, Theorem 9.1] constructed a quasi-
K\"ahler structure on $CP^{3}$ , starting from the standard K\"ahler structure.

In this case, the suitable identification of $H$ with $R^{6}$ is

(5.8) $H=\{(000001$ $a_{0}b_{1}0011$ $-b_{2}a_{1}a_{0}b_{3}32$
$000001$ $-b_{1}a_{1}00_{1}0$ $-b_{3}a_{2}a_{1}b_{2}o_{3}),$

$a_{j},$ $b_{j}\in R,$ $j=1,2,3\}$

If ( $e_{1}^{\prime},$ $e_{2}^{\prime},$ $e_{3}^{l},$ $e_{4}^{\prime}$ , e\’{s}, $e_{6}^{\prime}$ ) denotes the canonical basis of the Lie algebra $\mathfrak{h}$ of $H$ , we
have similar expressions as (5.5) and (5.6), with the exception

(5.9) $[e_{1}^{\prime}, e_{6}^{\prime}]=-[e_{3}^{\prime}, e_{4}^{\prime}]=-e_{5}^{\prime}$ .

Note that in this case [X, $JX$] $=0$ , for all $X\in \mathfrak{h}$ , but the metric $g^{\prime}$ is not
bi-invariant. Actually, $H$ does not admit any bi-invariant metric since it is dif-
feomorphic to $R^{6}$ and is not abelian. This example shows that the assumption of
Theorem 4.2 is indeed necessary. The non-vanishing components of the almost
Hermitian homogeneous structure $T^{l}$ defined by (4.1) are

$T_{132}^{\prime}=T_{1S6}^{\prime}=T_{231}^{\prime}=T_{246^{\prime}}=T_{321}^{\prime}=T_{345}^{\prime}=T_{426}^{\prime}$

(5.10)
$=T_{4S3}^{\prime}=T_{S16}^{\prime}=T_{S43}^{\prime}=T_{61S}^{\prime}=T_{642}^{\prime}=\frac{1}{2}$ ,

where $T_{ijk}^{\prime}=g^{\prime}(T_{e_{j}}^{l},e_{j}^{\prime}, e_{k}^{l})$ . As before, we have that $T^{\prime}\not\in \mathcal{T}_{2}$ and $T^{\prime}\not\in \mathcal{T}_{3}$ and it is
possible to show that $T^{\prime}\in ker\Psi_{2}\oplus \mathcal{W}_{2}^{l}\oplus \mathcal{W}_{1}^{\prime\prime}$ but it does not belong to any other
invariant subspace.
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2) The special unitary group $SU(3)$ is an example of an eight-dimensional Her-
mitian Lie group which is not a complex Lie group since, in general, $ J[X, Y]\neq$

$[JX, Y]$ for $X,$ $Y\in \mathfrak{s}\mathfrak{u}(3)$ , the Lie algebra of $SU(3)$ . It has a standard metric
related to the Killing form such that the following basis of $\epsilon \mathfrak{u}(3)$ is orthonormal

$e_{1}=\left(\begin{array}{lll}0 & l & 0\\-l & 0 & 0\\0 & 0 & 0\end{array}\right)$ , $e_{2}=(_{0}^{0}i$

(5.11) $e_{4}=\left(\begin{array}{lll}0 & 0 & i\\0 & 0 & 0\\i & 0 & 0\end{array}\right)$ , $e_{5}=(000$

$00i$ $000)$ , $e_{3}=\left(\begin{array}{lll}0 & 0 & 1\\0 & 0 & 0\\-l & 0 & 0\end{array}\right)$ ,

$-o_{1}o$ $001I$ , $e_{6}=\left(\begin{array}{lll}0 & 0 & 0\\0 & 0 & i\\0 & i & 0\end{array}\right)$ ,

$e_{7}=\left(\begin{array}{lll}0 & 0 & 0\\0 & i & 0\\0 & 0 & -i\end{array}\right)$ , $e_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{lll}2i & 0 & 0\\0 & -i & 0\\0 & 0 & -i\end{array}\right)$ .

The almost complex structure $J$ defined by

(5.12) $Je_{1}=e_{2}$ , $Je_{3}=e_{4}$ , $Je_{S}=e_{6}$ , $Je_{7}=-e_{8}$ ,

is integrable and $(SU(3),g, J)$ belongs to the class $\mathcal{W}_{3}\oplus \mathcal{W}_{4}$ . Moreover

$[e_{1}, e_{2}]=-e_{7}+\sqrt{3}e_{8}$ ,
$[e_{1}, e_{4}]=[e_{3}, e_{2}]=-e_{6}$ ,
$[e_{1}, e_{6}]=[e_{2}, e_{S}]=[e_{7}, e_{3}]=e_{4}$ ,
$[e_{1}, e_{8}]=-\sqrt{3}e_{2}$ ,

(5.13)
$[e_{2}, e_{8}]=\sqrt{3}e_{1}$ ,
$[e_{3}, e_{8}]=-\sqrt{3}e_{4}$ ,
$[e_{S}, e_{6}]=2e_{7}$ ,
$[e_{6}, e_{7}]=2e_{5}$ ,

$[e_{1}, e_{3}]=[e_{2}, e_{4}]=-e_{5}$ ,
$[e_{1}, e_{5}]=[e_{6}, e_{2}]=[e_{4}, e_{7}]=e_{3}$ ,
$[e_{1}, e_{7}]=[e_{3}, e_{6}]=[e_{S}, e_{4}]=e_{2}$ ,
$[e_{2},e_{7}]=[e_{3}, e_{S}]=[e_{4}, e_{6}]=-e_{1}$ ,
$[e_{3}, e_{4}]=e_{7}+\sqrt{3}e_{8}$ ,
$[e_{4}, e_{8}]=\sqrt{3}e_{3}$ ,
$[e_{S}, e_{7}]=-2e_{6}$ ,
$[e_{S}, e_{8}]=[e_{6}, e_{8}]=[e_{7}, e_{8}]=0$ .

Using this, the almost Hermitian homogeneous structure $T$ defined by (4.1) is a
3-form and has the following non-vanishing components

$T_{127}=T_{13S}=T_{146}=T_{236}=T_{24S}=-T_{347}=-\frac{1}{2}$

(5.14)
$T_{128}=T_{348}=\frac{\sqrt{3}}{2}$ , $T_{567}=1$ .

Since the metric $g$ is bi-invariant and $J$ is integrable, the structure $T$ belongs
to the class $\mathcal{W}_{3}^{l/}\oplus \mathcal{W}_{4}^{\prime\prime}$ .
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3) The following examples, suggested to us by K. Sekigawa, seem to be, at least to
our knowledge, the only family of nearly K\"ahler Lie groups explicitly described.

Let $G$ be a Lie group, with Lie algebra $\mathfrak{g}$ , endowed with a $b\leftarrow invariant$ metric
$g$ . Let us consider the following vector fields on the product Lie group $G\times G$

(5.15) $X^{v}=(0,X)$ , $X^{h}=(\frac{2}{\sqrt{3}}x,$ $\frac{1}{\sqrt{3}}x)$ , $X\in \mathfrak{g}$ .

We define an almost complex structure $J$ and a compatible left invariant metric
$g^{l}$ on $G\times G$ as follows

(5.16) $J(X^{v})=X^{h}$ , $J(X^{h})=-X^{v}$ , $X\in \mathfrak{g}$ ;

$g^{\prime}(X^{v}, Y^{v})=g(X, Y)$ , $g^{\prime}(X^{v}, Y^{h})=0$ ,
(5.17)

$g^{\prime}(X^{h}, Y^{h})=g(X, Y)$ , $X,Y\in \mathfrak{g}$ .

Since

$[X^{v},Y^{v}]=[X, Y]^{v}$ , $[X^{v}, Y^{h}]=[X^{h}, Y^{v}]=\frac{1}{\sqrt{3}}[X, Y]^{v}$ ,
(5.18)

$[X^{h}, Y^{h}]=-\frac{1}{3}[X, Y]^{v}+\frac{2}{\sqrt{3}}[X, Y]^{h}$ , $X,$ $Y\in \mathfrak{g}$ ,

the almost Hermitian homogeneous structure $T$ of (4.1) is given by

$T_{X^{v}}Y^{v}=\frac{1}{2}[X,Y]^{v}$ , $T_{X^{v}}Y^{h}=\frac{1}{6}[X, Y]^{h}$ ,

(5.19) $T_{X^{h}}Y^{v}=\frac{1}{\sqrt{3}}[X, Y]^{v}-\frac{1}{6}[X, Y]^{h}$ ,

$T_{X^{h}}Y^{h}=-\frac{1}{6}[X, Y]^{v}+\frac{1}{\sqrt{3}}[X, Y]^{h}$ , $X,$ $Y\in \mathfrak{g}$ .

It is not difficult to see that $\Psi(T)\in \mathcal{W}_{1}(\Psi$ is the homomorphism defined by
(2.4)), so $(G\times G,g^{\prime}, J)$ is a nearly K\"ahler Lie group. Note that the metric $g^{\prime}$ is not
bi-invariant. Now we want to prove that $(G\times G,g^{l}, J)$ is a locally 3-symmetric
space (see [Grl] for the definition and main properties). According to the main
result of [GV], it is enough to show that the tensor field

(5.20) $\tilde{T}_{X^{\prime}}Y^{l}=\frac{1}{2}J(\nabla_{X^{\prime}}J)Y^{l}$ , $X^{\prime},$ $Y^{\prime}\in \mathfrak{g}\times \mathfrak{g}$ ,
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is an almost Hermitian homogeneous structure on $G\times G$ (here $\nabla$ denotes the

Levi Civita connection of $g^{\prime}$ ). Since $g^{\prime}$ is left invariant, $\nabla x\prime Y^{\prime}=Tx\prime Y^{l}$ , for all
$X^{\prime},Y^{\prime}\in \mathfrak{g}\times \mathfrak{g}$ , and (5.20) can be rewritten as

(5.21) $\tilde{T}_{X^{\prime}}Y^{\prime}=\frac{1}{2}(Tx\prime Y^{l}+JTx\prime JY^{l})$ , $X^{l},$ $Y^{\prime}\in \mathfrak{g}\times \mathfrak{g}$ .

Using (5.19) and the fact that the metric $g$ is bi-invariant, a long computation

shows that $\tilde{T}$ is a -form and $\tilde{\nabla}\tilde{T}=\tilde{\nabla}R^{\prime}=0$ , where $\tilde{\nabla}=\nabla-\tilde{T}$ and $R^{\prime}$ is the
Riemanmian curvature tensor of $g^{l}$ . Hence the previous claim is true. Finally, one
can see that $g^{\prime}$ is Einstein if and only if $g$ is Einstein.

We end with a couple of open problems related to the last example:
i) to find a nearly Kahler Lie group with a bi-invariant metric, which is not Kffier;

ii) to find a nearly K\"ahler Lie group which is not locally -symmetric.
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