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ON THE GEOMETRY OF QUASI-K\"AHLER MANIFOLDS
WITH NORDEN METRIC

DIMITAR MEKEROV, MANCHO MANEV

ABSTRACT. The basic claiss of the non-integrable almost complex manifolds with
Norden metric is considered. Its curvature properties are studied. The isotropic
Kffier type of investigated manifolds is introduced and characterized geometri-
cally.

The generalized B-manifolds are introduced in [1]. They are also known as almost
complex manifolds with Norden metric in [2] and as almost complex manifolds with
B-metric in [3]. In the present paper these manifolds are called almost complex
manifolds with Norden metric.

The aim of the present work is to further study of the geometry of one of the
basic classes of almost complex manifolds with Norden metric. This is the class of
the quasi-Kahler manifolds with Norden metric, which is the only basic class with
non-integrable almost complex structure.

In \S 1 we recall the notions of the almost complex manifolds with Norden metric,
we give some of their curvature properties and introduce isotropic K\"ahler type of
the considered manifolds.

In \S 2 we specialize some curvature properties for the quasi-K\"ahler manifolds with
Norden metric and the corresponding invariants.

1. ALMOST COMPLEX MANIFOLDS WITH NORDEN METRIC
Let $(M, J, g)$ be a $2n$-dimensional almost complex manifold with Norden metric,

i.e. $J$ is an almost complex structure and $g$ is a metric on $M$ such that
(1.1) $J^{2}X=-X$ , $g(JX, JY)=-g(X, Y)$

for al differentiable vector fields $X,$ $Y$ on $M$ , i.e. $X,$ $Y\in \mathfrak{X}(M)$ .
The associated metric $\tilde{g}$ of $g$ on $M$ given by $\tilde{g}(X, Y)=g(X, JY)$ for all $X,$ $ Y\in$

$X(M)$ is a Norden metric, too. Both metrics are necessarily of signature $(n, n)$ . The
manifold $(M, J,\tilde{g})$ is an almost complex manifold with Norden metric, too.

Further, $X,$ $Y,$ $Z,$ $U$ ( $x,$ $y,$ $z,$ $u$ , respectively) wil stand for arbitrary differentiable
vector fields on $M$ (vectors in $T_{p}M,$ $p\in M$ , respectively).

The Levi-Civita connection of $g$ is denoted by $\nabla$ . The tensor filed $F$ of type $(0,3)$

on $M$ is defined by
(1.2) $F(X, Y, Z)=g((\nabla_{X}J)Y, Z)$ .
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It has the following symmetries

(1.3) $F(X, Y, Z)=F(X, Z, Y)=F(X, JY, JZ)$ .

Let $\{e_{i}\}$ $(i=1,2, \ldots , 2n)$ be an arbitrary basis of $T_{p}M$ at a point $p$ of $M$ . The
components of the inverse matrix of $g$ are denoted by $g^{ij}$ with respect to the basis
$\{e_{i}\}$ .

The Lie form $\theta$ associated with $F$ is defined by

(1.4) $\theta(z)=g^{ij}F(e_{i}, e_{j}, z)$ .
A classification of the considered manifolds with respect to $F$ is given in [2]. Eight

$cla_{L}sses$ of almost complex manifolds with Norden metric are characterized there by
conditions for $F$ . The three basic classes are given as follows

$\mathcal{W}_{1}$ : $F(x, y, z)=\frac{1}{4n}\{g(x, y)\theta(z)+g(x, z)\theta(y)$

$+g(x, Jy)\theta(Jz)+g(x, Jz)\theta(Jy)\}$ ;
(1.5) $\mathcal{W}_{2}$ : $6F(x, y, Jz)=0$

$x,y,z$

$\theta=0$ ;

$\mathcal{W}_{3}$ : $6F(x, y, z)=0$
$x,y,z$

where 6 is the cyclic silm by three arguments.
The special class $\mathcal{W}_{0}$ of the K\"ahler manifolds with Norden metric belonging to

any other class is determined by the condition $F=0$ .
Let $R$ be the curvature tensor field of $\nabla$ defined by

(1.6) $R(X, Y)Z=\nabla_{X}(\nabla_{Y}Z)-\nabla_{Y}(\nabla_{X}Z)-\nabla_{[X,Y]}Z$.
The $\infty rresponding$ tensor field of type $(0,4)$ is determined as follows

(1.7) $R(X,Y, Z, U)=g(R(X,Y)Z,$ $U$).

Theorem 1.1. Let $(M, J,g)$ be an almost complex manifold with Norden metric.
Then the follounng identities are valid

(i) $R(X,Y, JZ, U)-R(X,Y, Z, JU)=(\nabla_{X}F)(Y, Z, U)-(\nabla_{Y}F)(X, Z, U)$ ;
(ii) $(\nabla_{X}F)(Y, JZ, U)+(\nabla_{X}F)(Y, Z, JU)$

$=-g((\nabla_{X}J)Z, (\nabla_{Y}J)U)-g((\nabla_{X}J)U, (\nabla_{Y}J)Z)$ ;
(iii) $(\nabla_{X}F)(Y, Z, U)=(\nabla_{X}F)(Y, U, Z)$ ;
(iv) $g^{*j}(\nabla_{e_{i}}F)(e_{j}, Jz,u)+g^{:j}(\nabla_{e_{i}}F)(e_{j}, z, Ju)$

$=-2g^{1j}g((\nabla_{e}.J)z, (\nabla_{e_{j}}J)u)$ .

Proof. The equality (i) follows from the Ricci identity for $J$

$(\nabla_{X}(\nabla_{Y}J))Z-(\nabla_{Y}(\nabla_{X}J))Z-(\nabla_{[X},\eta J)Z=R(X,Y)JZ-JR(X,Y)Z$

and the property of covariant constancy of $g$ , i.e. $\nabla g=0$ .
The property (1.3) of $F$ and the definition of the covariant derivative of $F$ imply

the equations (ii) and (iii).
The equation (iv) is a corollary of (ii) by the action of contraction of $X=e_{i}$ and

$Y=e_{j}$ for an arbitrary $ba_{\iota}sis\{e_{i}\}(i=1,2, \ldots , 2n)$ of $T_{p}M$ . $\square $
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The square norm $\Vert\nabla J\Vert^{2}$ of $\nabla J$ is defined by

(1.8) $\Vert\nabla J\Vert^{2}=g^{ij}g^{kl}g((\nabla_{e_{i}}J)e_{k}, (\nabla_{e_{j}}J)e_{l})$ .
A manifold $(M, J, g)$ belongs to the class $\mathcal{W}_{0}$ if and only if $\nabla J=0$ . It is clear

that if $(M, J, g)\in \mathcal{W}_{0}$ , then $\Vert\nabla J\Vert^{2}$ vanishes, too, but the inverse proposition is not
always true. That is, in general, the vanishing of the square norm $\Vert\nabla J\Vert^{2}$ does not
always imply the K\"ahler condition $\nabla J=0$ .

An almost complex manifold with Norden metric satisfying the condition $\Vert\nabla J\Vert^{2}$

to be zero is called an isotropic Kahler manifold with Norden metric.
A special subclass of the investigated manifolds consisting of isotropic K\"ahler but

non-K\"ahler manifold with Norden metric is considered in [5]. In the next section we
will focus on this case.

2. THE $QUASI- K\ddot{A}$HLER MANIFOLDS WITH NORDEN METRIC

Let $(M, J, g)$ be a quasi-K\"ahler manifold with Norden metric (in short a $\mathcal{W}_{3^{-}}$

manifold), i.e. it belongs to the cla.$ss\mathcal{W}_{3}$ .
Proposition 2.1. The $fo$ llowing properties are valid for an arbitrary $\mathcal{W}_{3}$ -manifold.

(i) $(\nabla_{X}J)JY+(\nabla_{Y}J)JX+(\nabla_{JX}J)Y+(\nabla_{JY}J)X=0$ ;
(ii) $X,Y,Z6F(JX, Y, Z)=0$ ;

(iii) $Y,Z,U6(\nabla_{X}F)(Y, Z, U)=0$ ;

(iv) $g^{ij}(\nabla_{X}F)(e_{i}, e_{j}, z)=g^{ij}(\nabla_{X}F)(z, e_{i}, e_{j})=0$ ,
where 6 is the cyclic sum by three arguments.

Proof. The equalities (i) and (ii) are equivalent to the characteristic condition (1.5)
for the class $\mathcal{W}_{3}$ . The defining equation of the covariant derivative of $F$ , the condition
$\nabla g=0$ and the definition (1.5) of $\mathcal{W}_{3}$ imply the equalities (iii) and (iv).

In [5] it is proved that on every $\mathcal{W}_{3}$-manifold the curvature tensor $R$ satisfies the
following identity

$R(X, JZ, Y, JU)+R(X, JY, U, JZ)+R(X, JY, Z, JU)$

$+R(X, JZ, U, JY)+R(X, JU, Y)JZ)+R(X, JU, Z, JY)$

(2.1) $+R(JX, Z, JY, U)+R(JX, Y, JU, Z)+R(JX, Y, JZ, U)$

$+R(JX, Z, JU, Y)+R(JX, U, JY, Z)+R(JX, U, JZ, Y)$

$=-X6Y,Zg((\nabla_{X}J)Y+(\nabla_{Y}J)X,$ $(\nabla_{Z}J)U+(\nabla_{U}J)z)$ .

Let us consider an associated tensor of the Ricci tensor $\rho$ defined by the equation
$\rho^{*}(y, z)=g^{ij}R(e_{i}, y, z, Je_{j})$ on an almost complex manifold with Norden metric.
The tensor $\rho^{*}$ is symmetric because of the first Bianchi identity.

By virtue of the identity (2.1) we get immediately the followimg

Lemma 2.2. For a $\mathcal{W}_{3}$ -manifold $(M, J, g)$ with the Ricci tensor $\rho$ of $\nabla$ and its
associated tensor $\rho^{*}(y, z)=g^{ij}R(e_{i}, y, z, Je_{j})$ we have
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$\rho^{*}(Jy, z)+\rho^{*}(y, Jz)+\rho(y, z)-\rho(Jy, Jz)$

(i)
$=-g^{ij}g((\nabla_{e_{i}}J)y+(\nabla_{y}J)e_{i},$ $(\nabla_{z}J)e_{j}+(\nabla_{e_{j}}J)_{Z})$ ;

(ii) $\Vert\nabla J\Vert^{2}=-2g^{ij}g^{kl}g((\nabla_{e_{i}}J)e_{k},$ $(\nabla_{e_{l}}J)e_{j})$ .
The last lemma and the identity (2.1) imply the next

Theorem 2.3. Let $(M, J, g)$ be a $\mathcal{W}_{3}$ -manifold. Then
$\Vert\nabla J||^{2}=-2(\tau+\tau^{**})$ ,

where $\tau$ is the scalar curvature of $\nabla$ and $\tau^{**}=g^{ij}g^{u}R(e_{i}, e_{k}, Je_{l}, Je_{j})$ .
Hence, the last theorem implies the following

Corollary 2.4. If $(M, J, g)$ is an isotropic Kahler $\mathcal{W}_{3}$ -manifold then $\tau^{**}=-\tau$ .
According to [5], if $(M, J, g)$ , dim $M\geq 4$ , is a $\mathcal{W}_{3}$-manifold which has the K\"ahler

property of $R:R(X, Y, JZ, JU)=-R(X, Y, Z, U)$ , then the norm II $(\nabla_{x}J)x\Vert^{2}$ van-
ishes for every vector $x\in T_{p}M$ .

Since 1I $(\nabla_{x}J)x\Vert^{2}=g((\nabla_{x}J)x,$ $(\nabla_{x}J)x)=0$ holds, then applying the substitu-
tions $x\rightarrow x+y$ , primary, and $x\rightarrow x+z,$ $y\rightarrow y+u$ , secondary, we receive the
following condition

$x,y,z6g((\nabla_{x}J)y+(\nabla_{y}J)x,$ $(\nabla_{z}J)u+(\nabla_{u}J)z)=0$ .

Therefore, for the traces we have

$g^{1j}g^{kl}g((\nabla_{e_{i}}J)e_{k},$ $(\nabla_{e_{j}}J)e_{l})=0$ .
Having in mind (1.8) we obtain the following
$Propo8ition2.5$ . If $(M, J,g)$ , dim $M\geq 4$ , is a $\mathcal{W}_{3}$ -manifold with Kahler cumature
tensor, then it is isotropic Kiihleri,$an$ .

Let $\alpha_{1}$ and $\alpha_{2}$ be holomorphic 2-planes determined by the basis $(x, Jx)$ and $(y, Jy)$ ,
respectively. The holomorphic bisectional curvature $h(x, y)$ of the pair of holomor-
phic 2-planes $\alpha_{1}$ and $\alpha_{2}$ is introduced in [4] by the following way

(2.2)
$h(x, y)=-\ovalbox{\tt\small REJECT}\sqrt{\{g(x,x)\}^{2}+\{g(x,Jx)\}^{2}}\sqrt{\{g(y,y)\}^{2}+\{g(y,Jy)\}^{2}}R(x,Jx, y,Jy)$

where $x,$ $y$ do not lie along the totally isotropic directions, i.e. the both of the
couples $(g(x,x),$ $g(x, Jx))$ and $(g(y, y),$ $g(y, Jy))$ are different from the couple $(0,0)$ .
The holomorphic bisectional curvature is invariant with respect to the basis of the
2-planes $\alpha_{1}$ and $\alpha_{2}$ . In particular, if $\alpha_{1}=\alpha_{2}$ , then the holomorphic bisectional
curvature coincides with the holomorphic sectional curvature of the 2-plane $\alpha_{1}=\alpha_{2}$ .

Let us note that $R(x, Jx,y, Jy)$ is the main component of the curvature ten-
sor on the 4-dimensional holomorphic space spanned by the frame $\{x, y, Jx, Jy\}$ ,
which is contained in $T_{p}M$ . Therefore, an important problem is the vanishing of
$R(x, Jx,y, Jy)$ .
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Proposition 2.6. Let $(M, J, g)$ , dim $M\geq 4$ , be a $\mathcal{W}_{3}$ -manifold and let $x,$ $y$ be
arbitraw vectors which do not lie along the totally isotropic directions in $T_{p}M$ such
that $\{x, y, Jx, Jy\}$ is a basis of a 4-dimensional holomorphic space in $T_{p}M$ . Then the
vanishing of $R(x, Jx, y, Jy)$ is equivalent to the vanishing of the bisectional curvature
$h(x, y)$ of the pair of the holomorphic 2-planes $\{x, Jx\}$ and $\{y, Jy\}$ .
Theorem 2.7. Let $(M, J, g)$ , dim $M\geq 4$ , be a $\mathcal{W}_{3}$ -manifold and $R(x, Jx,y, Jy)=0$

for all $x,$ $y\in T_{p}M$ . Then $(M, J, g)$ is an isotropic Kahler $\mathcal{W}_{3}$ -manifold.
Proof. Let the condition $R(x, Jx,y, Jy)=0$ be valid. At first we substitute $x+z$

and $y+u$ for $x$ and $y$ , respectively. According to the properties of $R$ , we get

(2.3) $R(x, Jy, z, Ju)+R(Jx, y, Jz, u)-R(x, Jy, Jz, u)-R(Jx, y,z, Ju)=0$

and two similar equations which imply the vanishing of the left side of (2.1). There-
fore

$x,y,z6g((\nabla_{x}J)y+(\nabla_{y}J)x,$ $(\nabla_{z}J)u+(\nabla_{u}J)_{Z})=0$ .

By contracting the $1a_{\iota}st$ equation, having in mind (1.8), we receive the condition
$\Vert\nabla J\Vert^{2}=0$ .
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