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. A Note On An Inverse Parabolic Problem
Shin-ichi Nakamura

1. Introduction.

Let us consider the following Cauchy problem :
atu(w,t) = Au(z,t) + g(z)u(z,t) in R™ x (0,00) (n > 2), (1.1)

u(z,0) = f(z) on R7, (1.2)

where ¢(z), f(z) are bounded continuous functions and suppg CC {z : |z| <
R} (R > 0). Without loss of generality, we may assume 0 ¢ supp q. Various inverse
problems are studied for determining g(z) from the additional infomations (cf. [2],

[5])-

In this paper, we study the following inverse problem:
Determine g(z) from the knowledge of {u(f)(Rw,t) : w € S™ '} (considred as the
set of observed data) and {f(z)} (considered as the set of input data).

For the wave equation u;; = Au + g(z)u, their high frequency beam solutions
had used to derive the uniqueness of g(x) from the Neumann to Dirichlet map
(cf. [4], [7], [9]). The Neumann to Dirichlet map uniquely determines the X-ray
transformation of ¢(z). However the parabolic equations can not have the beam
type solutions. For the parabolic equation u; = Au + ¢(z)u, Theorem 9.1.2 in [5]
shows that the maximum principle and the enery estimates for the parabolic one
derive the uniqueness of g(z) from the Neumann to Dirichlet map. Therefore we need
another idea to obtain the X-ray transformation of g(z). In the case of parabolic
equations, by combining the Feynman-Kac formula and the n-dimensional Brownian
bridge process, we can represent their solutions directly and we shall see that we
can get the X-ray transformation of ¢(z). These considerations leads us to the proof



of the following theorem:

Theorem. The quantities

( u(e, 0)(Rw, t)
P(,Rwa R(0 — w)’ t)

lim lim H log

n—1 n—1
im lim - ) (V(8,w) € S™1 x §*1)

uniquely determine g(z), where u(e, 8)(z,t) is the unique solution to the problem
(1.1), (1.2) with f(z) = pe(z — RO) ( pc(z) is the mollifier defined by p.(z) =
e ™?p(z/¢), where p(z) is a smooth positive function supported in the unit ball
with [ p(z) dz =1 ) and we set p(z,y,t) = (2mt) 2 exp(—L|z — y|?).

2. Proof of Theorem.

First we need the following Feynman-Kac formula:

Lemma 1. We can represent u(z,t) in (1.1) and (1.2) by the Feynman-Kac
formula:

u(z,t) = E[f(z + B:)exp (/Ot q(z + B,) d.s)], (1.3)

where B; is the n-dimensional Brownian motion starting at 0 € R™.
The proof of Lemma 1 can be found in [3], [6].

In (1.3), putting f(z) as p.(x — RO), where p.(z) is the mollifier and § € S*! and
using the Brownian bridge process (cf. [6], [10]), we obtain

u(e,0)(x,t) = E[p.(z — RO + B;)exp (/ot q(z + B,) ds)]

t
= /»oa(rc — RO+ y)p(=,y,t) x Eghlexp (/ q(z + B,) dS)] dy, (1.4)
A _
where p(z,y,t) = (27t)~"/ exp(—3;|z —y|?) and the expectation Ef,',f_. is with respect

to a Brownian bridge starting at time 0 from z and ending at time ¢ in y.
In (1.4), we set £ = Rw and letting ¢ | 0. It is easily seen that

lsiglu(e, 6)(Rw,t) = p(Rw, R(0 — w),t) X E;:I;ff—w)[exp (/Ot q(z + B,) ds)]. (1.5)



To continue the proof of the theorem we need the key lemma:
Lemma 2. The following equality holds
EgYexp (/t q(z + B,) ds)] = exp (t /01 q(sy+ (1 —s)z)ds + o(t)> . (1.6)
0
The proof of Lemma 2 can be found in [1].

Combining (1.5) and (1.6), we see that

lsiﬂ)l p(;f:;)((oRf::)),t) = exp (t./o q(sR(0 —w) + (1 — s)Rw)ds + o(t)) :

Hence we have

LB ) N _ [P
lggl:w;log (p(Rw,R(G—w),t))_/o q(sR(0 —w) + (1 — s)Rw) ds.

By the assumption that suppq CC {z : |z| < R}, we conclude that for any (0,w) €
Sn—l X sn—l

o '1 u(e, 6)(Rw, 1) Y B B .
l}glj{g;log (p(Rw, R(6 —w),t)) —/_ gq(Rw + sR(0 — 2w)) ds.

oo

u(e, 6)(Rw, 1)
p(Rw, R(0 — w),1)
determine the X-ray transfomation of ¢(z) defined by f_-":: q(y+sn) ds for any y € R™
and n € S""1. We know that the X-ray transformation of ¢(z) uniquely determines

u(e, 0)( Rw,t)
p(Rw, R(6 — w),t)> ,

Therefore lim; g lim, g %log ( ) , Y(0,w) € S™™1 x S™! uniquely

1
the Fourier transfomation of g(z) (cf. [8]) and hence lim,o lim, o " log (

V(0,w) € S*! x S™~! uniquely determine g¢(z).
The proof is completed.
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