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UNIT TANGENT BUNDLE OVER TWO-DIMENSIONAL
REAL PROJECTIVE SPACE

TATSUO KONNO

ABSTRACT. In this paper, we prove that the unit tangent bundle over the two-
dimensional real projective space is isometric to a lens space. Also, we characterize
the Killing vector fields and the geodesics of this bundle in terms of the geometry of
the base space.

1. INTRODUCTION
It has been proven by Klingenberg and Sasaki [1] that the unit tangent bundle over

a unit two-sphere is isometric to the three-dimensional real projective space of constant
curvature 1/4. The authors also studied the geodesics of the bundle. In this paper,
we prove that the unit tangent bundle over two-dimensional real projective space is
isometric to a lens space. Then we describe the Killing vector fields on this bundle in
terms of the geometry of the base space, and characterize the geodesics of the bundle
using the Killing vector fields on the base space.

Let $S^{n}(k)$ denote an n-dimensional sphere of radius $1/\sqrt{k}$ in the Euclidean $(n+1)-$

space. We assume that the center of $S^{n}(k)$ is fixed at the origin of the Euclidean space,
and that $S^{n}(k)$ is endowed with the standard metric. The sectional curvatures of $S^{n}(k)$

are constant, $k$ . We then denote by $RP^{n}(k)$ the real projective space that is given by
identifying the antipodal points of $S^{n}(k)$ . In order to define lens spaces, we identify
the point $(x^{1}, x^{2}, x^{3}, x^{4})$ of $R^{4}$ with the point $(x^{1}+\sqrt{-1}x^{2}, x^{3}+\sqrt{-1}x^{4})$ of $C^{2}$ . For
any relatively prime integers $p,$ $q$ satisfying $1\leq q<p$ , an isometry of $S^{3}(k)$ is given by

$(Z^{1}, Z^{2})\leftrightarrow(Z^{1}e^{2\pi\sqrt{-1}/p}, Z^{2}e^{2\pi\sqrt{-1}q/p})$ , where $(Z^{1}, Z^{2})\in S^{3}(k)\subset C^{2}$ .

Let $\Gamma(p, q)$ denote the transformation group generated by this isometry. The quotient
space $S^{3}(k)/\Gamma(p, q)$ is then called the lens space of type $(p, q)$ .

For a Riemannian manifold $(M, g)$ , let $U(M)$ denote the unit tangent bundle over
$M$ , whose total space is the tangent vectors of length one. We assume the Sasaki metric
on $U(M)$ . Let $i(M)$ denote the Lie algebra of the Killing vector fields on $M$ . Then we
have
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Theorem 1.1. (i) The unit tangent bundle $U(RP^{2}(1))$ over the two-dimensional
real projective space $RP^{2}(1)$ is isometric to the lens space $S^{3}(1/4)/\Gamma(4,1)$ .

(ii) The Lie algebra of the Killing vector fields on this space is given by

$i(U(RP^{2}(1)))=span\{X^{L}, F;X\in i(RP^{2}(1))\}$ ,

where $X^{L}$ denotes the natural lift of $X$ , and $F$ denotes the geodesic spray on $U(RP^{2}(1))$ .
Hence, the dimension of the lens space $S^{3}(1/4)/\Gamma(4,1)$ is five.

(iii) Any integral curve of the natural lift $X^{L}$ is a geodesic in $U(RP^{2}(1)).$ Con-
versely, every geodesic in the unit tangent bundle can be obtained in this way.

The first part of Theorem 1.1 can be proven by considering the isometry of $RP^{3}(1)$

as $SO(3)\times SO(3)$ ([5]). But, we characterize $U(RP^{2}(1))$ in terms of the geometry of
the base space. This allows us to know the relation between the total space and the
base space.

2. THE KILLING VECTOR FIELDS ON $U(S^{2}(1))$

In this section we describe the general forms of Killing vector fields on $U(S^{2}(1))$ ,
and study certain properties of the Lie algebra $i(U(S^{2}(1)))$ . These shall be used in the
proof of Theorem 1.1.

Let $SO(S^{2}(1))$ be the bundle of all oriented orthonormal frames over $S^{2}(1)$ , and let
$\theta$ and $\omega$ denote the canonical form and the Riemannian connection form on $SO(S^{2}(1))$ ,
respectively. If we consider the Riemannian metric $G$ on $SO(S^{2}(1))$ as defined by

$G(Z, W)={}^{t}\theta(Z)\theta(W)+\frac{1}{2}$trace $({}^{t}\omega(Z)\omega(W))$ for $Z,$ $W\in T_{u}SO(S^{2}(1)),$ $u\in SO(S^{2}(1))$ ,

then the bundle $SO(S^{2}(1))$ is isometric to the unit tangent bundle $U(S^{2}(1))$ ([3],
Theorem 2). In fact, the isometric mapping of $SO(S^{2}(1))$ onto $U(S^{2}(1))$ is given by

(2.1) $SO(S^{2}(1))\ni(X_{1}, X_{2})\mapsto X_{2}$ .

In the following, we identify $SO(S^{2}(1))$ with $U(S^{2}(1))$ in this manner.
We present several lemmas concerning the Lie algebra $i(SO(S^{2}(1)))$ . The next

lemma folows from Theorem 1.2 in [3].
Lemma 2.1. The Lie algebra of the Killing vector fields on $SO(S^{2}(1))$ is given by

$i(SO(S^{2}(1)))=span\{X^{L}, A^{*}, B(\xi);X\in i(S^{2}(1)), A\in o(2), \xi\in R^{2}\}$ ,

where 0(2) is the Lie algebra of the special orthogonal group $SO(2),$ $A^{*}$ denotes the
fundamental vector field corresponding to $A$ in 0(2), and $B(\xi)$ denotes the standard
horizontal vector field corresponding to $\xi$ in $R^{2}$ .
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For $X,$ $Y$ in $i(S^{2}(1)),$ $A,$ $C$ in 0(2), and $\xi,$
$\eta$ in $R^{2}$ , it follows that

$[X^{L}, Y^{L}]=[X, Y]^{L}$ , $[A^{*}, C^{*}]=0$ , $[X^{L}, A^{*}]=0$ ,

$[B(\xi), B(\eta)]=-(\xi A \eta)^{*}$ , [X $LB(\xi)$ ] $=0$ , $[A^{*}, B(\xi)]=B(A\xi)$ ,

where $(\xi\wedge\eta)$ is the element of $o(2)$ defined by $(\xi\wedge\eta)(=(\eta, \zeta)\xi-(\xi, \zeta)\eta$ , for $\zeta\in R^{2}$ .
Lemma 2.2. The Lie algebm $i(SO(S^{2}(1)))$ is decomposed as a direct sum:

$i(SO(S^{2}(1)))=\mathcal{I}\oplus \mathcal{J}$ ,

where we put

$\mathcal{I}=span\{X^{L} ; X\in i(S^{2}(1))\}$ , and $\mathcal{J}=span\{A^{*}, B(\xi);A\in o(2), \xi\in R^{2}\}$ .

Proof. From Lemma 2.1, the subspaces $\mathcal{I}$ and $\mathcal{J}$ are ideals in $i(SO(S^{2}(1)))$ . So Lemma
2.2 follows from the definition of direct sum. $\square $

$\mathcal{I}$ and $\mathcal{J}$ are vector spaces over $R$ , and each of them admits a natural inner product
$\langle$ , $\rangle$ . In fact, for $X^{L}$ and $Y^{L}$ in $\mathcal{I}$ , set $\langle X^{L}, Y^{L}\rangle=G(X^{L}, Y^{L})_{u}$ , where $u$ is an arbitrary
point of $SO(S^{2}(1))$ . This is independent of the choice of $u$ . Because, from Lemma 2.1,
we have that

$A^{*}G(X^{L}, Y^{L})=G([A^{*}, X^{L}], Y^{L})+G(X^{L}, [A^{*}, Y^{L}])=0$ ,

$B(\xi)G(X^{L}, Y^{L})=G([B(\xi), X^{L}], Y^{L})+G(X^{L}, [B(\xi), Y^{L}])=0$

and since these formulas hold for any $A$ in 0(2) and $\xi$ in $R^{2}$ , the function $G(X^{L}, Y^{L})$ is
constant on $SO(S^{2}(1))$ , and hence the inner product $\langle, \rangle$ is well defined. On the other
hand, the natural inner product $\langle, \rangle$ on $\mathcal{J}$ is defined by

$\langle A^{*}+B(\xi), C^{*}+B(\eta)\rangle=G(A^{*}+B(\xi), C^{*}+B(\eta))_{u}$

for $A,$ $C$ in 0(2), and $\xi,$
$\eta$ in $R^{2}$ . Indeed, we have

$G(A^{*}+B(\xi), C^{*}+B(\eta))_{u}=\frac{1}{2}$ trace $({}^{t}A\cdot C)+{}^{t}\xi\cdot\eta$ .

This is also independent of the choice of $u$ in $SO(S^{2}(1))$ .
Let $D$ denotes the Levi-Civita connection of the Riemannian manifold $(R)(S^{2}(1)),$ $G$).

Then we have
Lemma 2.3. Each $\alpha$ in $\mathcal{I}$ or $\mathcal{J}$ satisfies $D_{\alpha}\alpha=0$ . Conversely, if $\alpha$ in $i(SO(S^{2}(1)))$

–59 –



satisfies $D_{\alpha}\alpha=0$ , then it belongs to either $\mathcal{I}$ or Jl.
Proof. For any $X$ in $i(S^{2}(1)),$ $A$ in $o(2)$ , and $\xi$ in $R^{2}$ , we have from Lemma 2.1 that

$G(D_{X^{L}}X^{L}, A^{*})=X^{L}G(X^{L}, A^{*})-G(X^{L}, D_{X^{L}}A^{*})$

$=X^{L}G(X^{L}, A^{*})=G([X^{L}, X^{L}], A^{*})+G(X^{L}, [X^{L}, A^{*}])=0$ ,
$G(D_{X^{L}}X^{L}, B(\xi))=X^{L}G(X^{L}, B(\xi))-G(X^{L}, D_{X^{L}}B(\xi))$

$=X^{L}G(X^{L}, B(\xi))=G([X^{L}, X^{L}], B(\xi))+G(X^{L}, [X^{L}, B(\xi)])=0$ .

From these formulas, we can see that $D_{X^{L}}X^{L}=0$ because vector fields such as $A^{*}$ and
$B(\xi)$ give the basis of each tangent space of $SO(S^{2}(1))$ .

For any $A$ in 0(2) and $\xi,$
$\eta$ in $R^{2}$ , the Killing vector fields $A^{*},$ $B(\xi)$ and $B(\eta)$ have

the constant norms, so we have that

$G(D_{(A^{*}+B(\xi))}(A^{*}+B(\xi)), A^{*})$

$=(A^{*}+B(\xi))G(A^{*}+B(\xi), A^{*})-G(A^{*}+B(\xi), D_{(A^{*}+B(\xi))}A^{*})$

$=A^{*}G(A^{*}, A^{*})+A^{*}G(B(\xi), A^{*})+B(\xi)G(A^{*}, A^{*})+B(\xi)G(B(\xi), A^{*})$

$-G(A^{*}, D_{A}*A^{*})-G(A^{*}, D_{B(\xi)}A^{*})-G(B(\xi), D_{A}\cdot A^{*})-G(B(\xi), D_{B(\xi)}A^{*})=0$

and that

$G(D_{(A^{*}+B(\xi))}(A^{*}+B(\xi)), B(\eta))$

$=(A^{*}+B(\xi))G(A^{*}+B(\xi), B(\eta))-G(A^{*}+B(\xi), D_{(A^{*}+B(\xi))}B(\eta))$

$=-G(A^{*}, D_{B(\xi)}B(\eta))-G(B(\xi), D_{A}*B(\eta))=0$ .

Hence we obtain that $D_{(A^{*}+B(\xi))}(A^{*}+B(\xi))=0$ , also. Thus, we have proven the first
part of Lemma 2.3.

In order to prove the second part, we assume that $D_{\alpha}\alpha=0$ for $\alpha$ in $i(SO(S^{2}(1)))$

with $\alpha\neq 0$ . By Lemma 2.1, there exist $X$ in $i(S^{2}(1)),$ $A$ in 0(2), and $\xi$ in $R^{2}$ such that
$\alpha=X^{L}+A^{*}+B(\xi)$ . From the first part of Lemma 2.3, we find that $ D_{\alpha}\alpha$ is

(2.2) $D_{(A^{e}+B(\xi))}X^{L}+D_{X^{L}}(A^{*}+B(\xi))=0$ .

Let $C$ be a non-zero element of 0(2). Then, if $A=0$ , equation (2.2) implies

(2.3) $G(D_{B(\xi)}X^{L}, C^{*})+G(D_{X^{L}}B(\xi), C^{*})=0$ .

On the other hand, if $A\neq 0$ , by calculating the inner product of $A^{*}$ and the left hand
side of (2.2) we obtain

$G(D_{A}*X^{L}+D_{B(\xi)}X^{L}+D_{X^{L}}A^{*}+D_{X^{L}}B(\xi), A^{*})$

$=G(D_{B(\xi)}X^{L}, A^{*})+G(D_{X^{L}}B(\xi), A^{*})$ .
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Since $A$ is a scalar multiple of $C$ , we also obtain equation (2.3) in this case.
When $\xi\neq 0$ , we can show that $X=0$ as follows: From (2.3) and Lemma 2.1, we

have that

$0=G(D_{B(\xi)}X^{L}, C^{*})+G(D_{X^{L}}B(\xi), C^{*})$

$=B(\xi)G(X^{L}, C^{*})-\{G(X^{L}, D_{B(\xi)}C^{*})+G(B(\xi), D_{X}{}_{L}C^{*})\}$

$=B(\xi)G(X^{L}, C^{*})=G([B(\xi), X^{L}], C^{*})+G(X^{L}, [B(\xi), C^{*}])$

$=-G(X^{L}, B(C\xi))=-G(X^{H}, B(C\xi))$ ,

where $X^{H}$ is the horizontal lift of $X$ . It follows from this formula that the assumption
that $\xi\neq 0$ implies the existence of a function $f$ such that $X^{H}=f\cdot B(\xi)$ . Then, we
have

$0=[C^{*}, X^{H}]=[C^{*}, f\cdot B(\xi)]=(C^{*}f)\cdot B(\xi)+f\cdot[C^{*}, B(\xi)]=(C^{*}f)\cdot B(\xi)+f\cdot B(C\xi)$ .

Since $B(\xi)$ and $B(C\xi)$ are linearly independent, we obtain $f=0$ and $X=0$ .
When $\xi=0$ and $A\neq 0$ , we can show that $X=0$ as follows: Let $\eta$ be an arbitrary

element of $R^{2}$ . From (2.2) we have that

$0=G(D_{A}*X^{L}, B(\eta))+G(D_{X^{L}}A^{*}, B(\eta))$

$=-G(D_{B(\eta)}X^{L}, A^{*})-G(A^{*}, D_{X^{L}}B(\eta))$

$=-B(\eta)G(X^{L}, A^{*})+G(X^{L}, D_{B(\eta)}A^{*})+G(D_{X^{L}}A^{*}, B(\eta))$

$=-B(\eta)G(X^{L}, A^{*})=-G([B(\eta), X^{L}], A^{*})-G(X^{L}, [B(\eta), A^{*}])$

$=G(X^{L}, B(A\eta))=G(X^{H}, B(A\eta))$ .

Since $\eta$ is an arbitrary element of $R^{2}$ , the vector field $X^{H}$ vanishes from the assumption
of $A\neq 0$ , and hence $X=0$ . We have proven the second part of Lemma 2.3. $\square $

Let $\Phi$ be an isometry of $SO(S^{2}(1))$ and $\alpha$ an element of $\mathcal{I}$ or $\mathcal{J}$ . Then we have

$\Phi(\alpha)\in i(SO(S^{2}(1)))$ , and $D_{\Phi(\alpha)}\Phi(\alpha)=0$ .

Hence $\Phi(\alpha)$ belongs to $\mathcal{I}$ or $\mathcal{J}$ . Furthermore, we can show that
Lemma 2.4. Let $\Phi$ be an isometry of $SO(S^{2}(1))$ . Then the image $\Phi(\mathcal{I})of\mathcal{I}$ coincides
with $either\mathcal{I}$ or $\mathcal{J}$ , and the restricted mapping $\Phi|_{\mathcal{I}}$ provides an isometric linear mapping

of $\mathcal{I}$ into $i(SO(S^{2}(1)))$ . Similar facts hold for .7.
Proof. We only prove this lemma for $\mathcal{I}$ because the case of $\mathcal{J}$ can be shown inasimilar
way. The mapping $\Phi|_{\mathcal{I}}$ is a linear mapping of $\mathcal{I}$ into $t(SO(S^{2}(1)))$ , and preserves the
inner products on $\mathcal{I}$ because the differential $\Phi_{*}$ preserves the inner products of the
tangent spaces. Let $\{X^{L}, Y^{L}, Z^{L}\}$ be an orthonormal basis of $\mathcal{I}$ . At each point $u$ of
$SO(S^{2}(1))$ , we have

$G(\Phi(X^{L}), \Phi(Y^{L}))_{u}=0$ , $G(\Phi(Y^{L}), \Phi(Z^{L}))=0$ and $G(\Phi(Z^{L}), \Phi(X^{L}))=0$ .
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According to these orthogonalities, the space spanned by $\Phi(X^{L}),$ $\Phi(Y^{L})$ and $\Phi(Z^{L})$

must coincide with $\mathcal{I}$ or $\mathcal{J}$ , because there exists a point $u$ of $SO(S^{2}(1))$ for any non-zero
$\alpha$ in $\mathcal{I}$ and $\beta$ in $\mathcal{J}$ such that $G(\alpha, \beta)_{u}\neq 0$ . In fact, if

$G(X^{L}, A^{*}+B(\xi))=0$ and $A^{*}+B(\xi)\neq 0$

hold for some $X$ in $i(S^{2}(1)),$ $A$ in 0(2) and $\xi$ in $R^{2}$ , then we can derive that $X^{L}=0$

from these conditions as follows:
When $\xi\neq 0$ , let $C$ be a non-zero element of 0(2). It then follows from Lemma 2.1

that
$G(X^{L}, B(C\xi))=G(X^{L}, [C^{*}, B(\xi)])=C^{*}G(X^{L}, A^{*}+B(\xi))=0$ .

From this, we can similarly obtain that $G(X^{L}, B(C^{2}\xi))=0$ . Since $ C\xi$ and $ C^{2}\xi$ are
linearly independent, we know that the horizontal part of $X^{L}$ vanishes, and hence
$X^{L}=0$ .

When $\xi=0$ and $A\neq 0$ , let $\eta$ be a non-zero element of $R^{2}$ . It then follows from
Lemma 2.1 that

$G(X^{L}, B(A\eta))=G(X^{L}, [A^{*}, B(\eta)])=-B(\eta)G(X^{L}, A^{*}+B(\xi))=0$ .

From this, we obtain that $G(X^{L}, B(A^{2}\eta))=0$ and that $X^{L}=0$ in the same way as
the former case. $\square $

Lemma 2.5. (i) There exists an isometry of $SO(S^{2}(1))$ that maps $\mathcal{I}$ onto $\mathcal{J}$ , and
$\mathcal{I}$ is isomorphic to Jas Lie algebra.

(ii) Let $a$ be a positive number, and set $\mathcal{I}_{a}=\{\alpha\in \mathcal{I};\langle\alpha, \alpha\rangle=a^{2}\}$ . Then, there
exists an isometry subgroup of $SO(S^{2}(1))$ that acts transitively on $\mathcal{I}_{a}$ . The same holds
for $\mathcal{J}$ .
Proof. (i) Since the Riemannian manifold $(SO(S^{2}(1)), G)$ is isometric to the real
projective space $RP^{3}(1/4)$ , it is sufficient to show (i) for $RP^{3}(1/4)$ . Since the Lie
algebra $i(RP^{3}(1/4))$ can be identified with the Lie algebra $i(S^{3}(1/4))$ , we will prove (i)
for $i(S^{3}(1/4))$ .

We define a linearly independent system $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ of the Lie algebra $o(4)$ of the
special orthogonal group $SO(4)$ by
(2.4)

$\alpha_{1}=\left(\begin{array}{llll} & -1 & & 0\\1 & & & \\0 & & 1 & -1\end{array}\right)$ , $\alpha_{2}=\left(\begin{array}{llll}0 & & 1 & \\ & & & -1\\-1 & 1 & & 0\end{array}\right)$ , $\alpha_{3}=\left(\begin{array}{llll}0 & & & 1\\ & & 1 & \\-1 & -1 & & 0\end{array}\right)$ .

For each $\alpha_{i},$ $1\leq i\leq 3$ , a one-parameter group of transformations $\Psi_{i}$ of $S^{3}(1/4)$ can
be given by

$\Psi_{i}(t, x)=(\exp\frac{t}{2}\alpha_{i})x$ for $t\in R$ and $x\in S^{3}(1/4)$ .
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Each $\Psi_{i}$ is an isometry of $S^{3}(1/4)$ for any fixed $t$ . Using the standard coordinate system
of $R^{4},$ $\Psi_{i}$ is represented by

$\Psi_{1}(t, x)=$ ( $x^{1}\cos\frac{t}{2}-x^{2}$ sin $\frac{t}{2},$
$x^{1}$ sin $\frac{t}{2}+x^{2}$ cos $\frac{t}{2},$

$x^{3}$ cos $\frac{t}{2}-x^{4}\sin\frac{t}{2},$ $x^{3}\sin\frac{t}{2}+x^{4}\cos\frac{t}{2}$ ),

$\Psi_{2}(t, x)=$ ( $x^{1}\cos\frac{t}{2}+x^{3}\sin\frac{t}{2},$ $-x^{4}\sin\frac{t}{2}+x^{2}\cos\frac{t}{2},$ $x^{3}$ cos $\frac{t}{2}-x^{1}\sin\frac{t}{2},$ $x^{2}\sin\frac{t}{2}+x^{4}\cos\frac{t}{2}$ ),

$\Psi_{3}(t, x)=(x^{1}\cos\frac{t}{2}+x^{4}\sin\frac{t}{2}, x^{2}\cos\frac{t}{2}+x^{3}\sin\frac{t}{2}, x^{3}\cos\frac{t}{2}-x^{2}\sin\frac{t}{2}, x^{4}\cos\frac{t}{2}-x^{1}\sin\frac{t}{2})$ ,

where $x=(x^{1}, x^{2}, x^{3}, x^{4})$ . We can easily see that each orbit of $\Psi_{i}(t, x_{0}),$ $t\in R$ , through
any point $x_{0}$ in $S^{3}(1/4)$ is a geodesic of $S^{3}(1/4)$ . Next, we consider a Killing vector
field $X_{i}$ on $S^{3}(1/4)$ that is defined by

(2.5) $S^{3}(1/4)\ni x\leftrightarrow\frac{d}{dt}(\Psi_{i}(t, x))|_{t=0}$

In other words, $\Psi_{i}(t, \cdot)$ is a (local) one-parameter group of (local) transformations
generated by $X_{i}$ . Using the standard coordinate system of $R^{4}$ , we have

(2.6) $2X_{1}=-x^{2}\frac{\partial}{\partial x^{1}}+x^{1}\frac{\partial}{\partial x^{2}}-x^{4}\frac{\partial}{\partial x^{3}}+x^{3}\frac{\partial}{\partial x^{4}}$ ,

$2X_{2}=x^{3}\frac{\partial}{\partial x^{1}}-x^{4}\frac{\partial}{\partial x^{2}}-x^{1}\frac{\partial}{\partial x^{3}}+x^{2}\frac{\partial}{\partial x^{4}}$ ,

$2X_{3}=x^{4}\frac{\partial}{\partial x^{1}}+x^{3}\frac{\partial}{\partial x^{2}}-x^{2}\frac{\partial}{\partial x^{3}}-x^{1}\frac{\partial}{\partial x^{4}}$ .

The vector fields $X_{1},$ $X_{2}$ and $X_{3}$ are orthonormal at each point of $S^{3}(1/4)$ , and hence
the space spanned by $X_{1},$ $X_{2}$ and $X_{3}$ corresponds to $\mathcal{I}$ or $\mathcal{J}$ (cf. the proof of Lemma
2.4). Now, we define the isometry $\Phi$ of $S^{3}(1/4)$ by

$\Phi(x_{1}, x_{2}, x_{3}, x_{4})=(x_{1}, x_{3}, x_{2}, x_{4})$ ,

where $\Phi$ also yields an isometry of $RP^{3}(1/4)$ . Then,

$X_{1},$ $X_{2},$ $X_{3},$ $\Phi(X_{1}),$ $\Phi(X_{2}),$ $\Phi(X_{3})$

provide a linearly independent system of $i(S^{3}(1/4))$ . The elements of $o(4)$ corresponding
to $\Phi(X_{1}),$ $\Phi(X_{2}),$ $\Phi(X_{3})$ are respectively given by
(2.7)

$\beta_{1}=\left(\begin{array}{llll}0 & & -1 & \\ & & & -1\\1 & 1 & & 0\end{array}\right)$ , $\beta_{2}=\left(\begin{array}{llll} & 1 & & 0\\-1 & & & \\0 & & 1 & -1\end{array}\right)$ , $\beta_{3}=\left(\begin{array}{llll}0 & & & 1\\ & & -1 & \\-1 & 1 & & 0\end{array}\right)$ .
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Then, (2.4) and (2.7) provide a basis of 0(4). Hence, the isometry corresponding to $\Phi$

maps $\mathcal{I}$ onto $\mathcal{J}$ . Thus, we have proven (i) of Lemma 2.5.
(ii) Let $a$ be any positive number. We note that there is a one-to-one correspond-

ence between $\mathcal{I}_{a}$ and the set of all axes of rotation of $S^{2}(1)$ . Since the isometry group
of $S^{2}(1)$ acts transitively on the set of such axes, statement (ii) of Lemma 2.5 holds for
$\mathcal{I}$ . Together with (i) of Lemma 2.5, statement (ii) also holds for $\mathcal{J}$ . $\square $

3. PROOF OF THEOREM 1.1
In this section we prove Theorem 1.1. In the following, the vector fields on $U(S^{2}(1))$

are identified with that of $SO(S^{2}(1))$ by (2.1). First we show that the unit tangent
bundle $U(S^{2}(1))$ is isometric to the lens space $S^{3}(1/4)/\Gamma(4,1)$ . As stated in \S 1, each
point $(x^{1}, x^{2}, x^{3}, x^{4})$ of $R^{4}$ is identified with the point $(x^{1}+\sqrt{-1}x^{2}, x^{3}+\sqrt{-1}x^{4})$ of
$C^{2}$ . We define the one-parameter group of transformations $\varphi_{t}$ of $S^{3}(1/4)$ by

$\varphi_{t}(Z^{1}, Z^{2})=(Z^{1}e^{t\sqrt{-1}/2}, Z^{2}e^{t\sqrt{-1}/2})$ , $t\in R$ .

The transformation group generated by $\varphi_{\pi}$ is $\Gamma(4,1)$ , which is defined in \S 1. Using
the standard coordinate system of $R^{4}$ , we have

$\varphi_{t}(x)=$ ( $x^{1}\cos\frac{t}{2}-x^{2}$ sin $\frac{t}{2},$ $x^{1}\sin\frac{t}{2}+x^{2}$ cos $\frac{t}{2},$ $x^{3}\cos\frac{t}{2}-x^{4}\sin\frac{t}{2},$ $x^{3}\sin\frac{t}{2}+x^{4}\cos\frac{t}{2}$ ),

where $x=(x^{1}, x^{2}, x^{3}, x^{4})\in R^{4}$ . This is $\Psi_{1}(t, x)$ that was defined in the proof of Lemma
2.5. Let us recall from (2.5) and (2.6) that $\varphi_{t}(=\Psi_{1}(t, \cdot))$ is the one-parameter group
of transformations that is generated by the Killing vector field $X_{1}$ on $S^{3}(1/4)$ . $X_{1}$ is
automatically regarded as a Killing vector field on $RP^{3}(1/4)$ , and we denote this vector
field by $\tilde{X}_{1}$ . Any integral curve of $\tilde{X}_{1}$ is a closed geodesic with length $ 2\pi$ in $RP^{3}(1/4)$ .
Let $\tilde{\varphi}_{t}$ be the one-parameter group of transformations of $RP^{3}(1/4)$ generated by $\tilde{X}_{1}$ ,
where $t$ is the arc length parameter of the closed geodesic. Let us recall that $X_{1}$

corresponds to an element of ideal $\mathcal{I}$ or $\mathcal{J}$ , which were both definded in \S 2. Then
we also know that $\tilde{X}_{1}$ corresponds to an element of $\mathcal{I}$ or $\mathcal{J}$ . By Lemma 2.5, there
exists an isometric mapping of $RP^{3}(1/4)$ onto $U(S^{2}(1))$ that maps the vector field $\tilde{X}_{1}$

to the vector field $B(e_{2})$ on $U(S^{2}(1))$ . Let $\tilde{\varphi}_{t}$ also denote the one-parameter group
of transformations of $U(S^{2}(1))$ generated by $B(e_{2})$ . Since the transformation group
$\Gamma(4,1)$ is generated by $\varphi_{\pi}$ , we have that

$ S^{3}(1/4)/\Gamma(4,1)=S^{3^{isome.isome}}(1/4)/\langle\varphi_{\pi})\approx RP^{3}(1/4)/\langle\tilde{\varphi}_{\pi}\rangle\approx U(S^{2}(1))/\langle\tilde{\varphi}_{\pi}\rangle$ ,

where \langle $\varphi_{\pi}$ ) and $\langle\tilde{\varphi}_{\pi}\rangle$ are the transformation groups that are generated by $\varphi_{\pi}$ and $\tilde{\varphi}_{\pi}$ ,
respectively. Since $\tilde{\varphi}_{\pi}$ identifies the antipodal points of the base space $S^{2}(1)$ , it follows
that $ U(S^{2}(1))/\langle\tilde{\varphi}_{\pi}\rangle$ is isometric to $U(RP^{2}(1))$ . Consequently, the unit tangent bundle
$U(RP^{2}(1))$ is isometric to the lens space $S^{3}(1/4)/\Gamma(4,1)$ . We have proven the first
part of Theorem 1.1.
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We next describe the Killing vector field on the unit tangent bundle $U(RP^{2}(1))$ in
terms of the geometry of the base space. Let $W$ be a Killing vector field on $U(RP^{2}(1))$ .
We know from Theorem 1.2 in [3] that, for any point $u$ of $U(RP^{2}(1))$ , there exist a
neighborhood $V$ of $u,$ $X$ in $i(S^{2}(1)),$ $A$ in $o(2)$ , and $\xi$ in $R^{2}$ such that the formula

(3.1) $W=X^{L}+A^{*}+B(\xi)$

holds on $V$ . With the other expression

(3.2) $W=Y^{L}+C^{*}+B(\eta)$ , $Y\in i(S^{2}(1)),$ $C\in o(2),$ $\eta\in R^{2}$

on the open set, we have from (3.1) and (3.2) that $(X-Y)^{L}+(A-C)^{*}+B(\xi-\eta)=0$ on
V. By the same calculation that for Lemma 2.1, we obtain that $X=Y,$ $A=C$ and that
$\xi=\eta$ . Hence, formula (3.1) holds on $U(RP^{2}(1))$ . By presuming that $\xi=a^{1}e_{1}+a^{2}e_{2}$

for $a_{1},$ $a_{2}\in R$ , we have that

(3.3) $(\tilde{\varphi}_{\pi})_{*}W-Wo(\tilde{\varphi}_{\pi})=(\tilde{\varphi}_{\pi})_{*}(X^{L}+A^{*}+B(\xi))-(X^{L}+A^{*}+B(\xi))\circ(\tilde{\varphi}_{\pi})$

$=(\tilde{\varphi}_{\pi})_{*}(X^{L})+(\tilde{\varphi}_{\pi})_{*}(A^{*})+a^{1}(\tilde{\varphi}_{\pi})_{*}(B(e_{1}))+a^{2}(\tilde{\varphi}_{\pi})_{*}(B(e_{2}))$

$-(X^{L})\circ(\tilde{\varphi}_{\pi})-A^{*}\circ(\tilde{\varphi}_{\pi})-a^{1}B(e_{1})\circ(\tilde{\varphi}_{\pi})-a^{2}B(e_{2})\circ(\tilde{\varphi}_{\pi})$ .

Since $\tilde{\varphi}_{t}$ is the one-parameter group of transformations generated by $B(e_{2})$ , the vector
field $B(e_{2})$ is invariant for all $\tilde{\varphi}_{t}$ . Likewise, since $\tilde{\varphi}_{t}$ is commutable with any element
of the one-parameter group of transformations generated by $X^{L}$ , the vector field $X^{L}$ is
also invariant for all $\tilde{\varphi}_{t}$ . Thus, we now have that

(3.4) $(\tilde{\varphi}_{\pi})_{*}(X^{L})=(X^{L})\circ(\tilde{\varphi}_{\pi})$ ,

(3.5) $(\tilde{\varphi}_{\pi})_{*}(B(e_{2}))=B(e_{2})\circ(\tilde{\varphi}_{\pi})$ .

On the other hand, since $\tilde{\varphi}_{\pi}$ identifies the antipodal points of the base space $S^{2}(1)$ , we
have that

(3.6) $(\tilde{\varphi}_{\pi})_{*}(A^{*})=-A^{*}\circ(\tilde{\varphi}_{\pi})$ ,

(3.7) $(\tilde{\varphi}_{\pi})_{*}(B(e_{1}))=-B(e_{1})\circ(\tilde{\varphi}_{\pi})$ ,

where we regard $A^{*}$ and $B(e_{1})$ as vector fields on $U(S^{2}(1))$ by (2.1). By substituting
formulas (3.4), (3.5), (3.6) and (3.7) for formula (3.3), we obtain that

$(\tilde{\varphi}_{\pi})_{*}W-W\circ(\tilde{\varphi}_{\pi})=-2\{A^{*}+a^{1}B(e_{1})\}\circ(\tilde{\varphi}_{\pi})$ .

However, $W$ is the vector field on $U(RP^{2}(1))$ , and is invariant by $\tilde{\varphi}_{\pi}$ . Hence, formula
above must vanishes on $U(RP^{2}(1))$ . For this to hold, we must have that $A=0$ and
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$a^{1}=0$ , that is to say, $W=X^{L}+a^{2}B(e_{2})$ from (3.1). Conversely, every vector field of
that form is invariant by $\tilde{\varphi}_{\pi}$ , and is a Killing vector field on $U(RP^{2}(1))$ . Note that the
vector field $B(e_{2})$ corresponds to the geodesic spray $F$ on $U(RP^{2}(1))$ . Then, we have
that

$i(U(RP^{2}(1)))=span\{X^{L}, F;X\in i(RP^{2}(1))\}$ .
Thus, we have described the Killing vector fields on $U(RP^{2}(1))$ .

Finally, we represent the geodesics in the unit tangent bundle $U(RP^{2}(1))$ by using
the Killing vector fields on the base space. Let $A$ be in 0(2) and $\xi$ be in $R^{2}$ . From the
first part of Lemma 2.3, any integral curve of $A^{*}+B(\xi)$ is a geodesic in $SO(S^{2}(1))$ .
Since each tangent space of $SO(S^{2}(1))$ is spanned by

$\{A_{u}^{*}+B(\xi)_{u} ; A\in o(2), \xi\in R^{2}\}$ , $u\in SO(S^{2}(1))$ ,

any geodesic of $SO(S^{2}(1))$ can be given by an integral curve of a vector field of the form
$A^{*}+B(\xi)$ . Therefore, it follows from (i) of Lemma 2.5 that any geodesic in $SO(S^{2}(1))$

can be given by an integral curve of the natural lift of a Killing vector field on $S^{2}(1)$ ,
and that the converse is also true. Since $U(RP^{2}(1))$ is identified with $ SO(S^{2}(1))/\langle\tilde{\varphi}_{\pi}\rangle$ ,
we have obtained the last statement of Theorem 1.1. $\square $
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