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Notes on minimal normal compactifications of

/G

Hideo KOJIMA

0 Introduction

Throughout the present article, we work over the field of complex numbers.

Definition 0.1 Let S be a normal affine surface and let (X, C) be a pair of a normal
compact analytic surface X and a compact (analytic) curve C on X.

(1) We call the pair (X,C) a minimal normal compactification of S if the fol-
lowing conditions are satisfied: .

(i) X is smooth along C.

(ii) Any singular point of C is an ordinary double point.
(iii) X \ C is biholomorphic to S.
(iv) For any (—1)-curve E C C, we have (E-C — E) > 3.

(2) Assume that (X, C) is a minimal normal compactification of S. Then (X, C)
is said to be algebraic if X is algebraic, C is an algebraic subvariety of X and X \ C
is isomorphic to S as an algebraic variety.

For some smooth affine surfaces, their minimal normal compacitifications have
been studied by several authors. In [10], Morrow gave a list of all minimal normal
compactifications of the complex affine plane C? by using a result of Ramanujam
[12]. Ueda [14] and Suzuki [13] studied compactifications of C x C* and (C*)?,
where C* = C\ {0}. In particular, Suzuki [13] gave a list of all minimal normal
compactifications of C x C* and (C*)2.

Recently, Abe, Furushima and Yamasaki [1] studied minimal normal compacti-
fications of S = C%/G, where G is a small non-trivial finite subgroup of GL(2, C),
by using the theory of the cluster sets of holomorphic mappings due to Nishino and
Suzuki [11]. They gave a rough classification of the weighted dual graphs of the
boundary divisors of the minimal normal compactifications of S. In most cases,
the singularity type of the unique singular point of S determines the weighted dual
graph of the boundary divisor. However, in the case where the singular point of S
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is cyclic or is of type D (for the definition, see [8, p. 91]), they did not determine
the weighted dual graph of the boundary divisor.

In this note, we shall give some results on minimal normal compactifications of
C?/G, where G is a finite subgroup of GL(2, C). In §2, we give a characterization of
C? as a homology plane (cf. Theorem 2.1). In §3, we give a complete list of the dual
graphs of the boundary divisors of the minimal normal compactifications of C2/G
in the case where G is non-trivial and non-cyclic (cf. Theorem 3.3).

By a (—n)-curve (n > 1) we mean a smooth complete rational curve with self-
intersection number —n. A reduced effective divisor D on a smooth surface is called
an SNC-divisor (resp. an NC-divisor) if D has only simple normal crossings (resp.
normal crossings). Let f : V; — V; be a birational morphism between smooth
algebraic surfaces V; and V, and let D; ( = 1, 2) be a divisor on V;. Then we denote
the direct image of D; on V, (resp. the total transform of D, on Vi, the proper
transform of Dy on V1) by f.(D;) (resp. f*(D.), f'(D2)).

1 Preliminaries
In this section, we prove some preliminary results which are used in §§2 and 3.

Definition 1.1 Let (V1, D;) and (V2, D;) be (minimal) normal algebraic compact-
ifications of a normal affine surface S. Then we say that (V;, D;) is isomorphic to
(Va, D5) if there exists an isomorphism ¢ : Vi — Vj such that ¢(D;) ¢ D, and
©|p, : D1 = D, is an isomorphism.

Let S be a normal affine surface and (V, D) a minimal normal algebraic com-
pactification of S. In Lemmas 1.2 and 1.3, we retain this situation.

Lemma 1.2 Assume that the following two conditions (i) and (ii) are satisfied:

(i) For any irreducible component E of D such that E = P! and (E?) > —1, we
have (E - D — E) > 3.

(ii) For any irreducible component F of D such that F is a rational curve with
one node and (F?) > 3, we have (F-D — F) > 1.

Then the pair (V, D) is the unique minimal normal algebraic compactification of S,
up to isomorphisms.

Proof. Suppose to the contrary that S has another minimal normal algebraic com-
pactification (V’, D’) which is not isomorphic to (V, D). Then there exists a bira-
tional map f : V... — V' such that f|ly_p : S — S is an isomorphism. We have
a composite of blowing-ups g : W — V such that h = fog: W — V'’ becomes a
birational morphism. Since (V, D) and (V’, D’) are minimal normal algebraic com-
pactifications of S, f cannot be a morphism. So, g # id . We may assume that g is
the shortest among such birational morphisms.
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Put D := 9*(D)rea. Then D is an NC-divisor and the birational morphism A
begins with the contraction of a (—1)-curve E' C D. Since D' = h,(D) is an NC-
divisor, (E' - D — E') < 2. Put E := g.(E'). By the assumption on g, E is not a
zero divisor. Further, since D is an NC-divisor, either E = P! or F is a rational
curve with one node as singularities. If £ = P!, then (E?) > —1 and

(E-D—-E)<(E'-D—-E)<2,

which contradicts the condition (i). If E is a rational curve with one node, then
(E?) > 3. If (E- D — E) > 1, then the contraction of £’ makes the direct image
h.(D) = D’ a non NC-divisor. So, (E - D — E) = 0, which contradicts the condition
(ii). O

Lemma 1.3 Assume that x(V') > 0, where k(V') denotes the Kodaira dimension of
a smooth model of V. Then (V, D) is the unique minimal normal algebraic compact-
tfication of S, up to isomorphisms.

Proof. Let V be a smooth model of V. Since (V) = x(V) > 0, V has the unique
minimal model, up to isomorphisms. Since V' is smooth along D, we know that D
contains no smooth rational curves £ with (¢2) > 0 and no rational curves F' with
one nodes and with (F?) > 3. Hence the assertion follows from Lemma 1.2. Here
we note that D has no (—1)-curves E with (E - D — E) < 2 because (V, D) is a
minimal normal algebraic compactification of S. (]

Definition 1.4 Let S be a normal affine surface and let 7 : § — S be a resolution
of singularities of S. We define the logarithmic Kodaira dimension %(S) by R(S) =
%(S), where &(S) denotes the logarithmic Kodaira dimension of S (cf. [6]).

Lemma 1.5 Let V' be a smooth projective rational surface and D an irreducible
rational curve with one node and with (D?) > 3. Then ®(V \ D) < 1.

Proof. We may assume that V' \ D contains no (—1)-curves.

Let P be the node on D. Let 7 : V — V be the blowing-up with the center at P
and let E be the exceptional curve. Put D := 7/(D)+ E. Then D is an SNC-divisor.
If (D?) > 4, then (7'(D)?) > 0. Since n'(D) = P! and (7'(D) - E) = 2, we can easily
see that &(V — D) =&(V — D) < 1 (cf. [6]).

We treat the case where (D?) = 3 (then (7/(D)?) = —1). Suppose that &(V — D) =
&(V — D) = 2. Assume first that D + K i is not nef. By using the theory of Zariski
decomposition (cf. [6]), we obtain an irreducible curve F such that (F- D+ Ky) < 0
and (F?) < 0. By the assumption that V' \ D contains no (—1)-curves, we know that
Fis a (—1)-curve with (F-D) = 1. Let f : V — W be the contraction of F' and put
f«(D) = D} +D},. Then D)+ D} is an SNC-divisor, (D, - D}) = 2 and one of D/, and
D, has self-intersection number zero. So ®(W (D’ + DY) ="(V — D) <1, Wthh
_ is a contradiction. Assume next that D + K i is nef. Noting that (D-D+ KV) =0
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and D + Ky is nef and big, we know that (D?) < 0 by the Hodge index theorem.
This is a contradiction because (D?) = 2. O

Proposition 1.6 Any normal affine surface S with ®(S) = 2 (¢f. Definition 1.4)
has a unique minimal normal algebraic compactification, up to isomorphisms.

Proof. Let (V,D) be a minimal normal algebraic compactification of S and f :
V — V the minimal resolution of V. We may identify the divisor D on V with the

divisor f(D) = f~}(D) on V. If k(V) > 0, then Lemma 1.3 implies that (V, D)
is the unique minimal normal algebraic compactification of S, up to isomorphisms.
Hence we may assume that (V) = —oo.

To prove Proposition 1.6, it suffices to show that the pair (V, D) satisfies the
conditions (i) and (ii) in Lemma 1.2 if &(S)(= &(V \ D)) = 2. Suppose first that D
has an irreducible component E such that E = P!, (E?) > —1and (E-D—E) < 2.
Then (E?) > 0 by the minimality of the pair (V, D) The hypothesis (E-D—FE) < 2
then implies that ®(S) < 1, which is a contradiction. Hence the condition (i) in
Lemma 1.2 is satisfied. Suppose next that D is an irreducible rational curve with
one node and (D?) > 3. It is then clear that V is a rational surface. We infer from
Lemma 1.5 that ®(S) < 1, which is a contradiction. Hence, the condition (ii) in
Lemma 1.2 also is satisﬁed. m]

2 A characterization of the affine plane

A smooth affine surface S is called a homology plane if H;(S,Z) = (0) for any
integer ¢ > 0. There are some characterizations of C? as a homology plane. A
homology plane S is isomorphic to C? if and only if one of the following conditions
is satisfied:

(1) ’(S) = —oo0.
(2) S contains at least two topologically contractible algebraic curves.

For more details, see [8, Chapter 3, §4].
By using Lemma 1.2 and the results in [5], we obtain the following result

Theorem 2.1 Let S be a homology plane. Then S = C2 if and only if S has at
least two non-isomorphic minimal normal algebraic compactifications.

Proof. The “only if ” part is clear. To prove the “if” part, it suffices to show that
R(S) = —oo, that is, if ®(S) > 0 then S has a unique minimal normal algebraic
compactification, up to isomorphisms.

Assume that %(S) > 0. Then &(S) > 1 by [4, §8] (see also [8, Theorem 4.7.1
(p. 244)]). If R(S) = 2, then it follows from Proposition 1.6 that .S has a unique
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minimal normal algebraic compacitification, up to isomorphisms. So we may assume
that £(S) = 1.

By [5, Theorems 3 and 4], there exists a C*-fibration ¢ : S — P! onto P! such
that every fiber of ¢ is irreducible. By using the arguments as in [5, §3], we can find
a pair (V, D) of a smooth projective surface V and an SNC-divisor D on V such
that the following conditions are satisfied:

- (i) V'\ D is isomorphic to S.
(ii) There exists a P!-fibration ® : V — P! such that ®|s = ¢.
(iii) For any (—1)-curve E C D in a fiber of ®, we have (E-D — E) > 3.

By [5, Lemma 3.2], ¢ is untwisted, that is, D has exactly two irreducible components
D, and D, which are not contained in any fiber of ®. By [9, Lemma 2.10 (3)], ¢ has
exactly one fiber f; with (fi)rea = Al. Let F) be the fiber of ® containing f;. Then,
by the condition (iii), we know that a fiber F' of & different from F; is reducible if
and only if the scheme-theoretic fiber F'|g of ¢ is singular.
Since ®(S) = 1 and the C*-fibration ¢ is untwisted, we know that ¢ has at
least three singular fibers. Indeed, if not, then S contains (C*)? as a Zariski open
subset. Then 1 = &(S) < &((C*)?) = 0, which is a contradiction. We can easily
- see that (D; - D — D;) > 3 for s = 1,2. By the condition (iii), (V, D) is a minimal
normal algebraic compactification of S and satisfies the conditions (i) and (ii) in
Lemma 1.2. Hence, by Lemma 1.2, (V, D) is the unique minimal normal algebraic
compacitification of S, up to isomorphisms. : a

For any homology plane S = Spec A, the coordinate ring A is factorial and
A* = C* (cf. [5], [9]). By Example 2.2 below, we know that Theorem 2.1 cannot be
true in the case where S = Spec A is a smooth affine surface such that A is factorial
and A* = C*. '

Example 2.2 Let 4y, ¢;, ¢, be non-concurrent three lines on P? and let P, € ¢; \
(bo U &y) and P, € 45\ (dp U #;) be two points. Let o : V — P2 be the blowing-up
with centers P, and P,. Put D = ¢, + ¢} + ¢, where ¢, := o'(4;) (¢ = 0,1,2), and
S :=V — D. Then S is a smooth affine surface such that A = I'(S, Q,) is factorial
and A* = C* (cf. [5, Theorem 2]). The pair (V, D) is a minimal normal algebraic
compacitification of S. Put Q := ¢, N¥¢,. Let 0y : V; — V be the blowing-up at Q
and let v : Vi — W be the contraction of ¢} (¢;) and o7(¢,). Then the pair (W, Dy)
(Dw = pu(o7(D))) is a minimal normal algebraic compactification of S and is not
isomorphic to (V, D)

3 Compactifications of C?/G

In this section, we study minimal normal compactifications of C2?/G.
We give some notions on weighted graphs. As for the notions on weighted graphs,
the reader may consult [4].
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Definition 3.1 Let A be a graph and vy, ..., v, the vertices of A. Then A is a twig
if A is a connected linear graph together with a total ordering v; > vy > -+ > v,
among its vertices such that v; and v;_; are connected by a segment for each j
(2 < j <r). Such a twig is denoted by [ay, ..., a,], where a; is the weight of v;. A
twig A is said to be admissible if a; < —2 for every j. For an admissible twig A, we
denoted the determinant of A by d(A) (cf. [4, (3.3)]).

Definition 3.2 Let A = [ay, ..., a,] be an admissible twig. Then the twig [ar, ar_1, ...

is called the transposal of A and denoted by *A. We define also A = [as, . .., a,] and
A =" (tA) = [a1,..-,ar—1]. Ifr =1, we put A = A = () (the empty set). We
call e(A) = d(A)/d(A) the inductance of A. By [4, Corollary (3.8)], e defines a
one-to-one correspondence from the set of all admissible twigs to the set of rational
numbers in the interval (0,1). Hence there exists uniquely an admissible twig A*
whose inductance is equal to 1 — e(*A). We call the admissible twig A* the adjoint
of A.

Now, let G be a small non-cyclic finite subgroup of GL(2,C) and let S = C%/G
be the geometric quotient surface. Let m : S — S be the minimal resolution of
the unique singular point of S and E the reduced exceptional divisor of w. By
[3], E is an SNC-divisor and each component of E is a rational curve. More-
over, the weighted dual graph of F looks like that of Figure 1, where b > 2 and
the subgraph A = [-a®, —a?, ..., —a] (i = 1,2,3) is an admissible twig and
{d(Aqy), d(A(2)), d(A())} is one of the following Platonic triplets: {2,2,n} (n > 2),
{2,3,3}, {2,3,4} and {2, 3,5}.

0 —a@

Y —Or;

(2)

—ay

—a{®
511) —-agl) —agl) _a§3) _ag3)

[0 TEETTTTNeN o—0 O O Yo R ITITTTTIO o
-b

Figure 1

Now, we state the main result of this section.

Theorem 3.3 With the same notation and assumptions as above, let (X,C) be a
mantmal normal compactification of S. Then we have:

(1) (X,C) is algebraic.

(2) C is an SNC-divisor, each component of C is a rational curve and the
weighted dual graph of C looks like that of Figure 2, where the subgraph B(; :=

[, =8, ..., —b®)] (i = 1,2,3) is the adjoint of *A.
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Figure 2

Remark 3.4 The assertion (1) and the assertion (2) except for the case
{d(A1),d(A2),d(A3)} = {2,2,n} (n > 2) of Theorem 3.3 are proved by Abe-
Furushima—Yamasaki [1].

Now, we prove Theorem 3.3. Let P be the unique smgular point on S = C%/G
and put T = S\ {P}(= S\ E). Then [7, Theorem 2 (2)] implies that T has a
structure of Platonic C*-fiber space with respect to the C*-action induced by the
- C*-action on C? via the center of GL(2, C). More precisely, there exists a surjective
morphism f : T — P! from T onto P! such that the following four conditions are
satisfied:

(1) General ﬁbers of f are isomorphic to C* = C\ {0}.

(2) The generic fiber of f is isomorphic to A& \ {0}, where C(2) is the rational
function field of one variable ¢. ,

(3) Every fiber of f is irreducible.

(4) f has exactly three singular fibers A; = 1, T; (1 <4 < 3) with T'; = C*, where
{#’1, K2, ﬂg} = {27 2) n} (TL Z 2)1 {2) 37 3}’ {2> 3) 4} or {2: 37 5}

(5) f has a normal completion f : T — P* (ie, nls = f and T is a smooth
projective surface such that T is a Zarisiki open subset of 7" and T\ T" is an
NC-divisor) such that:

(i) There exist two sections Sy and S; of f such that Sy, S; C T\T, SoNS; =
0, and other irreducible components of T'\ T' are contained in fibers of 7.

(ii) Every fiber of f has a linear chain as its (weighted) dual graph.

As seen from [7, §3], we know that T\ T has two connected components.
Now, let f: .5 ---— P! be a rational map such that f |7 = f. We prove that:
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Claim. We may assume that f is a morphism. Moreover, f is a Al-fibration onto
P!, E has the unique component Fy which is a section of f and each component of
E — E, is contained in a fiber of f.

Proof. By the condition (5) as above, we have birational morphisms § : V — 5’
and h : V — T such that g is a composite of blowing-ups on E, § Is\E =idr and A
is a contraction of curves in §~!(EF) smoothly. Since E has no irreducible rational
curves with self-intersecion number > —1, we may assume that § = id g- Hence
h: S — T gives rise to an embedding of S into T. Hence, we may assume that
f=Tls 5. Moreover, since T \ T has two connected components Ty and T}, we may
assume that E = Ty and Sy C E. Thus, we know that f isa Al- fibraion, that E has
a unique component E, which is a section of f and that each component of F — E,
is contained in a fiber of f. O

By the claim as above, we know that S contains a Zarisiki open subset isomorphic
to A' x Cy, where Cp is a smooth affine rational curve. Then [4, Theorem (9.6)]
implies that every analytic compactification of A! x Cj is algebraic. Since A! x C,
is a Zariski open subset of S and S has at most rational singularity, every analytic
compactification of S is algebraic by [2, Theorem (2.3)]. This proves the assertion
(1) of Theorem 3.3.

Let Ty and T} be the connected components of T \ T, where we assume that
S; C T;. Put U = Ty + T;. By the condition (5) as above, we may assume further
that (E-U~FE) > 3 for any (—1)-curve E C U. Then, a fiber F of f is reducible if and
only if F|r is a multiple fiber of f. We note that every reducible fiber of ¥ contains a
unique (—1)-curve. By virtue of [4, Proposition (4.7)], the dual graph of a reducible

fiber of f looks like that of Figure 3, where the subgraph A= [-a1,—ay,...,—a,)
is an admissible rational rod and [— b1, —by, ..., —bs] the adjoint of A.
—a1 —az —-ayr -1 —=b1 b2 —b,
(o — e, PUSPPOPPPN O————O————O——— rerrrrreees o)
Figure 3

We can easily see that (S7) = —(S%) — 3. So, we may assume that (S2) < —2.
As seen from the proof of the claim as above, the weighted dual graph of T} is the
same as that of E. The weighted dual graph of 73 then looks like that of Figure 2.

Thus, we obtain an algebraic compactification (V, D) of S = C?/G such that
D is an SNC-divisor, each irreducible component of D is a rational curve and the
weighted dual graph of D looks like that of Figure 2. By Lemma. 1.2 and the assertion
(1) of Theorem 3.3, (V, D) is the unique minimal normal compactification of .S, up
to isomorphisms. This proves the assertion (2) of Theorem 3.3.

The proof of Theorem 3.3 is thus completed.
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