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POISSON SUMMATION FORMULA
FOR THE SPACE OF FUNCTIONALS
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Abstract

In the preceding work, we formulated a Fourier transformation on the
infinite-dimensional space of functionals. Here we first calculate the Fourier
transformation of infinite-dimensional Gaussian distribution
exp (—7r§ 12 a2(t)dt) for £ € C with Re(¢) > 0, a € L%(R), using our for-
mulated path integral. Secondly we develop the Poisson summation formula
for the space of functionals, and define a functional Zs, s € C, so that our
path integral of the functional Zs corresponds to Riemann’s zeta function in
the case that Re(s) > 1.

0. Introduction

In the preceding paper([N-O2]), we defined a delta functional § and a Fourier
transformation F' on the space of functionals in the infinitesimal analysis as one of
generalizations for Kinoshita’s infinitesimal Fourier transformation in the space of
functions. Historically, in 1962, Gaishi Takeuchi([T]) introduced a -function for the
space of functions under nonstandard analysis. In 1988, 1990, Kinoshita([K1},[K2])
defined his Fourier transformation in the infinitesimal analysis for the space of func-
tions. He called it ”an infinitesimal Fourier transformation”. Nitta and Okada([N-
O1],[N-O2]) defined, for funtionals, an infinitesimal Fourier transformation, using a
concept of double infinitesimals, and calculated the infinitesimal Fourier transform
for two typical examples. The main idea is to use the concept of double infinites-
imals and taking standard parts twice st(st( . )). In our theory, the infinitesimal
Fourier transform of 8, 62, ... , and V/4, ... can be calculated as constant functionals,
1, infinite, ... , and infinitesimal, ... .

Now let H be an even infinite number in *R, and L be a lattice with infinitesimal
spacing

L= {sz Iz € *Z, —% <ez< —1;!-} , where e = %, and let H' be an even infinite
number in *(*R), and L' be a lattice with infinitesimal spacing

L' = {7 |2 € *(*Z), —HT' <e'2 < £} where ¢ = 7;. We hereafter call a
lattice with infinitesimal spacing, for short, an in finitesimal lattice.

Then we calculate the Fourier transform of a nonstandard functional of Gaussian
type. The functional of Gaussian type means that the standard part of the image
for a« € L? is exp (—w{ 12 az(t)dt>, for £ € C with Re(¢) > 0. We choose
such a nonstandard functional and calculate the Fourier transform of it. Then
the standard part of the Fourier transform satisfies that the image of a € L? is

Ce exp (—7r£ e oz?(t)dt), in which C¢ is a constant independent of b.



On the other hand, an infinitesimal lattice {¢'2’ | 2’ € *(*Z)} has an equivalence
relation : for €'z],e’2} in the lattice, €'z} is equivalent to €'z} if €’2] — €'z} is di-
vided by *HH'. The lattice L’ is identified with the set of all equivalence classes.
The set has a natural group structure, hence it induces group structures in L’ and
X = {a|a is an internal function with double meamings, from*L to L'}. Then we
obtain a Poisson summation formula for the Fourier transformation. If Y is a sub-
group of X, we define

Y+ = {be€ X| exp(2mi*e Y a(k)b(k)) = 1 for Va € X}.
kel

The Poisson summation formula is the following :

Y72 fla) = [Y*72 D (Ff)(b),

acY beYLle

where |Y| and |Y+¢| are orders of Y and Y€ .

Finally we define a functional that associates to Riemann’s zeta function. Our
path integral of the functional Z, corresponds to Riemann’s zeta function in the
case that Re(s) > 1. Using our Poisson summation formula for the functional, we
study a relationship between the functional and Riemann’s zeta function.

1. Preliminaries
1-1. Infinitesimal Fourier transformations by Kinoshita (cf. [Ki],[N-

Let A be an infinite set. Let F' be a nonprincipal ultrafilter on A. For each A € A,
let Sy be a set. We put an equivalence relation ~ induced from F on [],., Sx. For

a = (a)\)a /6 = (IB)\) (A € A)v
a~f<=>{AeA|ay=0}€F.
The set of equivalence classes is called ultraproduct of Sy for F with respect to ~.
If Sy = S for A € A, then it is called ultraproduct of S for F' and it is written as *S.
The set S is naturally embedded in *S by the following mapping :
s(€8)—[(sx=135),A€A] (e *9),

where [ ] denotes the equivalence class with respect to the ultrafilter . We write
the mapping as *, and call it naturally elementary embedding. From now on, we
identify the image *(S) as S.

Let H (€ *Z) be an infinite even number. The infinite number H is even, when
for H = [(H)), X € A], {\ € A|H) iseven} € F. We denote & by e. We define
an infinitesimal lattice space L, an infinitesimal lattice subspace L and a space of
functions R(L) on L as follows :

L:=¢*Z ={ez|z € *Z},



L:={ez|2€*Z, -4 <ez< &} (CL),
R(L) := {¢ | ¢ is an internal function from L to *C}.

We extend R(L) to the space of periodic functions on L with period H. We write
the same notation R(L) for the space of periodic functions.

Gaishi Takeuchi([T]) introduced an infinitesimal § function. Furthermore Moto-o
Kinoshita ([Ki]) constructed an infinitesimal Fourier transformation theory on R(L).

We explain it briefly. For ¢, ¥ € R(L), the infinitesimal ¢ function, the in-
finitesimal Fourier transformation Fy (€ R(L)), the inverse infinitesimal Fourier
transformation Fp (€ R(L)) and the convolution ¢ * ¢ (€ R(L)) are defined as
follows :

H (z=0),

§ € R(L), §(z) = {0 @20

(Fo)(p) = 2ser € exp (—2mipz) (),
(Fo)(p) := 3 4er € xp (2mipz) (),
(px¥)(@) =3, e0(T — Y)¥(y).

1-2. Formulation of infinitesimal Fourier transformation on the space
of functionals (cf. [N-O1],[N-O2])

To treat a *-unbounded functional f in the nonstandard analysis, we need a
second nonstandardization. Let F, := F be a nonprincipal ultrafilter on an infinite
set Ay := A as above. Denote the ultraproduct of a set S with respect to F3 by *S
as above. Let F} be another nonprincipal ultrafilter on an infinite set A;. Take the
*-ultrafilter *F} on *A;. For an internal set S in the sense of *-nonstandardization,
let *S be the *-ultraproduct of S with respect to *F;. Thus, we define a double
ultraproduct *(*R), *(*2Z), etc for the set R, Z, etc. It is shown easily that

*(*S) — SA1XA2/F1F'2’

where FIF 2 denotes the ultrafilter on A; X Ag such that for any A C A; x Ay, A€ FIF 2
if and only if

e A |{u€A]|(\p) e A} € Fr} € Fi.

We always work with this double nonstandardization. The natural imbedding *S
of an internal element S which is not considered as a set in *-nonstandardization is
often denoted simply by S.

An infinite number in *(*R) is defined to be greater than any element in *R. We
remark that an infinite number in *R is not infinite in *(*R), that is, the word “an
infinite number in *(*R)” has a double meaning. An infinitesimal number in *(*R)
is also defined to be nonzero and whose absolute value is less than each positive
number in *R.



DEFINITION 1.1. Let H(€ *Z), H'(¢ *(*Z)) be even positive numbers such
that H' is larger than any element in *Z, and let (€ *R), £’(€ *(*R)) be infinites-
imals satifying eH = 1, ¢'H' = 1. We define as follows :

L:=¢"Z={ez|z€ *Z}, L' :=¢€'*(*2) = {2 |2 € *(*2)},

L= {62:
L = {e'z’

Here L is an ultraproduct of lattices

2 2

z € *Z,—£S€z<£} (cL)

’ !
Z € *(*2), —-Z— <ed < —f—;—} (c L.

H H
L,:= {aﬂz# z, € Z, —7# S€pzy < —‘2'&} (1 € A2)

in R, and L’ is also an ultraproduct of lattices

o Lt
A= {E,\Z,\

in *R that is an ultraproduct of

(4

!
4 ez, —% < ez < -}12’—*} (A€ Ay)

/

H; H
2, € Z, ——zf\ﬁ < €ty < ——ZA—’f} (k€ Ag)

ro_ ro
’\l‘ = {6/\uz/\“

We define a latticed space of functions X as follows,
X :={a|a is an internal function with double meamings, from*L to L'}
= {[(ax), A € A1]| ay is an internal function from L to L)},
where ay : L — L is ay = [(ay,), 4 € As), apy 1 Ly, — L,

We define three equivalence relations ~g, ~, gy and ~g on L, x(L) and L’ :
c~gye=r—y€H'Z, z~umy < z—yex(H)*(*Z),
T~ yYy<=z—y€ H*(*Z).

Then we identify L/ ~g, *(L)/ ~«@) and L'/ ~gs as L, *(L) and L. Since *(L)
is identified with L, the set *(L)/ ~.(q) is identified with L/ ~g. Furthermore we
represent X as the following internal set : .

{a|a is an internal function with a double meaning, from *(L)/ ~u &) to L'/ ~p»
}

We use the same notation as a function from *(L) to L’ to represent a function in
the above internal set. We define the space A of functionals as follows :

A= {f| f is an internal function with a double meaning, from X to *(*C)}.



We define an infinitesimal delta function é6(a)(€ A), an infinitesimal Fourier
transform of f(€ A), an inverse infinitesimal Fourier transform of f and a convolu-
tion of f, g(€ A), by the following :

DEFINITION 1.2. We define

_JE)mt (a=0)
)= {0 (a#0),

and, with g := (H')~C"H)* ¢ *(*R),

(FA) i= Toex o0 exp (<271 Tpe, alk)B(E)) (a),
(Ff)(b) = X oex coexp (2mi Fope a(k)b(K)) f(a),
(f *9)(@) == X wex eof(a —a)g(d).

We define an inner product on A :
(f,9) == > pex €of(b)g(b), where f(b) is the complex conjugate of f(b).

In the section 7, we write down Riemann zeta function as a nonstandard func-
tional in Definition 1.2. In general, > .., a?(k) is infinite, and it is difficult to
consider the meaining of F, F in Definition 1.2 as standard objects. They are de-
fined only algebraically. In order to understand Definition 1.2 analytically for a
standard one, we change the definition briefly, to Definition 1.3.

Replacing the definitions of I/, 6, €9, F', F in Definition 1.1 and Definition 1.2 as
the following, we shall define another type of infinitesimal Fourier transformation.
The different point is only the definition of an inner product of the space of functions
X. In Definition 1.2, the inner product of a, b(€ X) is > .., a(k)b(k), and in the
following definition, it is *e Y, ., a(k)b(k).

DEFINITION 1.3.

L = {5’z’

* 7\ 5 (*H)? g1 (*H)? —
5(a) = {( H)$CH’H (a=0),

/ Hl
2 e *(*2), —*H—g—— <7 < *H—2—},

0 (a # 0),

o 1= (*H) R (R

(FF)(B) = Fqex €0 exp (—2mi'e ¥yep alk)B(K) f(a),
(Ff)(b) =3 ,cx coexp (2mi’e Y cp a(k)b(k)) f(a).

Then we obtain the following theorem :

THEOREM 1.4([N-02)]).

(1) § = F1=F1, (2) Fis unitary, F*=1,FF = FF =1,
(3) frod=06xf=f (4 frg=9gxf, _

(8) F(f*g)=(Ff)(Fg), (6) F(fxg)=(Ff)(Fg),



(7) F(fg) = (Ff)*(Fg), (8) F(fg)= (Ff)x(Fg).
The definition implies the following proposition :
PROPOSITION 1.5([N-02]). If [ € R*, then F§! = (H')(-DCH)?,

If there exists , 3 € L*(R) so that a = *a|z, b = *8|L, that is, a(k) = *( *a(k)),
b(k) = x(*B(k)), then st(st(*e 3_,c; a(k)b(k))) = [ o(z)b(z)dz. Definition 1.3 is
easier understanding than Definition 1.2 for a standard meaning in analysis. For
the reason, we consider mainly Definition 1.3 about several examples. However
Definition 1.2 is also treated algebraically, as algebraically defined functions are not
always L2-functions on R. The two types of Fourier transforms are different in a
standard meaning.

2. Examples of the infinitesimal Fourier transformation on the space
of functions
We calculate the infinitesimal Fourier transforms of ¢¢, i € R(L) :

1. pe(z) = exp(—E&mz?), where £ € C, Re(&) > 0,
2. Yim(z) = exp(—imnz?), where m € Z.

For ¢,, we obtain :

Proposition 2.1.

(Fpe)(p) = ce(p)pe(8), where ce(p) = 3¢ € exp(—¢m(z + ¢p)?).
If p is finite, then st(ce(p)) = ﬁ

Proof. The infinitesimal Fourier transforms of ¢ is :

(Foe)(p) = 3_,er € xp(—2mipz) exp(—Emz?)
= (Cser e exp(—Em(z + {p)?)) exp(—mgp®) = ce(p)pe(B),

where c¢(p) = Y, e exp(—€n(z + -é—p)2). If p is finite, then st(ce(p))
= [% exp (—{W (t + %st(p))z) dt = ﬁ
Using Theorem 1.4(8), we obtain for c; :
Proposition 2.2. ¢(z') = (fce(p) * (c%(—x)cpg(x))) (z).
Proof. We obtain : (F¢)(p) = c§(p)<p§(§), and put F to the above :

FFe)e) = Flecoe @@
= (Fce(p) * Foe(8))(z), that is, pe(z) = (Fee(p) * Fooe(2))().
Now (Fipe(%))(z) = 3¢ € exp(—2mipz) exp(—£(2)?m)
= > per € exp(—Tg(p? — 2mikpx)) = (ZPGL eexp(—%(p — z’{x)2)) we(z).



By the definition : c¢(p) = 3_,1 € exp(—7mé(z + izp)?), the sum
EpeLeexp(——g(p—ifcc)Q) is c%(—a:). Hence p¢(z') = (Fq(p) * (c%(—a:)cpg(x))) ().

For the following proposition 2.3, we recall the Gauss sum(cf.[R]) :

z—1 .
1 _ F4
For z € N, Gauss sum E exp( —z—l ) is equal to \/_——+T(——Z—)—
1=0

Proposition 2.3. If m|2H? and m|2, then (Fim)(p) = cim(p) exp(im 2 p?),
2H? 2
m1+itm /—m1+(—2)-m
. = =" = fi
where ¢;,(p) 2 147 for positive m and c¢;,(p) = 5 1T or

negative m.

Proof. (Foim)(p) =, € exp(—imna?) exp(—2mizp)

= Cim(D) exp(iw%pz), where i (p) = Y, € exp(—imn(z + £)?).
Since m|2, the element 2 is in L. We remark that exp(—irmaz?) = exp(—irm(z +
H)?). For positive m,

371 ue
cim (D Zsexp —immz?) = 5 (6 — +1( —zz

z€L

2H?

14+¢m
by the above Gauss sum. Hence ¢;n(p) = %—*—-1'—_:_ -
V )

is as same as the above.

. For negative m, the proof

3. Examples of the infinitesimal Fourier transformation for the space
of functionals

We define an equivalence relation ~.«gg: in L' by z ~«gp y & = —y €
*HH'*(*Z). We identify L'/ ~«gg with L'. Let

Xp sgp = {a’|d’ is an internal function with a double meaning, from *L/ ~.
to L’ / N*HH’}

and let e be a mapping from X to Xy «xzg, defined by (e(a))([k]) = [a(k)], where
[ ] on the left-hand side represents the equivalence class for the equivalence relation

~.ay in *L, k is a representative in *(L) satisfying k ~.(m) k,and [ ] on the right-
hand side represents the equivalence class for the equivalence relation ~«gg in L.
Furthermore let e*(f)(a’) be defined by f(e~!(a’)).

3-1. The infinitesimal Fourier transform of g¢(a) = exp (—m*e£ Y, a*(k))
with £ € C, Re(¢) > 0

We calculate the infinitesimal Fourier transform of
ge(a) = exp (-—7r *e€ Y per a°(k)), where £ € C, Re(§) > 0



in the space A of functionals, for Definition 1.3. We identify *(*¢) € C with £ € C.
Theorem 3.1. (F(e%(ge)))(b) = Ce(b )gg( ), where b € X and
Ce(b) = Caex oexp (—m et Lyer (alk) + ib(k))?)
Proof. We do the infinitesimal Fourier transform of e'(g¢)(a).

(F(e*(ge)))(b) = F (exp (—m*€€ > per 0:2(’9))8 (0)
= 2 aex €0 exp (_2”’ €D kel a(k)b(k)) exp (—7*e€ D yer az(k))
= Ce(b)ge(3)-

Let xo*x : R — *(*R) be the natural elementary embedding and let st(c)
for ¢ € *(*R) be the standard part of ¢ with respect to the natural elementary
embedding * o x. Let sts(c) be the standard part of ¢ with respect to the natural
elementary embedding * .

Theorem 3.2. If the image of b (€ X) is bounded by a finite value of *R, that
is, 3bp € *R s.t. k € L = |b(k)| < *(bo), then

2

sto(Ce(b)) = (* (\/lg)) (€ *R) and st ((T(C;%—;j)

Proof. sta(Ce(t)) = sta(Faex ke VE exp (—mE{VE(a(k)) +ivEL(b(k))?))

= TTeer S5 exp (—é{z + iv/Elsta(b(k))}?) da

= [Tz f_°°oo exp (—m€x?) dz.

The argument is same about the infinitesimal Fourier transform of gela) =
exp(—7€ 31 a*(k)), for Definition 1.2, as the above.

Theorem 3.3. (F(e'(g;)))(b) = Bg(b)gg(g), where b € X and

Be(b) =3 cx €0 €Xp (—w{ Yokerla(k) + z%b(k‘))2) Furthermore, if the image of

b (€ X) is bounded by a finite value of *R, that is, by € *R s.t. k € L = |b(k)| <
*(bo), then

st(Be(b)) = (* (:}‘z))

2

(3"

3-2. The infinitesimal Fourier transform of g;,, = exp(—irm*e y_, ., a®(k))
with me Z

(¢ *R) and st (Tw——g—)')

We calculate the infinitesimal Fourier transform of
gim(a) = exp(—irm*e Y., a®(k)), where m € Z,
for Definition 1.3.
Proposition 3.4. (F(e'(gim)))(b) is written as Cim(b)g.L ().



If m|2* H H'® and m|%& for an arbitrary & in L, then (F(e(gim)))(b) = Cim(b)g 1 (b),
(*H)2

Y
where Cj(b) = ( T 1w for a positive m and

( )2*HH'2 (*H)2

—ml+(—2z) -m .

Cim(b) = | 4/ 5 I for a negative m.
Proof. (F(e*(gim)))(b) = Cim(b)g.1 (b),

where )
Cim(b) = ) _ eoexp(—irm*e » (a(k) + Eb(k))z).

a€eX kel

When we denote a(k), b(k) by e'n’, €'l',
5 o2 oy cop 2 B(— T Sy (alk) + £B(K))?)
= Z-*H%%gs'n'oH%E exp(—imm*e Y (€M + €'2)?).
Since m|ﬂ€§2, for a positive m, it is equal to

,2*HH'2
Z exp(—imm*ee’*n'?) = m\/ 2PHHR1 G -
2 m 1+i '

2 12
—*HEZ <ein/<xHEZ

2*HH'?

14+ m
by Proposition 2.3. Hence C;,,, = Q/Tl—.-—
_ 2 1+

negative m, the proof is as same as the above.

( *H)2
> for a positive m. For a

The argument for the infinitesimal Fourier transform of
g’im(a‘) = exp(_iﬂ.m ZkGL a’z(k))v '
for Definition 1.2, is as same as the above one of g;,, for Definition 1.3.

Proposition 3.5. If m|2*HH'? and m]%@ for an arbitrary k in L, then

2m2\ (FH)?
(F(€!(d}))) () = Bim(b)g's (b), Where Bip(b) = <, /%%"-) for a posi-
w2\ (VHP? |
—m 14 (=)=
tive m and By (b) = | 4/ 2m +§ Z)Z, for a negative m.

4. Poisson summation formula for Kinoshita’s infinitesimal Fourier
transformation

We extend the Poisson summation formula of finite group to Kinoshita’s in-
finitesimal Fourier transformation.



4-1. Formulation

Theorem 4.1. Let S be an internal subgroup of L. Then we obtain, for ¢ €
R(L),

_1 -1
15472 3 pest (Fo)(p) = |8]72 3 pes 0(2),
where S+ := {p € L| exp(2mipz) = 1 for Vz € S}.
Since L is an internal cyclic group, S is also an internal cyclic group. The
generator of L is €. The generator of S is written as es (s € *Z). Since the order of

L is H?, so s is a factor of H2.
We prepare the following lemma for the proof of Theorem 4.1.

Lemma 4.2. S+ =< EHT2 >.

Proof of Lemma 4.2. For p € St, we write p = et. Then we obtain the
following :

exp(2mipes) = 1 <= exp(2mietes) = 1 <= exp(2mitgz) = 1 <=tz € *Z.
e
Proof of Theorem 4.1. By Lemma 4.2, |S| = HTz and |[St| =s. If z ¢ S, then

6—11—2:138 =eH?z € *Z, and (exp (27rieHTza:))s =1 Forz e L,

Hence the generater of S+ is €

(exp(ri(—H)2)(1 = (expmisay)) o
Z'exp(Qm'pm) = (1 — exp(2mie L))
peSL Zpesl 1 (z € S)

_fo @¢s)
s (z€8)

Hence

> pest (F@)() = 3 esi (2 per P(2) exp(2mipz))

=€) zer P(T)(Xpesr exXP(2mipT)) = 5 3,5 (T)-
Thus

NG Zpes;(Fw)(p) = VI LeesP(@) - (th),
hence |S*72 3 o1 (Fo)(p) = lﬁ 2 zes P(T).

Proposition 4.3 Especially if s is equal to H, then (}};) implies that

Zpesi(F‘P)(P) = Z:I:GS o(z).

The standard part of the above is

st(2pess (Fp)(p)) =st(Xozes #(2))-



If there exists a standard function ¢’ : R — C so that ¢ = *¢'|., then the right
hand side is equal to Y __ ... ¢'(z), that is, > . .st(p)(z). Furthermore if
s is infinitesimal and ¢’ is integrable on R, then

st(es D> ,es (@) = [T ¢/
Since (#) 1mphes that
> pest (Fp)(p) = €53 csp(z),
we obtain st(}- g1 (Fe)(p)) = [°o, ¢'(z)dz, that is, [ st(p)(z)dz.

We decompose H to prime factors H = plfplf ..-plm where p; = 2, p; < p2 <

- < Pm, €ach p; is a prime number, 0 < [;. Since S is a subgroup of L, the number

s is a factor of H2. When we write s as p¥ph? - pm , the order of S is equal to
piihip2a=kr . p2m—km and the order of St is pfipk? ... pkm. Hence (f;) is

_ 1
(P58 - D)2 S (pest (F)(p)) = (P22 FrpZa=ha ... p2lm—km)=3 S~ - o(2).

4-2. Examples
We apply Theorem 4.1 to the following two functions :

1. @;i(z) = exp(—imz?),
2. pe(x) = exp(—Ema?),
whose infinitesimal Fourier transforms are :

1. (F;)(p) = exp(—iZ)p;(p) - - - (f2),
2. (Fee)(p) = ce(p)pe(?),

where st(ce(p)) = \/E’ if p is finite. Hence we obtain :
1. l5l|’f exp(—i§) D est ¢i(p) = JSIW > wes Pi(Z),
2. |8H72 3 pesr ce(P)e(B) = S172 3 e s we(@).-
When the generator of S is €s, we write this as the following, explicitly :

1. Hexp(—i5) > es1 exp(inp®) = s 3, g exp(—inz?),
2. HY g1 ce(p)exp(—¢mp®) = s 3, cgexp(—€mz?).
We obtain the following proposition :

Proposition 4.4
(i) If s = H, then the generator of S is 1 and S = S+ = L N *Z. Hence

L. exp(=i%) 3 epn-z eXP(ITD?) = 3 cp -z €XP(—imT?),

the first equation is a trivial one, and the second is the following :
2. ZpGLﬁ"‘Z cdp)exp(—%wpz) =2 seln-z exp(—§nz?).

- Taking their standard parts, we obtain : .

2. st(Xpern -z Ce(P)exp(—mp?)) =st(X e pn -z exP(—€7m3?))



= D cocncas EXP(—EmN?) = 0(3€),

where 6(z) is a 6-function, defined by 6(z) = >°_ ... exp(imzn?).
(ii) If es is infinitesimal, then the equation : 2. HY st c§(p)exp(—%7rp2) =
5 res €xp(—€mz?) implies the following :

2. 8t(3pes1 ce(p)exp(—gmp?)) =st(es 3,5 exp(—Emz?))

= % exp(—énz?)dr = \/i.é

It is known that st(ce(p)) = \/g’ and Y .coo €XP(—&mz?) in 2 of (i) is equal
to f Y co<p<oo €XP( ——7rp2) by the standard Poisson summation formula. Hence,

by 2 of (i), st(Xpess Cs(p)exp(——ﬂpz)) 3. —co<p<oaSt(ce(P)exp(—gmp?)).

We extend the formula (#) for ¢;(z) to pim(z) = exp(—immz?), for an integer
m so that m|2H? . If m|®, we recall

(Foim)(p) = cim(p) exp(ir 1 p?),

2 2H2
m1+i% [—m 14 (=i)=m=
where ¢ (p) = 5 ——f—j_— for a positive m and c;(p) = ;n +1( _27); for

a negative m. .

Hence |S+|~2 D pest cim(p)cp L () = |5]72 X e Pim(T). When the generator es’
of St satifies m|s’, that is, the generator es of S satifies ml , it reduces to the
following :

H2
]. +'l m . ]. 2y . 2
H,/ T Z exp(mﬁp )= sZexp(—zm'/rx )

peSt z€S

for a positive m,

-m1l+(—i
H 5 T Z exp(z1r P ?) = sZexp( —immz?)
peSt €S

for a negative m.

5. Poisson summation formula for Definition 1.2 on the space of func-
tionals

We extend Poisson summation formula of finite group to our infinitesimal Fourier
transformation, Definition 1.2, on the space of functionals.

5-1. Formulation
Theorem 5.1. Let Y be an internal subgroup of X. Then we obtain, for f € A,

Y472 Yy L (FF)(B) = Y73 Xoy f(a),



where Y4 := {b € X|exp(2mi < a,b >) = 1forVa € X} and < a,b >:=
> _ker, a(k)b(k).

Lemma 5.2. Y| = %

Proof of Lemma 5.2. For k € L, we denote Y}, := {a(k) € L' |a € Y}.

beYt <= VaeY, exp(2ni Y, ., a(k)b(k)) =1
= Vke L, blk) e+
< b:L— L Vkel, bk)eYt
2

Hence |Y*4| = [Tic. |Vt Lemma 4.2 implies |Vt = lH_| Thus
k

Hl2 H/Z*H2 IX'
Y_L —_— ( ): —_— .
=1\) " aom =

kel

Proof of Theorem 5.1.

Y173 By (FF)()

= Y172 3 o x e0(Cper s exp(—2mi < a,b >)) f(a).

0 (ag?)
V&l (a€Y)

Y4 260V H E ey fla) = [YLEH = T f(a) = Y[ Xy f(a).
In the special case where f(a) = [, fx(a(k)), ‘
(Ff)(b) = 3 aex €oexp(—2mi 3, o a(k)b(K)) [Tiey filal(k))

= HkEL(Za(k)eL’ &' exp(—2mia(k)b(k)) fr(a(k)). :

Namely, the Fourier transform in functional space is the product of those in function
space.

Corollary 5.3
(i) If each generator of Y; is equal to 1, f is written as Iier for fe = *(st(fe))lrs
and Y _ . .st(fx)(n) converges, then

st(D ey (F () = [ker (X socncoost(f)(n)).

(ii) If each generator of Y} is infinitesimal, f is written as Iier frs fio = *(st(fx))|r
and st(fx) is L;-integrable on R, then

st (Cser (F1)(1)) = [eer J-oococoost(fe) (D).
5-2. Examples

Since ) .y exp(—27i < a,b >) = { , the above is equal to

From now on the infinitesimal Fourier transform F(e!(f)) for a functional f € A
is often denoted simply F'f. We apply Theorem 5.1 to the following two functionals



1. fi(a) = exp(—im ZkeL a(k)?),
2. fe(a) = exp(~&m > p a(k)?), where £ € C, Re(¢) > 0.

The infinitesimal Fourier transforms of the functionals are :
L (F£)(6) = (=1)% £i(b) - (fs),
2. (Ffe)(b) = Be(b) fe(2),
hence we obtain :
L Y473 (1) Tyeys £0) = Y72 ey fi(a),
2. Y472 ey Be®) fe(3) = Y172 ey fe(a).
We write this as the following, explicitly :
1. ]Yl|—%(_1)% 2 beyL €Xp(—im Y o b(k)?) = lyl—lé 2 ey €XP(—im 3 a(k)?),
2. Y472 Ypeys Be(b) exp(—%w Poker 8(k)?) = Y72 30 oy exp(—€m ZkgL a(k)?).
Corollaly 5.3 implies the following proposition 5.4.

Proposition 5.4
(i) If each generator of Y} is equal to 1, then

L (1) Fst( ey exp(—im [Trer 5(k)?) = (X _cocncoo exp(—iﬂ'n2))”22,
2. 5t(Spey Be(b) exp(— 11 Sier, B(k)) = (¥ _ o cnco0 exP(—Emn2))
(= aen™),

(ii) If each generator of Y} is equal to a natural number my, then

L (“1)%“(21@& exp(—4m [[rer 0(K)?)) = TTker(Mk 30— cocncoo €XP(—immEN?)),
2. 8t(Ppeyr Be(b) exp(—zm Foper b(K)?)) = Tker (Me 3= cocncoo €XP(—Emmin?))
(= ke (meb(im3g))),

(iii) If each generator of Yj is infinitesimal, then
2. t(Syeys Be(b) exp(—1m Yoy b(k)) = (J2, exp(—mt?)dt)
L)\
(= (+(%)) )
We extend the above formula (f3) for fi(a) to fim(a) = exp(—imn Y ., a*(k)),
for an integer m so that m|2H'? . If m|%§z, we recall

2\ (*H)?
1+ 4%
(F fim)(b) = Bim(b)f% (b), where B, (b) = ( %—_:ZT—) for a positive

12 (*H)2
—m 14 (—i) 5
m and B;,(b) = 2m P for a negative m.

Hence |Y 1|2 Y beyt Bim(D)f L (b) = Y|~z > scy fim(a). When each generator
e's', of Y- satisfies m|s'k, that is, each generator €’sy, of Y, satisfies m)| Ig—:, it reduces
to the following :



0’2 (*H)?
,(*H)z _1+Z m . _1_ 9
H <,/ T > z exp(mm Zb(k) )

bey L keL
= [Tker 56 >oney exp(—imm .o a(k)?) for a positive m, and

(*H)?

2H'2
. ml+(—1t 1
rem ((JRLEED T S plin S b0?)

bey L kel

= [Tier Sk Doney €XP(—imm Y, a(k)?) for a negative m.
If s, = H' and m|H’, then

1+ 2H'2 (*H)2 1
[mlti i 2
< DR ) Z exp('nrm Z b(k)?)

beyL kel
= aey EXP(—IMT Y e a(k)?) for a positive m, and

(*H)?

\/—_?1 +£:Z)Z - Z exp('m— Zb(k) )

bey L keL

= Y sey eXD(—imm Y, a(k)?) for a negative m, that is,

(\/—exp(——z—))( r Z exp(m—Zb(k

beyY L keL
=3 sev exp( —imm ZkeL a(k)?) for a positive m, and
(*H .
(V—mexp(i})) ZbeyL exp(im - > ker b(K)?)
= aey exp( imm Y _ep, a(k)?) for a negative m.
6. Poisson summation formula for Deﬁnition 1.3 on the space of func-
tionals

We extend Poisson summation formula of finite group to our infinitesimal Fourier
transformation, Definition 1.3, on the space of functionals originally deﬁned in [N-

01].
6-1. Formulation

We obtain the following theorem for Definition 1.3 as the argument in the section

Theorem 6.1. Let Y be an internal subgroup of X. Then we obtain, for f € A,
_1 _1
Y4172 ey s (FHB) = Y172 Toey fla),



where Y€ = {b € X|exp(2mi < a,b >) = 1forVa € Y} and < a,b >.=
*e Y e a(k)b(k).

Lemma 6.2. |[Y*¢| = Il—;fll

Proof of Lemma 6.2. For k € L, we denote Y, := {a(k) € L' |a € Y}.

beY! < VacY, exp(2mi*e ), a(k)b(k)) =1
<= Vk € L, *eb(k) e Y;}.

For k € L, we write m, n as generators defined by :
Y =<e'm >, {b(k) € L'| *eb(k) € Yi'} =< e'n > .

Now
exp(2ni *ee'me'n) = 1 <= *ee’'me'n = 1.

We write Y, := {b(k) € L'| *eb(k) € Yi'}. Then |Y¥| = m. This is equal to
*HH/2 _ ILI,

*HH?/m — |Yi]

|YJ'6| = cheL IYkLEI = %f]l

Proof of Theorem 6.1.

Y472 B ey s (FF)(0)

= Y72 3w €0(Xpey e exp(—27mi < a,b >.)) f(a).
0 (agY)
[Yte] (ae€Y)’
Y R0V 4| ey £(0) = Y]} Soey £(a).
We obtain the following :

. Hence

Since ) oy ic €xp(—27i < a,b >,) = { the above is equal to

Corollary 6.3
(i) If each generator of Y; is equal to 1, f is written as [],.; fe, fx = *(st(fx))|r'»
and ) ..oSt(fk)(n) converges, then

HE (S eys (FF®) = IMeer (S —cocneost (i) ().

(ii) If each generator of Y} is infinitesimal, f is written as [],.cp fe, f& = *(st(fx))|z/,
and st(fx) is L,-integrable on R, then

HF (T ey s (F®)) = ier S 256 i) (e)de.

6-2. Examples
We apply Theorem 3.3 to the following two functionals :

1. gi(a) = exp(—im*e > a(k)?),
2. ge(a) = exp(—€m*e Y o a(k)?),

whose infinitesimal Fourier transforms are :



H
2

1. (Fgi)(b) = (-1) gig?) “o (Ha),
2. (Fge)(b) = Ce(b)ge(2),
hence we obtain :
L Y7318 Tyeyre 6:0) = [Y]72 Zoey 9:a),
2. Y272 Ypeyie Ce(b)ge(3) = Y172 X ey 9e(a).
We write this as the following, explicitly :
L YLe73(=1)F 3peyie exp(—im*e 3oy b(K)?)
1 . %
=|Y|"2 ElaeY exp(—im *e 3o yer a(k)?),
2. [Y 573 3oy 1e Ce(b)exp(—gm*e 3oy a(k)?)
_1 .
= Y72 X ey exp(—Em e 3opep alk)?).
Corollaly 5.3 implies the following proposition 5.8.
Proposition 6.4
(i) If each generator of Y is equal to 1, then the standard parts are :
L. H%% (_1)%St(ZbGY5J‘ eXp(—iﬂ'&‘ ZkeL b(k)2)) = (Z—oo<n<oo exp(—-z'ﬂ-gn2))H2,
2
2. H%St(}:be}gl Ce(b) exp(—-é-ws Yoker 8(k))) = (3 _cocncoo exp(—&men?))H?
(= (tien=),
(ii) If each generator of Y% is equal to a natural number my, then

1. B (‘1)%St(zbeysi exp(—ime Yo b(K)?))
= HkEZL(mk Z—oo<n<oo exp(—i'/remﬁnz)),

2. H'T st(F ey Ce(b) exp(—ime 3oy b(K)?))
= erL(mk Z—-oo<n<oo exp(—-fﬂ'smin2))

(= erL(mkﬁ(imﬁﬁ))),

(iii) If each generator of Y} is infinitesimal, then
2. 5t(Syey,t Ce(b) exp(— e Tyey b)) = (2, exp(~€mt?)dt)™”

H2
= 1
(=CGNT) |
We extend the above formulation (#4) of g;(a) to gim(a) = exp(—imn*e Y, a*(k)),

for an integer m so that m|2*HH'? . If m|b(?’,°l for an arbitrary k € L, we recall
2*HH'2

* 12
(Fgim)(b) = Cim(b)g_1 (b), where Cy,,,(b) = (1 / %E——lz—_*_—:—-—) for a positive

[—m 1+ ')2*5”1'2 *Hz
m and Cj,(b) = 2m (1 : - for a negative m.




Hence |Y1¢|~2 Y peys Cim(b)go(b) = |Y|~2 Y acy 9im(a). When each generator
g's'y, of Y satisfies m|s', that is, each generator €'s; of Yy satisfies ml—*%—f—m, it
reduces to the following :

5 1+ 2rup2 (FH)? 1
HZ o r(*H)? T T m LTk 2
H7TH (‘/2——‘—1+i ) Z exp(mrm 5Zb(k))

beyle keL

= [Tker Sk 2uey exp(—tmm*e 3, a(k)?) for a positive m, and

(*H)?

o*pr'2
2 * - 1 —1 -m 1
HT H'CHY \/ 2m + (1 ?z E exp(iﬂa *e _S_ b(k)?)

beYy te kel

= [lkeL 5k Xaey €XP(—imm*e D, cr a(k)?) for a negative m.
If s, = H' and m|H’, then

. 1+ 2*HH'? (*H)? 1
w2 fml+i—m 1 0
H™ ( 5 173 ) E exp(z7rm E b(k)*)

bey Lte keL
=3 .y exp(—imm*e Y, a(k)?) for a positive m, and
(*H)?

2*HH'2
g2 [ [~ml4 (=) !
HT |4/ . (1-)z- > exp('erZb(k)z)

beYle kel

| = > .y exp(—imm*e Y, a(k)?) for a negative m, that is,
w N\ (H)? 1 \
H™= (\/r_nexp(—zz)) Z exp(ma Zb(k) )
beYLe kel

= > .y exp(—imm*e >, ; a(k)?) for a positive m, and

HE (\/—mexp(i%))(*mz Z exp(iw%Zb(k)z)

beY Le keL

= > .cy exp(—imm*e Y, ., a(k)?) for a negative m.

7. The infinitesimal Fourier transform of a functional Z,(a)

In this section, we define a functional on X, and study a relationship between the
functional and Riemann’s zeta function. We order all prime numbers as p(1) = 2,
p(2) =3, ... ,p(n) < p(n+1), .. , thatis, pis a mapping from N to the
set {prime number}, p : N — {prime number}. The nonstandard extension *p :
*N — *{prime number} is written as *p([l,]) = [p(l,)], and we define a mapping



p: *N — *(*{prime number}) as p([l,]) = *[p(l,)]. For s € C, we define Z,(€ A)
as the following :

H H’
s = D 19 + — (—~s(a(k)+ 5 )
Zs(a) ”P( (k 2)‘*‘1)

kel

Now H(k+ &) + 1 is an element of *N and a(k) + H’/2 is an element of *(*N).
Then Z,(a) is calculated as exp(—s > ;. log(B(H (k + Z) + 1))a(k)) [Txer B(H (k +
%r_) + 1)“3%‘. We obtain the following theorem for the Fourier transform of e!(Z;)
for Definition 1.2 :

/

Theorem 7.1. (F(e*(Z,)))(b) = (H p(H(k + -I;) + 1)) 2
kel
sinh((2mib(k) + slog p(H (k + &) + 1)) &)

,!‘;IL 6,exp(—%'(27rib(k) + slog p(H (k + &) + 1)) sinh(g (2mib(k) + slog 5(H (k + Z) + 1))

!
—sH!

Proof. (F(eH(Z)))(b) = (TTeer HH(E + ) + 1)) "%
D aex E0exXp(—8 D icr logﬁ(H(k,-{- )+ 1)a(k)) exp(—2mi Y_pop a(k)b(k))

. (HkGLﬁ(H(kI + %) + 1))-—sf;—
. Zan g0 exp(—(2mi b(k) + slog p(H (k + %) + 1))

!

= (Hﬁ(H(k+ —g) + 1)) N

= sinh((2mi b(k) + slog p(H (k + &) + 1)) &)

,}JL EIeXp(—EZ—'(Q'/rz' b(k) + slog p(H (k + Z) + 1)) sinh(5 (2mi b(k) + slog p(H (k + &) + 1))

We denote Riemann’s zeta function by ((s), defined by ¢(s) = [[;2, T_—pb—):; for
Re(s) > 1. Let Yz be a subgroup of X so that each generator of (Yz)x is equal to 1.
Then we obtain the following theorem :

Theorem 7.2. If Re(s) > 1, then st(st(} ey, €4(Zs))(a))) = ¢(s)-
Proof. st(st(Xeey, €'(Zs))(a)))

= (—s(alie)+ )
=st (st( (H B(H(k+ =)+ 1))

kel

— p(H(k + Z) 4+ 1)=&’
= st (St (kIl 11 -ng(]{((k++2%2)++ll)_s ))

1
=t(I] = p(H(k+Z)+ 1)—8) =<

keL
Furthermore, Corollary 5.3.(1) and Theorem 7.2 imply the following :
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Corollary 7.3. st(zbeyzl(F(eu(Zs)))(b)) =

1—p(H(k+ &)+ 1)~
St(,g 1—p(HKk+Z)+ 1) )

Hence we obtain : st(st(} ey, (F(e'(Z,)))(b)))) = ((s) for Re(s) > 1.

FURTHER PROBLEMS. Now the following two points are not clear for us.

(i) In order to define a standard Fourier transformation for the space of function-
als, how to apply the nonstandard Fourier transformation to the standard space of
functionals. There is a canonical method to apply a nonstandard one to a standard
one, but does it define a standard Fourier transformation or not?

(ii) For which class of standard functionals are the nonstandard Fourier transforma-
tion applicable? Furthermore, in which class of standard functionals is the image of
the nonstandard transform realized?

These are remained for quite important problems , as it is shown that there exists
no parallelizable standard Borel measure on the standard space of functions. Each
of them is a big theme for our later study.
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