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On the spectrum of the Laplacian in cosymplectic manifolds*

Jin Suk Pak, Jung-Hwan Kwon and Kwan-Ho Cho

§1. Introduction

Let (M, g) be an m-dimensional compact orientable Riemannian mani-
fold (connected and C* ) with metric tensor g. We denote by A the Laplacian
acting on p-forms on M, 0 < p < m. Then we have the spectrum for each
p: ‘

Spec” (M, g) = {0 < Aoy < Arp € Aoy S - T 00},

where each eigenvalue ), , is repeated as many times as its multiplicity indi-
cates. In order to study the relation between Spec? (M, g) and the geometry
of (M,g) we use the Minakshisundaram - Pleijel - Gaffney’s formula. Z.
Olszak ([10]), H.K. Pak ([11]), J.S. Pak, J.C. Jeong and W-T. Kim ([12]),
S. Yamaguchi and G. Chiiman ([18]) and others studied the spectrum of the
Laplacian and the curvature of Sasakian manifolds.

The purpose of the present paper is to study cosymplectic analogues for
certain results of [1], [10], [12], [13], [14], [15] and [18].

We shall be in C*-category. The indices h,t,j,k, s,t,--- run over the
range {1,2,---,2n + 1}. The Einstein summation convention with respect
to those system of indices will be used.
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hearty thanks to the referee for useful comments.

§2. Preliminaries

By R = (Rkj,'h):Rl = (Rj;) and r we denote the Riemannian curvature

tensor, the Ricci curvature tensor and the scalar curvature, respectively.

* This research was supported by TGRC-KOSEF.
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For a tensor field T on M, we denote by ||T|| the norm of T with re-

spect to g. Then the Minakshisundaram - Pleyel - Gafiney’s formuia for
Spec? (M, g) is given by

o0 [ o]
E exp(—Aa,pt) ~ (47t) 7 E Qo pt™ as t — OF
a=0 a=0

where the constants ao,p are spectral invariants. In the present paper we are
interested in the case of p = 0,1 or 2. For p = 0, we have (cf. [1])

(21) @o,0 =/ dM = VOI(M’ g)»
M
1
(2.2) ay o= '-/ rdM,
6 Ju
- - 2
(2.3) 42,0 = 355 / IR = 2| Ra|? + 5r%)dM,

where dM denotes the natural volume element of (M, g). For p = 1, we have

(cf. [18])

(2.4) ao,1 = m Vol(M, g),

(2.5) a,) = m_9 / rdM,
M

(26) a2 = 55 ] [2(m — 15)||R||? — 2(m — 0)|| Ry ||? + 5(m — 12)r*]dM,
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For p = 2, we have (cf. [13], [16], [18])

(2.7) Gog = %m(m — 1)Vol(M, g),
(2.8) 12 = —1-(m2 - 13m + 24)/ rdM,
2= 13 .
1
(29) sz =on / [2(m? — 31m + 240)[| R’

— 2(m? — 181m + 1080)||R, || + 5(m? — 25m + 120)r°]dM.

§3. Cosymplectic manifolds

Let M be a (2n + 1) - dimensional differentiable manifold of class C*
covered by a system of coordinate neighborhoods {U;z*} in which there

~are given a tensor field ¢ of type (1,1), a vector field ¢* and a 1-form 7
satisfying

(3.1) ¢l b =—6 +n;f, ‘¢ =0,mep! =0, né =1.

Such a set of a tensor field of type (1,1), a vector field and a 1-form

is called almost contact structure and a manifold with an almost contact
structure an almost contact manifold.

If, in an almost contact manifold, there is given a Riemannian metric
gji such that

(3.2) 919 #;° = gji —njmi, mi = gk,
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then the manifold is called an almost contact metric manifold.

If we put ¢;; = 4’,’191-', we see from (3.1) and (3.2) that ¢;; 1s skew-
symmetric.

The almost contact structure is said to be normal if [¢, ¢] +dn® £ = 0,
where [¢, #] denotes the Nijenhuis tensor formed with ¢ and d the operator

of the exterior derivative.
A normal almost contact metric structure is said to be cosymplectic (cf.

[2], [3], [4], [5], [7], [8]) if the 2-form ¢;; and the 1-form 7; are both closed.
A manifold with a cosymplectic structure is called a cosymplectic manifold.
It is known in [2] that the cosymplectic structure is characterized by

(3.3) ngbji =0 and Vin' =0,

where V; denotes the operator of covariant differentiation with respect to
gji-

If we denote the curvature tensor, Ricci tensor and scalar curvature of
a cosymplectic manifold M by R, ji", R;; and r respectively, then we have

Rpji€ =0, Riji.d;'éy’ = Rijin,
(3.4) Ryjis¢'* = —Rj1¢;*, Rj1¢;' = —Rii¢ji;
Rpj1, 4" = 2Ru¢;' Rjut' =0,Ry,4,'¢,* = R;i,

where ¢/' = ¢,'g’", Ryjin = Ry, g
In a cosymplectic manifold M, we call a sectional curvature
_g(R(¢X, X)¢X, X)
9(X, X)g(¢X, ¢X)
determined by two orthogonal vectors X and ¢X the ¢-holomorphic sectional

curvature with respect to the vector X orthogonal to § of M. If the ¢-
holomorphic sectional curvature is always constant with respect to any vector

k=
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at every point of the manifold M, then we call the manifold M a manifold
of constant ¢-holomorphic sectional curvature. If a cosymplectic manifold
has a constant ¢-holomorphic sectional curvature k at every point, then the
components of the curvature tensor of the manifold are of the form ([4], [8])

k
Ryijin =Z(9kh9ji — gkigjh + Pendji — PriPjn — 201; Din
— GERM M + GEiNi Nk — MM Gji + MeNidin)

,where k = W'ﬁ-ﬁ
Define on M a tensor field H = (Hg;,) by

(3.5) Hijin = Rijin — )(gkhgji — gkigjh + Oradji — dridjn

r
in(n +1
— 20r;Din — GERM;N: + GEiN;NE — NENRGji + NMENidjh ).

By using (3.4) and (3.6), we can easily verify that

(3.6) WH|* = R - nnt D)

A cosymplectic manifold is of constant ¢-holomorphic sectional curva-
ture if and only if H = 0, provided n > 2.
Define on M a tensor field Q@ = (Q,;) by

r r
Q]l = R]t - 5;9;: + '2_7;'77)’7:-

By a direct calculation, in which we use (3.4), it follows

1
7 QI? = ||Ry|” — —r2.
(3 ) ‘ " " " 1" 2n"

A cosymplectic manifold is said to be n-Einstein if @ = 0. For any
n-Einstein cosymplectic manifold, r is constant, provided n > 2.
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We also consider the so-called cosymplectic Bochner curvature tensor
field B = (B};;3) defined on M by (cf. [5])
_1
2(n+2)
+ PknSji — GinSki + ®jiSen — i Sin — 2PinSkj — 20k Sin
— menn Rji + njnaRei — njmiRes + meni Rja)

(3.8) Bgjin = Rujin — (geaRji — gjnRei +gjiRen — griRjn

(Grngji — Gjngri — Granini + gjaMei

,
R TCER YY)
— G5iMkNh + GEiNiTh + Ok Pji — Pjn ki — 20k Pin),

where S,‘,‘ = —Rjttﬁ,-i and Sj,’ = —S,'j.
The tensor field B satisfies, among others, the following identities :

B’*’j"" = Bihki: Bkiih = _Bjkih, Bkjih = —B},j;,,-,
Bijin + Bjirs + Bigjn =0,
Bijisg” =0, Bijin€* =0, Bijing*® =0, Biué" =o.

A cosymplectic manifold with B = 0 is said to be cosymplectic Bochner flat.
Using these identities, (3.4) and (3.8), we can easily check that

2 2
(n+1)n+2) ’

_ 3
3.9 Bl = 2 — IR, P
(3.9) IBII" = lIR|| - +2Il lI” +

3
n+2

(3.10) 1B = &1 - o]

Thus we have the following



Theorem 3.1 Let M be a cosymplectic manifold of dimension > 5.
Then M is of constant ¢-holomorphic sectional curvature if and only if M is
n-Einstesn and cosymplectic Bochner flat.

Remark A cosymplectic manifold with vanishing contact Bochner
curvature tensor field is said to be contact Bochner flat. A cosymplectic
manifold is not contact Bochner flat. In fact, we have the equality

4n(6n* + 15n3 + 3n? — 4n + 4)

eI = 18I + = =

where C denotes the contact Bochner curvature tensor field due to M. Mat-
sumoto and G. Chaman ([9]).

On the other hand, the contact conformal curvature tensor field ([6])
and the cosymplectic Bochner curvature tensor field are related by

4(6n* —n® + Tn? 4+ 8n — 4)
n(n + 1)

n + 2
Il = —=I1B))* +

2
L) +

(n + 1)(n -

So, a cosymplectic manifold cannot be a contact conformal flat

§4. Spec®M and the geometry of M

Assume that M is a compact cosymplectic manifold of dimension 2n+1
and consider Spec?M. In virtue of (3.7) and (3.9) the coefficient a3, given
by.(2.3) may be written as follows:

Co(n) r2dM,
M

(1) eao= 15 [ 0B+

where Cp(n) is constant depending only on n and Cp(n) > 0.
We shall often use the following Lemma 4.1, which is a consequence of

the Schwarz inequality (cf. [14], p.394).
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Lemma 4.1 Let (M,g) and (M',g') be compact orientable Riemannian
manifolds with Vol(M,g) = Vol(M’,¢’) and [, rdM = [, r'dM'. Ifr'
=constant, then [, r2dM > [, r2dM’' with equality if and only if r =

constant = r'’.

Theorem 4.2 Let M and M' be compact cosymplectic manifolds. As-
sume that Spec®M = Spec®M’'. Then dimM = dimM' = 2n+1 =m
and

(a) for m <11, M is of constant ¢p-holomorphic sectional curvature k if and

only if M' is of constant ¢'-holomorphic sectional curvature k' = k,

(b) for m= 13, M is cosymplectic Bochner flat and r = constant if and only
if M' is cosymplectic Bochner flat and ' = constant = r,

(c) if the cosymplectic manifolds are n-Einstein and n'-Einstesn, respectively,
then M is of constant ¢-holomorphic sectional curvature k if and only sf M'
is of constant ¢'-holomorphic sectional curvature k' = k.

Proof. Because of (2.1) and (2.2), ao,0 = apo and a1,0 = a} o imply
Vol(M) = Vol(M') and [, rdM = [,,, r'dM’'. Moreover, by virtue of (4.1),

az,0 = a3 yields

6—n
n+4+2

@2 [ B + TSN 1M + Co(n) [ +2am
2, 09— N, yu2 ' 2 ’
= [ B0 + 2519 PIa + Co(w) [+

(a) If M' is of constant ¢’-holomorphic sectional curvature, then B' = 0
and Q' = 0. Therefore, (4.2) gives
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[ 0B + S 2Qut1an + Co(n)( [ ran~ [ +2anry=o,
M n+ 2 M M

which, by r' = constant , n < 5 and the Lemma 4.1, yields B =0, Q =0
and r = constant = r’. |

(b) ¥ n =6 and B' = 0, it follows from (4.2) that
/ IB|I>dM + Co(6)( / r2dM - | ?dM')=0,
M M M?

which, by ' = constant and the Lemma 4.1, gives our assertion.

(c)Let @ =0 and Q' = 0. Then from (4.2), we have

[ 1BIrast +co) [ am= [ 1B1am + Cogm) [ r7a
M M M/’ M

If M’ is of constant ¢'-holomorphic sectional curvature, then B' = 0
and r' = constant. Then from the above equation and Lemma 4.1, we obtain
B = 0 and r = constant. But B = 0 and Q = 0 imply H = 0. This completes
the proof of our Theorem 4.2.

We say that two Riemannian manifolds (M, g) and (M',g’) are a —
isospectral if limp—0o8up|An,0 — Ay, o[n~% = C < oo ([11], [17]).

We first introduce the following Lemma 4.3 due to H.K. Pak ([11]) and
J.Y. Wu ([17)).

Lemma 4.3 Let (M, g) and (M',g') be two compact a-isospectral Rie-
mannian mansfolds.

(a) Ifa=—% andm>4, thenaio=al, 1=01,2,



(b) If a = —1, then ai,9 = a} o for alls <[%].
From the Lemma 4.3, we have the following

Corollary 4.4 Let M and M' be compact a-isospeciral cosymplectic
manifolds. Assume thata = —4 or —1 . Then dimM = dimM' =2n+1 =
m and
(a) for 5 < m < 11, M is of constant ¢-holomorphic sectional curvature k if
and only if M' is of constant ¢'-holomorphic sectional curvature k = k',

(b) for m = 13, M is cosymplectic Bochner flat and r =constant if and only
if M' is cosymplectic Bochner flat and r' =constant = r,

(c) if the cosymplectic manifolds are n-Einstein and n'-Einstein , respectively,
and m > 5, then M is of constant ¢-holomorphic sectional curvatur k if and

only if M' is of constant ¢'-holomorphic sectional curvature k' = k.

§5. Spec!M and the geometry of M

Assume that M is a compact cosymplectic manifold of dimension 2n+1
and consider Spec!M. In virtue of (3.7) and (3.9) the coefficient a3, given
by (2.6), reduces to

. 1 _ 2 2n2-101n—-66_ 4
(61) @ = 155 [ 2n - DIBI - 2 =2 gl am

Ci(n) 2
+ 360 Mj' dM,

where C;(n) is constant depending only on n and Ci(n) = ﬁ(n -
3)(10n? — 17n — 11).
Theorem 5.1 Let M and M' be compact cosymplectic manifolds. As-

sume that Spec!M = Spec!M'. Then dimM = dimM' = 2n+1 =m
and
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(a) for 17 < m < 103, M s of constant ¢-holomorphic sectional curvature k
if and only if M' is of constant ¢'-holomorphic sectional curvature k' =k,

(b) for m = 15, M is n-Einstein with constant scalar curvature r if and only
if M' is n' -Einstein with constant scalar curvature r' = r,

(c) if the cosymplectic manifolds are n-Einstein and 7' -Esinstein, respectively,
and m =7 or m > 17, then M is of constant ¢-holomorphic sectional cur-
vature k if and only if M' is of constant ¢'-holomorphic sectional curvature

k' =k,

(d) if the cosymplectic manifolds are both cosymplectic Bochner flat and
m < 103, then M is of constant ¢-Rolomorphic sectional curvature k sf
and only if M' is of constant ¢'-holomorphic sectional curvature k' = k.

Proof. Because of (2.4) and (2.5), ao,1 = @p; and a1 = a3, imply
Vol(M) = Vol(M') and [,,rdM = [,,, r'dM'. Moreover, by virtue of (5.1),
az,1 = a3, yields

_ 2n? — 101n — 66
62 [ 1200 - DIBI - QI Ja + Cx(m) [ r2dba
M n+2 M
_ 2n? — 101n — 6 .
= [ o= DB - =R Plam + Cutr) [ rane'
M n+ 2 E M!

Using (5.2) and the Lemma 4.1, we easily obtain our assertions.

Theorem 5.2 Let M and M' be compact cosymplectic mansfolds. As-
sume that Spec®M = Spec®M' and Spec’ M = Spec!M'. Then dim M =
dim M' = 2n+1 = m and

(a) M is of constant ¢-holomorphic sectional curvature k if and only if M'
is of constant ¢'-holomorphsc sectsonal curvature k' = k



(b) M is n-Esinstein with constant scalar curvature r if and only if M' is
n'-Einstesn wsih consiani scalar curvaiure r' =r,

(c) M is cosymplectic Bochner flat with constant scalar curvature r if and
only if M' is cosymplectic Bochner flat with constant scalar curvaturer’' = r.

Proof. Because of (2.1) and (2.2), ag,0 = ag and 630 = a} o imply
Vol(M) = Vol(M') and [,, rdM = [,,, r'dM’'. Moreover, by virtue of (2.3)
and (2.6), az,0 = a} 5 and a3 ; = a} , yield

(5.3) / [SILRI? + 13r2|dM = / BIR'|P + 13+°dM’,
M M!

(5.4) / [LOJ Ry + +2]dM = / [LOJR. |2 + ']dM".
M M?

(a) By (3.6), relation (5.3) may be written as

13n? +13n + 10 2
H|*dM- / H'|?dM’ / 2dM- / dM') = 0.
[ umpae- [ a2 2R am- [ emaar

Let H' = 0 and r'=constant. Then, by the Lemma 4.1, the last identity
leads to H = 0 and r = constant = r'.

(b) By (3.7), relation (5.4) may be written as

/ lQ|?dM - / 1Q'|Pdm + 2E2¢ / r2dM - | r?dM')=0.
M M 10n M M

Let @' = 0 and r'=constant. Then, by the Lemma 4.1, the last equality
leads to @ = 0 and r = constant = r'.
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(c) Using (3.9), we rewrite (5.3) in the form

13n% + 39n + 16 ,
(n+1)(n+2)

S 40 13n% 4 39n + 16 2
= [ BIB) + =R + r2)dM’.
/M,[ 1B + IR+ o e

Sne 40 2
—_— aM
[ ISIBI + iRl + )

This equality, by (5.4), gives

_ _ 13n% 4 35n + 12 2
B|?dM - / B')?dM / r2dM- | +#%dM') =0
Jupram— [ ymase s ZEETRE L [ [ +anr

Assume that B' = 0 and r' = constant. In view of the Lemma 4.1, the

last relation yields now B = 0 and r = constant = r'. This completes the
proof of the Theorem.

§6. Spec’M and the geometry of M

Assume that M is a compact cosymplectic manifold of dimension 2n+1
and consider Spec? M. With the help of (3.7) and (3.9) the coefficient aj,2,
given by (2.9), may be written as follows :

61)  ag; =— / [(n = 7)(2n — 15)| B

130
—2n3 4+ 191n2 - 324n — 2
dM
QI
4 _ 3 2 _ —
1 / 10n* — 107n° 4 310n* — 147n 30r2dM.
180 2n(n + 1)

Theorem 6.1 Let M and M' be compact cosymplectic manifolds. As-
sume that Spec®(M)= Spec*M'. Then dimM = dimM' =2n 4+ 1=m and
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(a)for m = 5,7,9 and 13 or 17 < m < 187, M is of constant ¢-holomorphic

sectional curvature k if and only if M’ is of constant ¢’ -holomorphsc sectional
curvature k' = k,

(b) for m = 15, M is n-Einstein with constant scalar curvature r if and only
if M' is n'-Einstein with constant scalar curvature r’ = r,

(c) if the cosymplectic manifolds are n-Einstein and n'-Esinstein, respectively,
and m # 11 and 15, then M ss of constant ¢-holomorphsc sectional curvature
k if and only sf M’ is of constant ¢'-holomorphic sectional curvature k' = k,

(d) if the cosymplectic manifolds are both cosymplectic Bochner flat, and
5<m<L9or13<m< 187, then M ss of constant ¢-holomorphsc sectional
curvature k if and only if M' is of constant @' -holomorphic sectional curva-
ture k' = k.

Proof. The proof is based on the equalities ao2 = af 5,41,2 = a} ; and
a2 = @55, Where the coefficients are given by (2.7), (2.8) and (6.1). The

idea of the proof is similar to that of Theorem 5.1. Therefore, we shall omit
the details.

Theorem 6.2 Let M and M' be compact cosymplectic manifolds. As-

sume that Spec®M = Spec®M’ and Spec?M = Spec*?M’. Then dimM = dimM'

=2n4+1=m and

(a) for m > 7, M is of constant ¢-holomorphic sectional curvature k if and
only if M' is of constant ¢'-holomorphic sectional curvature k' = k,

(b) for m > 15, M is n-Einstein with constant scalar curvature r if and only
if M' is 0 -Einstein with constant scalar curvature r' = r,
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(c) form > 7, M is cosymplectic Bochner flat with constant scalar curvature
r if and only if M! is cosymplectic Bochner flat with constant scalar curvature
=

Proof. Because of (2.1) and (2.2), ao,0 = ag and a0 = @} ¢ imply
Vol(M) = Vol(M') and f,, rdM = [,,, r'dM’. Moreover by virtue of (2.3)
and (2.9), a3,0 = a3 ¢ and a3 3 = a} , yield

(6.2) /M [(10n — 23)|RJ? + (26n — 67)r?]dM

= / [(10n — 23)[[R'||? + (26n — 67)r"?|dM",
M'

(6.3) /M [2(10n — 23)||Ry|I* + (2n — 19)r?]dM

= /M,[2(10n — 23)[|IR.|1? + (2n — 19)r"%)dM".

(a) By (3.6), relation (6.2) may be written as

/ (10n — 23)||H||?dM — / (10n — 23)||H'||*dM’
M M

26n% — 41n%2 — 47n — 46
n(n+1)

(/ r3dM — r'sz’) = 0.
M M

Let H' = 0, r'=constant and n > 3. Then, in view of the Lemma 4.1,
the last identity leads to H = 0 and r = constant = r'.

(b) By (3.7), relation (6.3) may be written as
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[ on—33)1QIPam — [ (10n - 23)1Q')dne
M M?

2 — —
42 —9n—23 / r?dM - [ #?dM') =0
2n M M

Let Q' =0, r' = constant and n > 7. Then by the Lemma 4.1, our last
equality leads to Q = 0 and r = constant = .

(c) Using (3.9), we rewrite (6.2) in the form

26n° + 11n” — 169n — 88 ,
(n+ 1)(n + 2)

8(10n 23) IR + 26n° + 11n? — 169n — 88 3
n+ 2 (n+1)(n+2)

/ fon — 23)B1? + X B g, 4 Jam

JdM’.

/ [(10n — 23)|B'|” +

This equality, by (6.3), gives

/ (10n — 23)|B|*dM — / (10n — 23)| B'|dM’
M M?

26n3 4+ 3n% — 101n — 12
(n+1)(n+2)

( / aM - [ r?aM’) =o.
M M

Let B' = 0, r' = constant and n > 3. Then, by the Lemma 4.1, the last

relation yields B = 0 and r=constant=r’. This completes the proof of the
Theorem.
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