A SUFFICIENT CONDITION FOR A GRAPH TO BE TRACEABLE *

Ren Shijun and Luo Shengzheng

ABSTRACT

We prove that a 2-connected graph of order p is traceable if for all distinct vertices u and v, dist(u,v)=2 implies that $|N(u)\bigcup N(v)| \geqslant (p-1)/2$. This result was once conjectured by T. E. Lindquester.

INTRODUCTION

A path in a graph G is called a hamiltonian path in G if it contains all the vertices of G. A graph is traceable if it has a hamiltonian path. The neighborhood of a vertex v, denoted N(v), is the set of all vertices adjacent to v. We define the distance, denoted dist(u,v), between two vertices u and v as the minimum of the lengths of all u-v paths. Let $NC2=\min |N(u) \cup N(v)|$, where the minimum is taken over all pairs of vertices u,v that are at distance two in the graph. Refer to [2] for other terminology.

T.E.Lindquester has given the following theorem in [1]:

Theorem 1. Let G be a 2-connected graph of order p. If

$$NC2 > (2p-5)/3$$
,

then G is traceable.

He also raised the following conjecture:

Conjecture. Let G be a 2-connected graph of order p. If

$$NC2 \geqslant (p-1)/2$$
,

then G is traceable.

He also pointed out that the 2-connected bipartite graph $K(n-2,n), n \ge 4$, is nontraceable. If |K(n-2,n)|=p, then $NC2 \ge (p-2)/2$. Thus, the conjecture is the best possible result of this nature that can be obtained.

^{*} Project supported by the Science fund of Heilongjiang

PROOF OF THE CONJECTURE

In the following lemmas, we suppose that G=(V,E) is a 2-connected graph of order p, $NC2 \ge (p-1)/2$ and G is nontraceable.

Lemma 1. If P: $a_1 a_2 \dots a_m$ be a path of maximum length in G, then

$$dist(a_1,a_m)\neq 2$$
.

Proof. Since G is nontraceable, there exists a vertex x not on P but adjacent to vertices on P. Assume x is adjacent to a. Since G is 2-connected, there exists at least one other path from x to P, besides the edge xa., that is vertex disjoint from P except at the end point, Let a. be the end vertex of such a path P'. Without loss of generality, assume i < j. Since P is of maximum length, we have xa. Thus,

$$dist(x,a_{i+1})=2$$
.

Now, we suppose

$$dist(a_1,a_m)=2.$$

We define the function $f: N(x) \bigcup N(a_{i+1}) \longrightarrow V$ by

$$f(a_k)=a_{k+1}$$
, for $2 \le k \le i$;

$$f(a_k)=a_{k-1}$$
, for $i+2 < k \le m-1$;

$$f(a_{i+2})=x$$
;

$$f(y)=y$$
 for $y \in P$.

It is easily verified that for $\forall z \in N(x) \bigcup N(a_{i+1})$, f(z) is well defined and f is injective. Thus, we have

$$|f(N(x) \bigcup N(a_{i+1}))| = |N(x) \bigcup N(a_{i+1})| \ge (p-1)/2$$
.

Since P is of maximum length, we have $N(a_1) \bigcup N(a_m) \subseteq P$. We assert that

$$f(N(x) \bigcup N(a_{i+1})) \cap (N(a_1) \bigcup N(a_m)) = \emptyset$$
.

For if $a_k \in f(N(x) \bigcup N(a_{i+1})) \cap (N(a_1) \bigcup N(a_m))$, then

(1). $k\neq 1, m$. For $a_1 a_m \in E$ or the following path

$$xa_1 \dots a_1 a_{m} \dots a_{i+1}$$

is longer than P. Hence a_1 , $a_m \in N(a_1) \cup N(a_m)$.

(2). $k \neq 2, 3, ..., i$. For (2.1) if $a_{k-1}a_{i+1} \in E$, $a_k a_1 \in E$, then $a_i ... a_k a_1 ... a_{k-1}a_{i+1} ... a_m$

is a path longer than P. (2.2). if $a_{k-1}a_{i+1} \in E$, $a_k a_m \in E$, then

$$xa_1 \dots a_k a_{m} \dots a_{i+1} a_{k-1} \dots a_1$$

is a path longer than P. (2.3). if $a_{k-1}x \in E$, $a_k a_1 \in E$, then

$$xa_{k-1}...a_1a_k...a_m$$

is a path longer than P.(2.4). if $a_{k-1}x \in E$, $a_k a_m \in E$, then

$$a_1 \cdots a_{k-1} x^{p} a_j \cdots a_k a_m \cdots a_{j+1}$$

is a path longer than P.

- (3). $k\neq i+1$. This is evident.
- (4). $k\neq i+2,...,m-1$. The reason is the same as in (2).

It is clear that a_1 , $a_m \in f(N(x) \cup N(a_{i+1})) \cup (N(a_1) \cup N(a_m))$, we have $p-1 \le |f(N(x) \cup N(a_{i+1}))| + |N(a_1) \cup N(a_m)| = |f(N(x) \cup N(a_{i+1})) \cup (N(a_1) \cup N(a_m))| \le p-2$.

A contradiction. The lemma has been proved.

Lemma 2. If P: $a_1 a_2 ... a_m$ is a path of maximum length in G, then there is no i,j such that

 $1 < i \le j < m$, $a_1 a_i \in E$, $a_1 a_{i-1} \in E$, $a_j a_m \in E$, $a_{j+1} a_m \in E$. (1) Proof. If there is i,j such that (1) holds, then

P1:
$$a_{i-1} \dots a_1 a_i \dots a_j a_i \dots a_{j+1}$$
 , P2: $a_{i-1} \dots a_1 a_i \dots a_m$

and P3:
$$a_{j+1} \dots a_{m-j} \dots a_1$$

are all of paths of maximum length and V(P1)=V(P2)=V(P3)=V(P) . Thus,

$$N(a_1) \bigcup N(a_{i-1}) \subseteq P$$
, $N(a_m) \bigcup N(a_{i+1}) \subseteq P$.

By lemma 1, we have $(N(a_1) \cup N(a_{i-1})) \cap (N(a_m) \cup N(a_{j+1})) = \emptyset$. But a_1 , $a_m \in (N(a_1) \cup N(a_{i-1})) \cup (N(a_m) \cup N(a_{j+1}))$, Hence $p-1 \leq |N(a_1) \cup N(a_{i-1})| + |N(a_m) \cup N(a_{j+1})| = |(N(a_1) \cup N(a_{i-1})) \cup (N(a_m) \cup N(a_{j+1}))| \leq p-2$ (Since dist $(a_1, a_{i-1}) = dist(a_m, a_{j+1}) = 2$).

A contradiction. The lemma has been proved.

Lemma 3. There exists a path P: $a_1 a_2 \dots a_m$ of maximum length and i,j such that

$$i < j$$
, $a_i \in N(a_m)$, $a_j \in N(a_1)$.

Proof. For any path P: $a_1 a_2 \dots a_k$, let $i^*=\max[i|a_i \in N(a_1)]$, $j^*=\min[j|a_j \in N(a_k)]$. If for a path of maximum length, $i^*>j^*$ holds, then let $i^*=j$, $j^*=i$. The path of lemma 3 has been found. Now, suppose for any path of maximum length $i^* \leq j^*$ holds. We choose a path P: $a_1 a_2 \dots a_m$ such that j^*-i^* is taken minimum. By lemma 2, without loss of generality, we suppose that $a_i \in N(a_1)$ for $2 \leq i \leq i^*$. Since G is 2-connected, there exists e,f such that $e < i^*$, $f > i^*$, $a_e a_f \in E$. If $f \leq j^*$, then

$$a_{f-1} \cdots a_{e+1} a_1 \cdots a_{e} a_{f} \cdots a_{m}$$

is also a path of maximum length. But the j*-i* of this path is less than that of P. A contradiction. If f>j*, then

$$a_{e^{\ldots a_1}a_{e+1}\ldots a_m}$$

is the required path of maximum length with i=j*, j=f.

Lemma 4. For any path P: $a_1 a_2 \dots a_m$ of lemma 3, if $k \neq i, j$, then $N(a_k) \subseteq P$.

Proof. Let $i'=\min[k|a_t\in N(a_m) \text{ for } k\le t\le i]$, $j'=\min[k|a_t\in N(a_1) \text{ for } k\le t\le j]$. Since P is of maximum length, $G[a_1,a_2,\ldots a_m]$ can not be a hamiltonian graph. Hence i'>1, j'>i+1, $dist(a_1,a_2')=2$, $dist(a_1,a_m)=2$.

1. If $a_1, j \in N(a_1)$, then since $G[a_1, a_2, ... a_m]$ is not a hamiltonian graph, there exists t such that i < t < j' and $a_t \in N(a_1)$. By lemma 2 we know $a_s \in N(a_1)$ for $2 \le s \le i'-1$. Hence

$$a_t \dots a_1 a_{t+1} \dots a_m$$
 is a path of maximum length and $N(a_t) \subseteq P$ for $1 \le t \le i'-2$.

2. If $a_{i'-1} \in N(a_1)$, then since $G[a_1, \ldots a_m]$ is not a hamiltonian graph, we have $a_1, a_{i'-1}, a_{j'-1}, a_m \in (N(a_1) \cup N(a_{j'-1})) \cup (N(a_{i'-1}) \cup N(a_m))$. Thus,

 $p-1 \le |N(a_1) \bigcup N(a_{j'-1})| + |N(a_{i'-1}) \bigcup N(a_m)| \le p-4 + |(N(a_1) \bigcup N(a_{j'-1})) \cap (N(a_{i'-1}) \bigcup N(a_m))| .$

Hence

$$|(N(a_1) \bigcup N(a_{j'-1})) \cap (N(a_{i'-1}) \bigcup N(a_m))| \geqslant 3$$
.

Let $a_{e}, a_{f} \in (N(a_{1}) \cup N(a_{j'-1})) \cap (N(a_{i'-1}) \cup N(a_{m}))$ Since $a_{j'-1} \cdots a_{l} a_{j'-1} \cdots a_{m}; a_{j'-1} \cdots a_{i'} a_{m} \cdots a_{j'-1}; a_{l} \cdots a_{m}$ are

all paths of maximum length, we have a_e , $a_f \in N(a_1) \cap N(a_{i'-1})$ by lemma 1. Without loss of generality, assume e < f. But if f > i', then

$$a_{f-1} \cdots a_{i} a_{m} \cdots a_{f} a_{i} - 1 \cdots a_{1}$$

is a path of maximum length and $dist(a_{f-1}, a_1)=2$. This is a contradiction to lemma 1. Evidently, f is not equal to i'-1, i'.

We have f<i'-1. From the previous discussion we know $N(a_t) \subseteq P$ for $1 \le t \le f-1$. Again, since

is a path of maximum length and $a_{j'-1}a_{j'} \in E$, $a_{j'-1}a_{m} \in E$, we have $a_{t} \in N(a_{i'-1})$ for $e \le t \le i'-2$, and

is a path of maximum length and $N(a_t) \subseteq P$ for $e+1 \le t \le i'-1$. Since e < f, hence $N(a_t) \subseteq P$ for $1 \le t \le i'-1$.

3. Since

$$a_t \cdots a_1 a_j \cdots a_{m+1} \cdots a_{j'-1}$$

is a path of maximum length for i'-1 \leqslant t \leqslant i-1. Thus, N(a_t) \subseteq P holds for i'-1 \leqslant t \leqslant i-1 .

From the above three aspects we know $N(a_{t}) \subseteq P$ for $1 \le t \le i-1$.

Apply the above discussion to the paths $a_{j-1} \dots a_1 a_j \dots a_m$ and $a_m \dots a_1$, we will get $N(a_t) \subseteq P$ for $i+1 \le t \le j-1$ and $N(a_t) \subseteq P$ for $j+1 \le t \le m$. This completes the proof of the lemma.

Lemma 5. Let P: $a_1 a_2 ... a_m$ be a path of maximum length, $a_1 a_j \in E$. If there exists i such that 1 < i < j and $a_i \in N(a_m)$, then $a_t \in N(a_m)$ for $1 \le t \le j-1$, $t \ne i$.

Proof. For $\forall x \in P$, if $xa_k \in E$, then k=i or k=j by lemma 4. If there exists t such that t < j, $t \neq i$, $a_t \in N(a_m)$, then $N(a_i) \subseteq P$ by lemma 4. Hence a_i is a cut point in G. This is a contradiction to the fact that G is 2-connected. The proof of the lemma has been completed.

Now, we give the proof of the conjecture.

Theorem 2. Let G be a 2-connected graph of order p. If

$$NC2 \geqslant (p-1)/2$$

then G is traceable.

Proof. Suppose that G has no hamiltonian path. By lemma 3,

we can choose a path P: $a_1 a_2 \dots a_m$ of maximum length and i,j such that i < j, $a_i \in N(a_n)$, $a_i \in N(a_1)$. Let

 $A = \left\{a_1, a_2, \dots, a_{i-1}\right\} \; ; \quad B = \left\{a_{i+1}, \dots, a_{j-1}\right\} \; ; \quad C = \left\{a_{j+1}, \dots, a_{m}\right\}$ and suppose $|A| = \min \left\{|A|, |B|, |C|\right\} \; (\text{or, we may substitute}$

$$a \dots a_1$$
 or $a_{j-1} \dots a_1 a_j \dots a_m$

for P in discussion). Since G is 2-connected, by lemma 4, we can choose a vertex x of G such that $x \in P$ and $xa \in E$. Hence, we have

$$|G|=p > |A|+|B|+|C|+d(x)$$
.

Since

 $a_{j+1}...a_{i-1}a_{i-1}...a_{i-1}$ is of maximum length and $a_{j}a_{j+1}\in E$, $a_{i-1}a_{i}\in E$, by lemma 5, we know

 $N(a_{i-1}) \subseteq (A \cup \{a_i\}) \setminus \{a_{i-1}\}, \text{ similarly, } N(a_{i+1}) \subseteq (B \cup \{a_i\}) \setminus \{a_{i+1}\}.$

Since $a_{i-1}a_{i+1} \in E$, or

$$xa_{im} \dots a_{i+1} a_{i-1} \dots a_1$$

is a path longer than P, we have $dist(a_{i-1}, a_{i+1})=2$. and $|N(a_{i-1}) \bigcup N(a_{i+1})| \le |A| + |B| - 1$. Hence

 $|A| + |B| - 1 \ge |N(a_{i-1}) \cup N(a_{i+1})| \ge NC2 \ge (p-1)/2 \ge (|A| + |B| + |C| + d(x) - 1)/2$ that is

$$|A| + |B| - 2 > |C| + d(x) - 1 > |A| + d(x) - 1$$

thus

$$|B| \geqslant d(x)+1$$
.

Since P is of maximum length, $xa_{i-1} \in E$ and $dist(x,a_{i-1})=2$ must hold. But $N(x) \cap N(a_{i-1})=\{a_i\}$, so $|N(x) \cup N(a_{i-1})| \le d(x)+|A|-1$. Hence

$$d(x)+|A|-1 \ge (|A|+|B|+|C|+d(x)-1)/2$$
.

Thus

that is

$$2d(x)+2|A|-2 \ge |A|+|B|+|C|+d(x)-1 \ge 2|A|+|B|+d(x)-1$$

$$d(x) \geqslant |B|+1.$$

This is a contradiction to $|B|\geqslant d(x)+1$. This completes the proof of the theorem .

It is easily seen that theorem 1 is a corollary of theorem 2.

References

- [1] T.E.Lindquester, The effects of distance and neighborhood union conditions on hamiltonian properties in graphs, J. Graph Theory, Vol. 13, No. 3, 335-352(1989).
- [2] G.Chartrand and L.Lesniak, Graphs & Digraphs, (2nd ed.). Wadsworth & Brooks/Cole, Monterrey, CA(1986).

Received Dec. 6, 1991 Revised May 12, 1992

Ren Shijun

Department of Mathematics

Keshan Teachers College

Heilongjiang, PRC

Luo Shengzheng

Department of Mathematics

Harbin Institute of Technology

Harbin, PRC