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0 Introduction
Throughout the present article, we work over the field of complex numbers.

Definition 0.1 Let $S$ be a normal affine surface and let (X, $C$) be a pair of a normal
compact analytic surface $X$ and a compact (analytic) curve $C$ on $X$ .

(1) We call the pair (X, $C$) a minimal nomal compactification of $S$ if the fol-
lowing conditions are satisfied:

(i) $X$ is smooth along $C$ .

(ii) Any singular point of $C$ is an ordinary double point.

(iii) $X\backslash C$ is biholomorphic to $S$ .

(iv) For any (-l)-curve $E\subset C$ , we have $(E\cdot C-E)\geq 3$ .

(2) Assume that (X, $C$) is a minimal normal compactification of $S$ . Then (X, $C$)
is said to be algebraic if $X$ is algebraic, $C$ is an algebraic subvariety of $X$ and $X\backslash C$

is isomorphic to $S$ as an algebraic variety.

For some smooth affine surfaces, their minimal normal compacitifications have
been studied by several authors. In [10], Morrow gave a list of all minimal normal
compactifications of the complex affine plane $C^{2}$ by using a result of Ramanujam
[12]. Ueda [14] and Suzuki [13] studied compactffications of $C\times C^{*}$ and $(C^{*})^{2}$ ,
where $C^{*}=C\backslash \{0\}$ . In particular, Suzuki [13] gave a list of all minimal normal
compactifications of $C\times C^{*}$ and $(C^{*})^{2}$ .

Recently, Abe, Furushima and Yamasaki [1] studied minimal normal compacti-
fications of $S=C^{2}/G$ , where $G$ is a small non-trivial finite subgroup of $GL(2, C)$ ,
by using the theory of the cluster sets of holomorphic mappings due to Nishino and
Suzuki [11]. They gave a rough classification of the weighted dual graphs of the
boundary divisors of the minimal normal compactifications of $S$ . In most cases,
the singularity type of the unique singular point of $S$ determines the weighted dual
graph of the boundary divisor. However, in the case where the singular point of $S$
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is cyclic or is of type $D$ (for the definition, see [8, p. 91]), they did not determine
the weighted dual graph of the boundary divisor.

In this note, we shall give some results on minimal normal compactifications of
$C^{2}/G$ , where $G$ is a finite subgroup of $GL(2, C)$ . In \S 2, we give a characterization of
$C^{2}$ as a homology plane (cf. Theorem 2.1). In \S 3, we give a complete list of the dual
graphs of the boundary divisors of the minimal normal compactifications of $C^{2}/G$

in the case where $G$ is non-trivial and non-cyclic (cf. Theorem 3.3).
By a $(-n)$-curve $(n\geq 1)$ we mean a smooth complete rational curve with self-

intersection $number-n$ . A reduced effective divisor $D$ on a smooth surface is called
an SNC-divisor (resp. an NC-divisor) if $D$ has only simple normal crossings (resp.
normal crossings). Let $f$ : $V_{1}\rightarrow V_{2}$ be a birational morphism between smooth
algebraic surfaces $V_{1}$ and $V_{2}$ and let $D_{i}(i=1,2)$ be a divisor on $V_{i}$ . Then we denote
the direct image of $D_{1}$ on $V_{2}$ (resp. the total transform of $D_{2}$ on $V_{1}$ , the proper
transform of $D_{2}$ on $V_{1}$ ) by $f_{*}(D_{1})$ (resp. $f^{*}(D_{2}),$ $f^{\prime}(D_{2})$ ).

1 Preliminaries
In this section, we prove some preliminary results which are used in \S \S 2 and 3.

Definition 1.1 Let $(V_{1}, D_{1})$ and $(V_{2}, D_{2})$ be (minimal) normal algebraic compact-
ifications of a normal affine surface $S$ . Then we say that $(V_{1}, D_{1})$ is isomorphic to
$(V_{2}, D_{2})$ if there exists an isomorphism $\varphi$ : $V_{1}\rightarrow V_{2}$ such that $\varphi(D_{1})\subset D_{2}$ and
$\varphi|_{D_{1}}$ : $D_{1}\rightarrow D_{2}$ is an isomorphism.

Let $S$ be a normal affine surface and (V, $D$) a minimal normal algebraic com-
pactffication of $S$ . In Lemmas 1.2 and 1.3, we retain this situation.

Lemma 1.2 Assume that the following two conditions (i) and (ii) are satisfied:
(i) For any irreducible component $E$ of $D$ such that $E\cong P^{1}$ and $(E^{2})\geq-1$ , we

have $(E\cdot D-E)\geq 3$ .

(ii) For any irreducible component $F$ of $D$ such that $F$ is a mtional curve with
one node and $(F^{2})\geq 3$ , we have $(F\cdot D-F)\geq 1$ .

Then the pair (V, $D$) is the unique minimal nomal algebraic compactification of $S$ ,
up to isomo$7phisms$ .

Proof. Suppose to the contrary that $S$ has another minimal normal algebraic com-
pactification (V’, $D^{\prime}$ ) which is not isomorphic to (V, $D$). Then there exists a bira-
tional map $f$ : $V\cdots\rightarrow V^{\prime}$ such that $f|_{V-D}$ : $S\rightarrow S$ is an isomorphism. We have
a composite of blowing-ups $g$ : $W\rightarrow V$ such that $h=f\circ g$ : $W\rightarrow V^{\prime}$ becomes a
birational morphism. Since (V, $D$) and (V’, $D^{\prime}$ ) are minimal normal algebraic com-
pactifications of $S,$ $f$ cannot be a morphism. So, $g\neq Id$ . We may assume that $g$ is
the shortest among such birational morphisms.

–128–



Put $\tilde{D}$

$:=g^{*}(D)_{red}$ . Then $\tilde{D}$ is an NC-divisor and the birational morphism $h$

begins with the contraction of a (-l)-curve $E^{\prime}\subset\tilde{D}$ . Since $D^{\prime}=h_{*}(\tilde{D})$ is an NC-
divisor, $(E^{\prime}\cdot\tilde{D}-E^{\prime})\leq 2$ . Put $E$ $:=g_{*}(E^{\prime})$ . By the assumption on $g,$ $E$ is not a
zero divisor. Further, since $D$ is an NC-divisor, either $E\cong P^{1}$ or $E$ is a rational
curve with one node as singularities. If $E\cong P^{1}$ , then $(E^{2})\geq-1$ and

$(E\cdot D-E)\leq(E^{\prime}\cdot\tilde{D}-E^{\prime})\leq 2$ ,

which contradicts the condition (i). If $E$ is a rational curve with one node, then
$(E^{2})\geq 3$ . If $(E\cdot D-E)\geq 1$ , then the contraction of $E^{\prime}$ makes the direct image
$h_{*}(\tilde{D})=D^{\prime}$ a non NC-divisor. So, $(E\cdot D-E)=0$ , which contradicts the condition
(ii). $\square $

Lemma 1.3 Assume that $\kappa(V)\geq 0_{f}$ where $\kappa(V)$ denotes the Kodaira dimension of
a smooth model of V. Then (V, $D$ ) is the unique minimal normal algebraic compact-
ification of $S$ , up to isomorphisms.

Proof. Let $\tilde{V}$ be a smooth model of $V$ . Since $\kappa(\tilde{V})=\kappa(V)\geq 0,\tilde{V}$ has the unique
minimal model, up to isomorphisms. Since $V$ is smooth along $D$ , we know that $D$

contains no smooth rational curves $\ell$ with $(\ell^{2})\geq 0$ and no rational curves $F$ with
one nodes and with $(F^{2})\geq 3$ . Hence the assertion follows from Lemma 1.2. Here
we note that $D$ has no (-l)-curves $E$ with $(E\cdot D-E)\leq 2$ because (V, $D$) is a
minimal normal algebraic compactification of $S$ . $\square $

Definition 1.4 Let $S$ be a normal affine surface and let $\pi$ : $\tilde{S}\rightarrow S$ be a resolution
of singularities of $S$ . We define the logarithmic Kodaim dimension $\overline{\kappa}(S)$ by $\overline{\kappa}(S)=$

$\overline{\kappa}(\tilde{S})$ , where $\overline{\kappa}(\tilde{S})$ denotes the logarithmic Kodaira dimension of $\tilde{S}$ (cf. [6]).

Lemma 1.5 Let $V$ be a smooth projective rational surface and $D$ an irreducible
rational curve with one node and with $(D^{2})\geq 3.$ Then $\overline{\kappa}(V\backslash D)\leq 1$ .

Proof. $WemayassumethatV\backslash Dcontainsno$ (-l)-curves.
Let $P$ be the node on $D$ . Let $\pi$ : $\tilde{V}\rightarrow V$ be the blowing-up with the center at $P$

and let $E$ be the exceptional curve. Put $\tilde{D}$

$:=\pi^{\prime}(D)+E$ . Then $\tilde{D}$ is an SNC-divisor.
If $(D^{2})\geq 4$ , then $(\pi^{\prime}(D)_{\sim}^{2})\geq 0$ . Since $\pi^{\prime}(D)\cong P^{1}$ and $(\pi^{\prime}(D)\cdot E)=2$ , we can easily
see that $\overline{\kappa}(V-D)=\overline{\kappa}(V-\tilde{D})\leq 1$ (cf. [6]).

We treat the case where $(D^{2})=3$ (then $(\pi^{\prime}(D)^{2})=-1$ ). Suppose that $\overline{\kappa}(V-D)=$

$\overline{\kappa}(\tilde{V}-\tilde{D})=2$ . Assume first that $\tilde{D}+K_{\overline{V}}$ is not nef. By using the theory of Zariski
decomposition (cf. [6]), we obtain an irreducible curve $F$ such that $(F\cdot\tilde{D}+K_{\tilde{V}})<0$

and $(F^{2})<0$ . By the assumption that $V\backslash D$ contains no (-l)-curves, we know that
$F$ is a (-l)-curve with $(F\cdot\tilde{D})=1$ . Let $f$ : $\tilde{V}\rightarrow W$ be the contraction of $F$ and put
$f_{*}(\tilde{D})=D_{1}^{\prime}+D_{2}^{\prime}$ . Then $D_{1}^{\prime}+D_{2}^{\prime}$ is an SNC-divisor, $(D_{1}^{\prime}\cdot D_{2}^{\prime})=2$ and one of $D_{1}^{\prime}$ and
$D_{2}^{\prime}$ has self-intersection number zero. So $\overline{\kappa}(W-(D_{1}^{\prime}+D_{2}^{\prime}))=\overline{\kappa}(\tilde{V}-\tilde{D})\leq 1$ , which
is a contradiction. Assume next that $\tilde{D}+K_{\tilde{V}}$ is nef. Noting that $(\tilde{D}\cdot\tilde{D}+K_{\tilde{V}})=0$
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and $\tilde{D}+K_{\tilde{V}}$ is nef and big, we know that $(\tilde{D}^{2})<0$ by the Hodge index theorem.
This is a contradiction because $(\tilde{D}^{2})=2$ . $\square $

Proposition 1.6 Any normal affine surface $S$ with $\overline{\kappa}(S)=2$ (cf. Definition 1.4)
has a unique minimal normal algebmic compactification, up to isomorphisms.

Proof. Let (V, $D$) be a minimal normal algebraic compactification of $S$ and $f$ :
$\tilde{V}\rightarrow V$ the minimal resolution of $V$ . We may identify the divisor $D$ on $V$ with the
divisor $f^{\prime}(D)=f^{-1}(D)$ on $\tilde{V}$ . If $\kappa(\tilde{V})\geq 0$ , then Lemma 1.3 implies that (V, $D$)
is the unique minimal normal algebraic compactification of $S$ , up to isomorphisms.
Henoe we may assume that $\kappa(\tilde{V})=-\infty$ .

To prove Proposition 1.6, it suffices to show that the pair (V, $D$) satisfies the
conditions (i) and (ii) in Lemma 1.2 if $\overline{\kappa}(S)(=\overline{\kappa}(\tilde{V}\backslash D))=2$ . Suppose first that $D$

has an irreducible component $E$ such that $E\cong P^{1},$ $(E^{2})\geq-1$ and $(E\cdot D-E)\leq 2$ .
Then $(E^{2})\geq 0$ by the minimality of the pair (V, $D$). The hypothesis (E. $D-E$) $\leq 2$

then implies that $\overline{\kappa}(S)\leq 1$ , which is a contradiction. Hence the condition (i) in
Lemma 1.2 is satisfied. Suppose next that $D$ is an irreducible rational curve with
one node and $(D^{2})\geq 3$ . It is then clear that $\tilde{V}$ is a rational surface. We infer from
Lemma 1.5 that $\overline{\kappa}(S)\leq 1$ , which is a contradiction. Hence, the condition (ii) in
Lemma 1.2 also is satisfied. $\square $

2 A characterization of the affine plane
A smooth affine surface $S$ is called a homology plane if $H_{i}(S, Z)=(0)$ for any

integer $i>0$ . There are some characterizations of $C^{2}$ as a homology plane. A
homology plane $S$ is isomorphic to $C^{2}$ if and only if one of the following conditions
is satisfied:

(1) $\overline{\kappa}(S)=-\infty$ .

(2) $S$ contains at least two topologically contractible algebraic curves.

For more details, see [8, Chapter 3, \S 4].
By using Lemma 1.2 and the results in [5], we obtain the following result.

Theorem 2.1 Let $S$ be a homology plane. Then $S\cong C^{2}$ if and only if $S$ has at
least two non-isomorphic minimal normal algebmic compactifications.

Proof. The “only if” part is clear. To prove the $iP$’ part, it suffices to show that
$\overline{\kappa}(S)=-\infty$ , that is, if $\overline{\kappa}(S)\geq 0$ then $S$ has a unique minimal normal algebraic
compactification, up to isomorphisms.

Assume that $\overline{\kappa}(S)\geq 0.$ Then $\overline{\kappa}(S)\geq 1$ by [4, \S 8] (see also [8, Theorem 4.7.1
(p. 244)]). If $\overline{\kappa}(S)=2$ , then it follows from Proposition 1.6 that $S$ has a unique
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minimal normal algebraic compacitification, up to isomorphisms. So we may assume
that $\overline{\kappa}(S)=1$ .

By [5, Theorems 3 and 4], there exists a $C^{*}- fibration\varphi$ : $S\rightarrow P^{1}$ onto $P^{1}$ such
that every fiber of $\varphi$ is irreducible. By using the arguments as in [5, \S 3], we can find
a pair (V, $D$) of a smooth projective surface $V$ and an SNC-divisor $D$ on $V$ such
that the following conditions are satisfied:

(i) $V\backslash D$ is isomorphic to $S$ .

(ii) There exists a $P^{1}$-fibration $\Phi$ : $V\rightarrow P^{1}$ such that $\Phi|_{S}=\varphi$ .

(iii) For any (-l)-curve $E\subset D$ in a fiber of $\Phi$ , we have $(E\cdot D-E)\geq 3$ .
By [5, Lemma 3.2], $\varphi$ is untwisted, that is, $D$ has exactly two irreducible components
$D_{1}$ and $D_{2}$ which are not contained in any fiber of $\Phi$ . By [9, Lemma 2.10 (3)], $\varphi$ has
exactly one fiber $f_{1}$ with $(f_{1})_{red}\cong A^{1}$ . Let $F_{1}$ be the fiber of $\Phi$ containing $f_{1}$ . Then,
by the condition (iii), we know that a fiber $F$ of $\Phi$ different from $F_{1}$ is reducible if
and only if the scheme-theoretic fiber $F|_{S}$ of $\varphi$ is singular.

Since $\overline{\kappa}(S)=1$ and the $C^{*}- fibration\varphi$ is untwisted, we know that $\varphi$ has at
least three singular fibers. Indeed, if not, then $S$ contains $(C^{*})^{2}$ as a Zariski open
subset. Then $1=\overline{\kappa}(S)\leq\overline{\kappa}((C^{*})^{2})=0$ , which is a contradiction. We can easily
see that $(D_{i}\cdot D-D_{i})\geq 3$ for $i=1,2$ . By the condition (iii), (V, $D$) is a minimal
normal algebraic compactification of $S$ and satisfies the conditions (i) and (ii) in
Lemma 1.2. Hence, by Lemma 1.2, (V, $D$ ) is the unique minimal normal algebraic
compacitification of $S$ , up to isomorphisms. $\square $

For any homology plane $S=$ Spec $A$ , the coordinate ring $A$ is factorial and
$A^{*}=C^{*}$ (cf. [5], [9]). By Example 2.2 below, we know that Theorem 2.1 cannot be
true in the case where $S=Spec$ $A$ is a smooth affine surface such that $A$ is factorial
and $A^{*}=C^{*}$ .

Example 2.2 Let $\ell_{0},$ $\ell_{1},$ $\ell_{2}$ be non-concurrent three lines on $P^{2}$ and let $P_{1}\in\ell_{1}\backslash $

$(\ell_{0}\cup\ell_{2})$ and $P_{2}\in\ell_{2}\backslash (\ell_{0}U\ell_{1})$ be two points. Let $\sigma$ : $V\rightarrow P^{2}$ be the blowing-up
with centers $P_{1}$ and $P_{2}$ . Put $D=\ell_{0}^{\prime}+\ell_{1}^{\prime}+\ell_{2}^{\prime}$ , where $\ell_{i}$ $:=\sigma^{\prime}(\ell_{i})(i=0,1,2)$ , and
$S:=V-D$ . Then $S$ is a smooth affine surface such that $A=\Gamma(S, \mathcal{O}_{s})$ is factorial
and $A^{*}=$ C’ (cf. [5, Theorem 2]). The pair (V, $D$ ) is a minimal normal algebraic
compacitification of $S$ . Put $Q$ $:=\ell_{1}^{\prime}\cap\ell_{2}^{\prime}$ . Let $\sigma_{1}$ : $V_{1}\rightarrow V$ be the blowing-up at $Q$

and let $\mu$ : $V_{1}\rightarrow W$ be the contraction of $\sigma_{1}^{\prime}(\ell_{1}^{\prime})$ and $\sigma_{1}^{\prime}(l_{2}^{\prime})$ . Then the pair $(W, D_{W})$

$(D_{W}=\mu_{*}(\sigma_{1}^{-1}(D)))$ is a minimal normal algebraic compactification of $S$ and is not
isomorphic to (V, $D$)

3 Compactifications of $C^{2}/G$

In this section, we study minimal normal compactifications of $C^{2}/G$ .
We give some notions on weighted graphs. As for the notions on weighted graphs,

the reader may consult [4].
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Definition 3.1 Let $A$ be a graph and $v_{1},$ $\ldots$ , $v_{r}$ the vertices of $A$ . Then $A$ is a twig
if $A$ is a connected linear graph together with a total ordering $v_{1}>v_{2}>\cdots>v_{r}$

among its vertices such that $v_{j}$ and $v_{j-1}$ are connected by a segment for each $j$

$(2\leq j\leq r)$ . Such a twig is denoted by $[a_{1}, \ldots, a_{r}]$ , where $a_{j}$ is the weight of $v_{j}$ . A
twig $A$ is said to be admissible if $a_{j}\leq-2$ for every $j$ . For an admissible twig $A$ , we
denoted the determinant of $A$ by $d(A)$ (cf. [4, (3.3)]).

Definition 3.2 Let $A=[a_{1}, \ldots , a_{r}]$ be an admissible twig. Then the twig $[a_{r}, a_{r-1}, \ldots , a_{1}]$

is called the transposal of $A$ and denoted by ${}^{t}A$ . We define also $\overline{A}=[a_{2}, \ldots, a_{r}]$ and
$\underline{A}=^{t}(\overline{{}^{t}A})=[a_{1}, \ldots , a_{r-1}]$ . If $r=1$ , we put $\overline{A}=\underline{A}=\emptyset$ (the empty set). We
call $e(A)=d(\overline{A})/d(A)$ the inductance of $A$ . By [4, Corollary (3.8)], $e$ defines a
one-to-one correspondence from the set of all admissible twigs to the set of rational
numbers in the interval $(0,1)$ . Hence there exists uniquely an admissible twig $A^{*}$

whose inductance is equal to $1-e({}^{t}A)$ . We cal the admissible twig $A^{*}$ the adjoint
$ofA$ .

Now, let $G$ be a small non-cyclic finite subgroup of $GL(2, C)$ and let $S=C^{2}/G$

be the geometric quotient surface. Let $\pi$ : $\tilde{S}\rightarrow S$ be the minimal resolution of
the unique singular point of $S$ and $E$ the reduced exceptional divisor of $\pi$ . By
[3], $E$ is an SNC-divisor and each component of $E$ is a rational curve. More-
over, the weighted dual graph of $E$ looks like that of Figure 1, where $b\geq 2$ and
the subgraph $A_{(i)}$ $:=[-a_{1}^{(i)}, -a_{2}^{(i)}, \ldots , -a_{r}^{(i)}:](i=1,2,3)$ is an admissible twig and
$\{d(A_{(1)}), d(A_{(2)}), d(A_{(3)})\}$ is one of the folowing Platonic triplets: $\{2, 2, n\}(n\geq 2)$ ,
{2, 3, 3}, {2, 3, 4} and {2, 3, 5}.

Figure 1

Now, we state the main result of this section.

Theorem 3.3 With the same notation and assumptions as above, let (X, $C$) be a
minimal normal compactification of S. Then we have:

(1) (X, $C$) is algebmic.
(2) $C$ is an SNC-divisor, each component of $C$ is a mtional curve and the

weighted dual graph of $C$ looks like that of Figure 2, where the subgraph $B_{(i)}$ $:=$

$[-b_{1}^{(i)}, -b_{2}^{(i)}, \ldots, -b_{s_{i}}^{(i)}](i=1,2,3)$ is the adjoint of ${}^{t}A_{(i)}$ .
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Figure 2

Remark 3.4 The assertion (1) and the assertion (2) except for the case
$\{d(A_{1}), d(A_{2}), d(A_{3})\}=\{2,2, n\}(n\geq 2)$ of Theorem 3.3 are proved by Abe-
$Furushima-Yamas$aki [1].

Now, we prove Theorem 3.3. Let $P$ be the unique singular point on $S=C^{2}/G$

and put $T=S\backslash \{P\}(=\tilde{S}\backslash E)$ . Then [7, Theorem 2 (2)] implies that $T$ has a
structure of Platonic $C^{*}- fiber$ space with respect to the $C^{*}$-action induced by the
$C^{*}$-action on $C^{2}$ via the center of $GL(2, C)$ . More precisely, there exists a surjective
morphism $f$ : $T\rightarrow P^{1}$ from $T$ onto $P^{1}$ such that the following four conditions are
satisfied:

(1) General fibers of $f$ are isomorphic to $C^{*}=C\backslash \{0\}$ .

(2) The generic fiber of $f$ is isomorphic to $A_{C(t)}^{1}\backslash \{0\}$ , where $C(t)$ is the rational
function field of one variable $t$ .

(3) Every fiber of $f$ is irreducible.

(4) $f$ has exactly three singular Pbers $\Delta_{i}=\mu_{i}\Gamma_{i}(1\leq i\leq 3)$ with $\Gamma_{i}\cong C^{*}$ , where
$\{\mu_{1}, \mu_{2}, \mu_{3}\}=\{2,2, n\}(n\geq 2),$ $\{2,3,3\},$ $\{2,3,4\}$ or {2, 3, 5}.

(5) $f$ has a normal completion $\overline{f}$ : $\overline{T}\rightarrow P^{1}$ (i.e., $\pi|s=f$ and $\overline{T}$ is a smooth
projective surface such that $T$ is a Zarisiki open subset of $\overline{T}$ and $\overline{T}\backslash T$ is an
NC-divisor) such that:

(i) There exist two sections $S_{0}$ and $S_{1}of\overline{f}$ such that $S_{0},$ $S_{1}\subset\overline{T}\backslash T,$ $S_{0}\cap S_{1}=$

$\emptyset$ , and other irreducible components of $\overline{T}\backslash T$ are contained in fibers of $\overline{f}$ .

(ii) Every fiber of $\overline{f}$ has a linear chain as its (weighted) dual graph.

As seen from [7, \S 3], we know that $\overline{T}\backslash T$ has two connected components.
Now, let $\tilde{f}:\tilde{S}\cdots\rightarrow P^{1}$ be a rational map such that $\tilde{f}|_{T}=f$ . We prove that:
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Claim. We may assume that $\tilde{f}$ is a morphism. Moreover, $f$ is a $A^{1}- fibration$ onto
$P^{1},$ $E$ has the unique component $E_{0}$ which is a section of $f$ and each component of
$E-E_{0}$ is contained ina $fiberof\tilde{f}$ .

Proof. By the condition (5) as above, we have birational morphisms $\tilde{g}$ : $\tilde{V}\rightarrow\tilde{S}$

and $\tilde{h}$ : $\tilde{V}\rightarrow\overline{T}$ such that $\tilde{g}$ is a composite of blowing-ups on $E,\tilde{g}|_{\overline{S}\backslash E}=id_{T}$ and $\tilde{h}$

is a contraction of curves in $\overline{g}^{-1}(E)$ smoothly. Since $E$ has no irreducible rational
$curves\sim\sim$ with self-intersecion number $\geq-1$ , we may assume that $\tilde{g}=$ id $\tilde{s}$ . Hence
$h_{\sim}:$

$S\rightarrow\overline{T}$ gives rise to an embedding of $\tilde{S}$ into $\overline{T}$ . Hence, we may assume that
$f=\overline{f}|_{\overline{S}}$ . Moreover, since $\overline{T}\backslash T$ has two connected components $T_{0}$ and $T_{1}$ , we may
assume that $E=T_{0}$ and $S_{0}\subset E$ . Thus, we know that $\tilde{f}$ is a $A^{1}- fibraion$ , that $E$ has
a unique component $E_{0}$ which is a section of $\tilde{f}$ and that each component of $E-E_{0}$

is contained in a fiber of $\tilde{f}$ . $\square $

By the claim as above, we know that $\tilde{S}$ contains a Zarisiki open subset isomorphic
to $A^{1}\times C_{0}$ , where $C_{0}$ is a smooth affine rational curve. Then [4, Theorem (9.6)]
implies that every analytic compactffication of $A^{1}\times C_{0}$ is algebraic. Since $A^{1}\times C_{0}$

is a Zariski open subset of $\tilde{S}$ and $S$ has at most rational singularity, every analytic
compactification of $S$ is algebraic by [2, Theorem (2.3)]. This proves the assertion
(1) of Theorem 3.3.

Let $T_{0}$ and $T_{1}$ be the connected components of $\overline{T}\backslash T$ , where we assume that
$S_{i}\subset T_{i}$ . Put $U=T_{0}+T_{1}$ . By the condition (5) as above, we may assume further
that $(E\cdot U-E)\geq 3$ for any (-l)-curve $E\subset U$ . Then, a fiber $Fof\overline{f}$ is reducible if and
only if $F|_{T}$ is a multiple fiber of $f$ . We note that every reducible fiber $of\overline{f}$ contains a
unique (-l)-curve. By virtue of [4, Proposition (4.7)], the dual graph of a reducible
fiber of $\overline{f}$ looks like that of Figure 3, where the subgraph $A$ $:=[-a_{1}, -a_{2}, \ldots, -a_{r}]$

is an admissible rational rod and $[-b_{1}, -b_{2}, \ldots , -b_{s}]$ the adjoint of $A$ .

$-a_{1}-a_{2}\ldots\ldots\ldots..-a_{r}-1-b_{1}-b_{2}\ldots\ldots\ldots..b_{*}\leftarrow\rightarrow\cdot\infty\cdot O$

Figure 3
We can easily see that $(S_{1}^{2})=-(S_{0}^{2})-3$ . So, we may assume that $(S_{0}^{2})\leq-2$ .

As seen from the proof of the claim as above, the weighted dual graph of $T_{0}$ is the
same as that of $E$ . The weighted dual graph of $T_{1}$ then looks like that of Figure 2.

Thus, we obtain an algebraic compactification (V, $D$ ) of $S=C^{2}/G$ such that
$D$ is an SNC-divisor, each irreducible component of $D$ is a rational curve and the
weighted dual graph of $D$ looks like that of Figure 2. By Lemma 1.2 and the assertion
(1) of Theorem 3.3, (V, $D$) is the unique minimal normal compactification of $S$ , up
to isomorphisms. This proves the assertion (2) of Theorem 3.3.

The proof of Theorem 3.3 is thus completed.
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