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Minimal singular compactifications of the
affine plane

Hipeo KOJIMA

Abstract. Let X be a minimal compactification of the complex affine plane C2.
In this paper, we show that X is a log del Pezzo surface of rank one and determine
the singularity type of X in the case where X has at most quotient singularities.
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0 Introduction

A normal compact complex surface X is called a compactification of the
complex affine plane C? if there exists a closed subvariety I’ of X such that
X — T is biholomorphic to C2. We denote simply the compactification by
the pair (X,T). A compactification (X,T) of C? is said to be minimal if T
is irreducible.

Remmert-Van de Ven [26] proved that if (X,T) is a minimal compactifi-
cation of C? and X is smooth then (X,T') = (PZ?,line). Brenton [3], Brenton—
DruckerPrins [4] and Miyanishi-Zhang [21] studied minimal compactifica-
tions of C? with at most rational double points and proved the following
results.

Theorem 0.1 (cf. [3], [4] and [21]) If(X,T) is a minimal compactification of
C? and X has at most rational double points, then X is a log del Pezzo surface
of rank one (for the definition, see Definition 2.1). Further, if Sing X # 0,
then the singularity type of X is given as one of the following: '

A17 Al +A27 A4a D57 ES’ E7, E8'
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Conversely, if X is a Gorenstein log del Pezzo surface of rank one such
that the singularity type of X is given as one of the listed as above, then X
is a minimal compactification of C2.

Theorem 0.2 (cf. [21, Theorem 2]) Let X be a Gorenstein log del Pezzo
surface of rank one. Then X is a minimal compactification of C? if and only

if m(X — Sing X) = (1).

Recently, Furushima [7] classified minimal compactifications of C? which
are normal hypersurfaces of degree < 4 in P3.

In the present article, we study minimal compactifications of C? with at
most quotient singular points (cf. [2]). Let X be a minimal compactification
of C? with at most quotient singular points. We prove that X is a log
del Pezzo surface of rank one and determine the singularity type of X (see
Theorem 1.1).

Here, we propose the following problems:

Problem 1 (Converse of Theorem 1.1) Let X be a log del Pezzo surface of
rank one. Assume that the singularity type of X is given as one of the listed
in Appendix C. Is then X a minimal compactification of C2?

Problem 2 (cf. [20]) Let X be a log del Pezzo surface of rank one. Assume
that m (X — Sing X) = (1). Is then X a minimal compactification of C2?

In general, Problems 1 and 2 are false (see §§3 and 4). However, Theorems
0.1 and 0.2 imply that Problems 1 and 2 are true in the case where X has
at most rational double points. Recently, the author [17] classified the log
del Pezzo surfaces of rank one and of index two (see (17, Theorem 1]). By
[17, Theorem 1], we know that Problems 1 and 2 are true if the index of X
is equal to two. We prove that Problem 1 is true if the index of X is equal
to three (Theorem 1.2).

In our forthcoming paper, we prove the following result.

With the same notation and assumptions as in Problem 1, assume fur-
ther that X has a non-cyclic quotient singular point. Then X is a minimal
compactification of C2.

TERMINOLOGY. A (—n)-curve is a nonsingular complete rational curve
with self-intersection number —n. A reduced effective divisor D is called an
NC-divisor (resp. an SNC-divisor) if D has only normal (resp. simple normal)
crossings. We employ the following notation:
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K x : the canonical divisor on X.

®(X — D) : the logarithmic Kodaira dimension of an open surface X — D
(cf. [11], etc.).

p(X): the Picard number of X.

F,(n > 0): the Hirzebruch surface of degree n.

M, (n > 0): a minimal section of a fixed ruling on F,.

#D: the number of all irreducible components in Supp D.

1 Results

We state the main results of the present article.
In §3, we prove the following result.

Theorem 1.1 Let (X,T) be a minimal compactification of C2. Assume that
X has at most quotient singular points and Sing X # 0. Then the following
assertions hold true:

(1) X is a log del Pezzo surface of rank one.

(2) Let 7 : (V,D) = X be the minimal resolution of X, where D is the
reduced ezceptional divisor, and let C be the proper transform of I' on V.
Then, C = P!, the divisor C 4+ D is an SNC-divisor and the weighted dual
graph of C + D is given as (n) (1 < n < 32) in Appendiz C. In particular,
#Sing X < 2.

In §5, we prove the following result.
Theorem 1.2 Let X be a log del Pezzo surface of rank one. Assume that
the indez of X is equal to three, i.e., min{n € N| nKx is Cartier} = 3.

Then X is a minimal compactification of C? if and only if the singularity
type of X is given as one of the following weighted dual graphs (1) ~ (11).

-3 -6 -4 -2 -2 -2 -2 -4

(1) (2) (3)
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-2 -2 =2 -4 -4 -2
(10) (11)
2 Preliminary results

We recall some basic notions in the theory of peeling (cf. [19] and [22]).
Let (X, D) be a pair of a nonsingular projective surface X and an SNC-
divisor D on X. We call such a pair (X, D) an SNC-pair. A connected
curve T consisting of irreducible components of D (a connected curve in D,
for short) is a twig if the dual graph of T is a linear chain and T meets
D — T in a single point at one of the end components of T, the other end
of T is called the tip of T. A connected curve R (resp. F) in B is a rod
(resp. fork) if R (resp. F) is a connected component of D and the dual graph
of R (resp. F) is a linear chain (resp. the dual graph of the exceptional
curves of a minimal resolution of a non-cyclic quotient singularity (cf. [2])).
A connected curve E in D is rational (resp. admissible) if each irreducible
component of E is rational (resp. if there are no (—1)-curves in Supp E and
the intersection matrix of E is negative definite). An admissible rational twig
T in D is mazimal if T is not extended to an admissible rational twig with
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more irreducible components of D. For the list of the weighted dual graphs
of all admissible rational forks, see [22, pp. 55 ~ 56] and (19, pp. 207 ~ 208].

Now, let A be an admissible rational rod. Then the weighted dual graph
of A is given as in Figure 1. Then we denote the admissible rational rod A by
[@1,...,a,]. We denote the determinant of A by d(A) (cf. [22, p. 87], [6, (3.3)],
etc.). The admissible rational rod [a,, ..., a,] is called the ¢transposal of A and
denoted by *A. We define also A = [a,,...,a,] and A = [a,...,a,-1]. We
call e(A) = d(A)/d(A) the inductance of A. By [6, Corollary (3.8)] (see also
[5, Proposition A.5]), e defines a one-to-one correspondence from the set of all
admissible rational rods to the set of rational numbers in the interval (0,1).
Hence there exists uniquely an admissible rational rod A* whose inductance
is equal to 1 — e(*A). We call the admissible rational rod A* the adjoint of
A.

(r=21,a;,22(1<i<r))
Figure 1

We state some results concerning log del Pezzo surfaces of rank one wihch

will be used in §§3 ~ 5.

Definition 2.1 A log del Pezzo surface X is a normal projective surface
satisfying the following two conditions:

(i) X is singular but has at most quotient singularities.

(ii) The anticanonical divosor —Kx is ample.

X is said to have rank one if p(X) = 1.

Let X be a log del Pezzo surface of rank one and let 7 : (V,D) — X
be the minimal resolution of X, where D is the reduced exceptional divisor.
Let D = 3 ; D; be the decomposition of D into irreducible components.
Then there exists uniquely an effective Q-divisor D# = Y, a;D; such that
D# 4+ Ky is numerically equivalent to 7* Kx. In Lemmas 2.2 ~ 2.6, we retain
this situation.
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Lemma 2.2 With the same notation as above, we have:

(1) —(D* + Kv) is nef and big. Moreover, for any irreducible curve F,
—(D* + Kv - F) = 0 if and only if F is a component of D.

(2) Every (—n)-curve with n > 2 is a component of D.

(3) V is a rational surface.

Proof. See [27, Lemma 1.1].

Lemma 2.3 There is no (—1)-curve E such that, after contracting E and
consecutively (smoothly) contractible curves in E + D, the divisor E + D
becomes a union of admissible rational rods and forks.

Proof. See [27, Lemma 1.4].

By Lemma 2.2 (1), we can find an irreducible curve M such that —(M -
D# + Ky ) attains the smallest positive value. In Lemmas 2.4 and 2.5, we fix
such a curve M.

Lemma 2.4 Suppose that |[M + D + Ky| # 0 and X has a singular point
P which is not a rational double point. Then P is a cyclic quotient singular
point and the other singular points on X are rational double points.

Proof. By [27, Lemma 2.1], there exists a unique decomposition of D as
a sum of effective integral divisors D = D’ + D" such that:

(i) (M- D;) =(D"- D;) = (Kv - D;) = 0 for any component D; of D'.
(ii) M+ D"+ Ky ~ 0.

Then Supp D’ N Supp D” = (@ and each connected component of D’ can be
contracted to a rational double point. By the hypothesis, D” # 0. Since
M + D" + Ky ~ 0, we know that D” = 7=!(P) and D” is a linear chain of
smooth rational curves. Q.E.D.

Suppose that |M + D + Ky| = 0. The divisor M + D is then an SNC-
divisor, consisting of smooth rational curves and the dual graph of M + D is
a tree (see (27, Proof of Lemma 2.2]). Here we note the following lemma.

Lemma 2.5 Suppose that |M+D+Kvy| = 0. Then either (V, D) is (F,, M,,),
where n = —(D?) > 2, or we may assume that M is a (—1)-curve.
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Proof. See [27, Lemma 2.2] and [8, Proposition 3.6].

We recall the results in [15] concerning a classification of log del Pezzo
surfaces of rank one with unique singular points.

Lemma 2.6 Suppose that #Sing X = 1. Put P := Sing X. Then the
following assertions hold true:

(1) If P is a quotient singular point of type E, (n = 6,7,8) (cf. [15] and
(19, p. 208]), then there ezists a (—1)-curve C such that C + D is an SNC-
divisor and the weighted dual graph of C + D is given as (n) (4 < n < 13)
in Appendiz C. In particular, X is a minimal compactification of C2.

(2) Assume that P is a quotient singular point of type D, i.e., the
weighted dual graph of D is given as in Figure 2, where r > 3 and a; > 2
for 1 = 0,3,...,7. Then there ezists a (—1)-curve E such that (E - D) =
(E-D;) =1, wheret =1 or 2.

(3) Assume that P is a cyclic quotient singular point. Then there ezists
a (—1)-curve C such that (C- D) = 1. Moreover, X —{P} contains C* x C*,
where C* = C — {0}, as a Zariski open subset.

Dy -2
D D,
N D R
—ag —as —ay
Dy o~2
Figure 2

Proof. (1) See 15, Theorem 2.1].
(2) See [15, Theorem 3.1].
(3) See [15, Theorem 4.1].

We recall Morrow’s result [24, Theorem 9] concerning minimal normal

compactifications of C2.

Definition 2.7 Let S be a smooth complex affine surface and let (V, D)
be a pair of a smooth projective surface V and an NC-divisor D on V.
We call the pair (V, D) a normal compactification (resp. a normal algebraic
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compactification) of S if S is biholomorphic (resp. isomorphic) to V — D. A
normal compactification (or a normal algebraic compactification) (V, D) of
S is said to be minimalif (E- D — E) > 3 for any (—1)-curve E C Supp D.

Morrow [24] gave a list of all minimal normal compactifications of C2. In
§3, we use the following result.

Lemma 2.8 Let (V, D) be a minimal normal compactification of C2. Then
D s an SNC-divisor, each irreducible component of D is a smooth rational
curve and the dual graph of D is a linear chain. Moreover, if p(V) > 3,
then D contains ezactly two irreducible components, say D, and D,, with
non-negative self-intersection numbers and (D, - D,) = 1.

Proof. See [24].

For the list of all boundary dual graphs of the minimal normal compact-
ifications of C?, see [24, Theorem 9].

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Let (X,T') be a minimal compactification of C2. Assume that Sing X #0
and X has only quotient singular points as singularities. Let  : (V, D)->X
be the minimal resolution of X, where D is the reduced exceptional divisor,
and let C be the proper transform of I on V.

Proof of the assertion (1). By [24, Theorems 9 ~ 11] (see also [13]), V
1s a smooth projective rational surface and V — D is isomorphic to C? as
an algebraic variety. So X is a normal projective rational surface by [1] and
K(X — Sing X) = —oo. Since X is a minimal compactification of C2?, we
have p(X) = 1. Hence [27, Remark 1.2] and [19, Lemma 2.7] imply that X
is a log del Pezzo surface of rank one. This proves the assertion (1).

Proof of the assertion (2). Let D = ¥; D; be the decomposition of D
into irreducible components. Let x: V — V be a composite of blowing-ups
such that D := p*(C + D)rea becomes an NC-divisor and p is the shortest
among such birational morphisms. From now on, we call such a birational
morphism p a minimal NC-map for the pair (V,C + D). Let C be the proper
transform of C on V.
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Lemma 3.1 With the same notation as above, C is a rational curve with at
most unibranch singular points.

Proof. Since V— D = C?, we have |D + Ky| = 0. By [18, Lemma 1.2.1.3],
each irreducible component of D is a smooth rational curve, D is an SNC-
divisor and the dual graph of D is a tree. Hence C is a rational curve and
each singular point of C is a unibranch singular point. Q.E.D.

Lemma 3.2 With the same notation as above, we have #Sing X < 2.

Proof. Suppose to the contrary that #Sing X > 3. Since Sing X C I', we
have

(C-D—C)> #Sing X > 3.

Since y is a minimal NC-map for the pair (V, C'+ D) and D is an SNC-divisor
(cf. the proof of Lemma 3.1), we have

(E-D—E)>3

for every (—1)-curve E C Supp (D — C). So the pair (V, D) is a minimal
normal compactification of C? (see Definition 2.7). This contradicts Lemma
2.8 because the dual graph of D is not linear by the hypothesis. Q.E.D.

Remark 3.3 By [28], there exist a log del Pezzo surface X of rank one such
that m; (X — Sing X) = (1) and #Sing X > 3. By Lemma 3.2, such a surface
is not a minimal compactification of C2. So Problem 2 is false.

Lemma 3.4 The divisor C + D is an SNC-divisor. Namely, p = id.

Proof. By Lemma 2.8, it suffices to show that the divisor C + D is an NC-
divisor. Suppose to the contrary that there exists a point P € Supp (C + D)
such that the divisor C' 4+ D is not normal crossing at P. Since D is an SNC-
divisor, u is a composite of blowing-ups of infinitely near points on C. We
note that the weighted dual graph of D is a tree because |D + Ky| = 0. Let
E be a (—1)-curve which is exceptional with respect to u. By the minimality '
of u, (E-D — E) > 3, i.e.,, D is not linear. By Lemma 2.8, (V, D) is not

a minimal normal compactlﬁcatlon of C?. Hence there exisits a (—1)-curve

— 173 —



H C Supp D such that (H-D — H) < 2. It then follows from the minimality
of u that H = C.

Let f:V — W be a sequence of contractions of (=1)-curves and sub-
sequently contractible curves in Supp D, starting with the contraction of
C, such that Dw := f.(D) is an NC-divisor and has no (—1)-curves F with
(F-Dw—F) <2, i.e., the pair (W, Dw) is a minimal normal compactification
of C2. Note that f, (E) # 0 because E is a (—1)-curve. Since (E-D—E) >3
and the dual graph of D is a tree, we know that the number of connected
components of Dw — f.(E) > 2 and if the equality holds then (f.(E)?) >0
and every irreducible component of Dy — f.(E) has self-intersection number
< —1. This contradicts Lemma 2.8 because p(W) > 3. Q.E.D.

Lemma 3.5 Assume that (C?*) # —1. ThenV =F, (n >2), D = M, and
C is a fiber of the ruling on V. Namely, the weighted dual graph of C + D is
given as (1) in Appendiz C.

Proof. If C is not a (—1)-curve, then (V,C + D) is a minimal normal
compactification of C? by Lemma 3.4. Since every irreducible component of

D has self-intersection number < —2, the assertion follows from [24, Theorem
9] (see also Lemma 2.8). Q.E.D.

In the subsequent arguments, we assume that C is a (—1)-curve. Note
that (V,C + D) is then not a minimal normal compactification of C? because
(C-D) <2by Lemmas 3.2 and 3.4. Let v : V — W be a sequence of
contractions of (—1)-curves and subsequently contractible curves in Supp(C+
D), starting with the contraction of C, such that (W, Dw), where Dy =
v«(C + D), becomes a minimal normal compactification of C2.

Lemma 3.6 With the same notation and assumptions as above, (W, Dy ) =
(P%, H) or (Fu, M, + £), where H is a line on P? and £ is a fiber of a fized

ruling on F,,.

Proof. Put Q := v(C). We note that @ is a unique fundamental point of
v because C is a unique (—1)-curve in Supp (C + D).

Suppose that (W, Dw) is isomorphic to neither (P?,line) nor (F,, M,+(a
fiber of fixed ruling on F,)). Then, by [24, Theorem 9] (see also Lemma 2.8),
Dw contains two components D' and D” such that (D"?) =0, (D"?) =n >0
and (D’- D") =1 (see Figure 3).
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Figure 3

Since @ is a unique fundamental point of v, we know that (v/(D’)?) > —1
or (V'(D")?) > —1. This is a contradiction because C is a (—1)-curve and
every irreducible component of D has self-intersection number < —2.

QED.

We put V =dilg,0-:-odilg,(W) and v; = dilg,0---0dilg,, where £ > 1
and dil g, is a blowing-up with center Q; (i =1,...,£). Put E; := dil5}(Q).
Then Lemma 3.6 implies that (E; - v}(Dw).4y — E;) = 1 or 2. Hence we
obtain the following:

Lemma 3.7 With the same notation and assumptions as above, assume fur-
ther that #Sing X = 2. Let D = DM 4 D@ be the decomposition of D into
connected components. Then we have:

(1) One of DW and D@ is a rod.

(2) Assume that D) and D@ are rods. Then C meets a terminal com-
ponent of D) or D@,

(8) Assume that DO is a fork (D@ is then a rod by the assertion (1)).
Let DSV be the branching component of D), i.e., (D((,I) . DO — D((,I)) = 3.
Then (C - D((,I)) = 0 and C meets a terminal component of D®,

Now we determine the weighted dual graph of C + D in the case where
C is a (—1)-curve. We consider the following two cases separately.

Case 1: #Sing X = 1. Put P := Sing X. We consider the following three
subcases 1-1 ~ 1-3 separately.

Subcase 1-1: P is a cyclic quotient singular point. Note that, by taking a
suitable birational morphism v, we may assume that W = F, (n > 2), Dy =
M, + £, where £ is a fiber of the ruling on F,,, and that Q := v(C) ¢ M,,.
Since D is a rod, the weighted dual graph of v*(£)eq is given as in Figure 4.
In Figure 4, the subgraph denoted by the encircled A is given as in Figure 1
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and the subgraph denoted by the encircled A* is the weighted dual graph of
the adjoint of A (cf. §2), where we consider A as an admissible rational rod
whose weighted dual graph is given as in Figure 1. Hence the weighted dual
graph of C + D is given as (2) in Appendix C.

Figure 4

Subcase 1-2: P is a quotient singular point of type D. Let D = Y!_, D; be
the decomposition of D into irreducible components such that the weighted
dual graph of D is given as in Figure 2. It then follows form Lemma 3.6 and
the argument before Lemma 3.7 that C' meets D; or D, (see also [15, §3]).
Hence we know that the weighted dual graph of C + D is given as (3) in
Appendix C.

Subcase 1-3: P is a quotient singular point of type E, (n = 6,7,8). Since
C is a (—1)-curve and (C - D) = 1, by using the same argument as in the
proof of [15, Theorem 2.1], we know that the weighted dual graph of C + D
is given as (n) (4 < n < 13) in Appendix C.

Case 2: #Sing X = 2. Let D = D) 4+ D be the decomposition of D into
connected components. By Lemma 3.7 (1), we may assume that D® is a
rod. We consider the following two subcases separately.

Subcase 2-1: D®) is a rod. By Lemma 3.7 (2), we may assume that C
meets a terminal component of D). If C meets a terminal component of
DO then, by Lemma 3.6, we know that the weighted dual graph of C + D
is given as (14) in Appendix C. Assume that C' meets a component D,(l) of
DM which is not a terminal component of D). Then, by the argument
before Lemma 3.7, D,(l) + C + D™® can be contracted to a smooth point. So
D® consists entirely of (—2)-curves and (D,(I))2 = —2 — #D®, Thus, we
know that the weighted dual graph of C + D is given as (15) in Appendix C.
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Subcase 2-2: DO is a fork. Let D{" be the branching component of
DW. Then Lemma 3.7 (3) implies that C meets a terminal component of
D® and does not meet D{". Let T() be the maximal (admissible rational)
twi% of D) meeting C. By the argument before Lemma 3.7, we know that
D(gl + TMW 4+ C + DM can be contracted to a smooth point. So we can
determine the weighted dual graph of D(()l) +T® +C+ DW. Hence, by using
Lemma 3.6, we know that the weighted dual graph of C + D is given as (n)
(16 < n < 32) in Appendix C. For example, if the weighted dual graph of D
is given as in Figure 2 then, by virtue of Lemma 3.6, we know that T3 is
a (—2)-curve. Hence the weighted dual graph of C' + D is given as (16) in
Appendix C.

The proof of Theorem 1.1 is thus completed.

4 Counterexamples

In this section, we give counterexamples to Problems 1 and 2 (see Exam-
ples 4.2 and 4.3).

Counterexample to Problem 1. Let X be a log del Pezzo surface of rank
one and let 7 : (V, D) — X be the minimal resolution of X, where D is
the reduced exceptional divisor. In Example 4.1 (resp. 4.2) below, we shall
construct a log del Pezzo surface X of rank one such that the weighted dual
graph of D is given as in Figure 5 and X is a compactification of C? (resp.
not a compadctification of C?).

Figure 5

Example 4.1 Let £ be a fiber of the ruling on F; (see Figure 6-(i)). Let yx :
V' — F, be a birational morphism such that the configuration of u~(M; +¢)
is shown as in Figure 6-(ii), where C is the last exceptional curve in the
process of p. Put D := p*(M; + £);eq — C. Then the weighted dual graph of
D is given as in Figure 5. Let v : V — X be the contraction of D and put
I :=v,(C). It is then clear that (X,T) is a minimal compactification of CZ2,
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(i) * (ii)
Figure 6

Example 4.2 Let ¢, and ¢; be fibers of the ruling on F; (see Figure 7-(i)).
Let u : V — F; be a birational morphism such that the configuration of
p~Y(Ms + €, + £,) is shown as in Figure 7-(ii). Put D := pu*(Ms + ¢, +
£2)red — (C1+ C3). Then the weighted dual graph of D is given as in Figure
5. A divisor u*(¢;) defines a Pl-fibration ® := ®|,e,) : V — P! and
¢ := ®y_p : V- D — P! is an Al-fibration (i.e., a general fiber of 7
is isomorphic to the affine line A') onto P. So &(V — D) = —oo (cf. [18,
Chapter I]). Let v : V — X be the contraction of D. Then p(X) = 1. By
(27, Remark 1.2] and [19, Lemma 2.7], X is then a log del Pezzo surface of
rank one.

Now we calculate the fundamental group of V — D = X —Sing X. Since ®
has just two singular fibers u*(¢;) and u*(£;) and the multiplicity of C; (resp.
C2) in p*(£,) (resp. p*(£;)) is equal to two (resp. four), we know that every
fiber of ¢ is irreducible and ¢ has just two multiple fibers m;I’; and m,I;
with {m;,m;} = {2,4}. By [6, Proposition (4.9)], m;(V — D) is generated by
o) and o3 with the relation 0,0, = 0 = 0 = 1. Hence m(V — D)= Z/2Z.
Since m;(X — Sing X) # (1), we know that X is not a compactification of
C2,

Counterexample to Problem 2. In Remark 3.3, we note that there exists
a log del Pezzo surface X of rank one such that m;(X — Sing X) = (1) and
#Sing X > 3. Hence, by Theorem 1.1, Problem 2 is false. In Example 4.3
below, we give an example of a log del Pezzo surface X of rank one such that
m(X — Sing X)) = (1), #Sing X = 1 and X is not a compactification of C2.
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Fs

Ms -5 u!(Ms) -5

Figure 7

Example 4.3 Let ¢; and ¢, be fibers of the ruling on F, (n > 2). See
Figure 8-(i). Let u : V — F, be a birational morphism such that the
configuration of u~!'(M, + ¢; + £;) is shown as in Figure 8-(ii). Put D :=
p*(My + £, + &) — (Cy + C3). Let v : V = X be the contraction of D.
Similarly to Example 4.2, we know that X is a log del Pezzo surface of rank
one with #Sing X =1, and m;(X — Sing X) = m(V — D) = (1). However,
X is not a compactification of C? by Theorem 1.1.

1% =3+

F.(n>2) —2

—2 -2 T
4 L 1. -1

“ -1
0 0 — -2 T -2
-2 -2
M, -n ”’(M") "
0 (i)

Figure 8

- We propose the following problem:

Problem 3 Let X be a log del Pezzo surface of rank one. Assume that
71(X — Sing X) = (1) and the singularity type of X is given as one of the
listed in Appendix C. Is then X a minimal compactification of C2?
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5 Proof of Theorem 1.2

In this section, we prove Theorem 1.2

Let X be a log del Pezzo surface of rank one and of index three and let
7 : (V,D) = X be the minimal resolution of X, where D is the reduced
exceptional divisor. Since the index of X is equal to three, each singular
point of X is either a rational double point or a quotient s1ngular point of
index three. It is clear that X has at least one quotient singular points of
index three.

Lemma 5.1 Let P € X be a quotient singular point of index three. Then
the singularity type of P is given as the following weighted dual graph (n)
(1 £n <9). In particular, P is a cyclic quotient singular point or of type
D.
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-2

(9)
Proof. See [29, Proposition 6.1].

By using Theorem 1.1 and Lemma 5.1, we can prove the following:

Lemma 5.2 Assume that X is a minimal compactification of C2. Then the
weighted dual graph of D is given as (n) (1 < n < 11) in Theorem 1.2.

Proof. Since X is a minimal compactification of C2?, #Sing X < 2.

We first treat the case #Sing X = 1. Put P := Sing X. Then P is a
quotient singular point of index three. If P is a cyclic quotient singular point
then, by Theorem 1.1, the weighted dual graph of D looks like (1) or (2) in
Appendix C. So it follows from Lemma 5.1 that the weighted dual graph of
D is given as one of (1) ~ (4) in Theorem 1.2. If P is not a cyclic quotient
singular point, then P is of type D and the weighted dual graph of D looks
like (3) in Appendix C. So it follows from Lemma 5.1 that the weighted dual
graph of D is given as (5) in Theorem 1.2.

We next treat the case #Sing X = 2. Assume that X has a non-cyclic
quotient singular point, say P. Theorem 1.1 then implies that P is not
a rational double point. So P is of type D by Lemma 5.1 and hence the
weighted dual graph of D looks like (16) in Appendix C. By using Lemma
5.1 again, we know that the index of P is then not equal to three. This is a
contradiction. Hence we know that all singular points of X are cyclic quotient
singular points. Then the weighted dual graph of D looks like (14) or (15) in
Appendix C. Hence, by using Lemma 5.1, we know that the weighted dual
graph of D is given as (n) (6 <n < 11) in Theorem 1.2. Q.E.D.

— 181 —



We prove that if the singularity type of X is given as (n) (1 < n < 11)
in Theorem 1.2 then X contains C? as a Zariski open subset. We treat the
cases (3), (5) and (10) (see Theorem 1.2) only. The other cases can be treated
similarly.

Case (3). Let D = Y2, D; be the decomposition of D into irreducible
components such that the weighted dual graph of D is given as in Figure 9.
Lemma 2.6 (3) implies that there exists a (—1)-curve C such that (C-D) = 1.
By Lemma 2.3, we may assume that (C- D)= (C-D;)=1,i=2or 3.
Assume that ¢ = 3. Then, a divisor F = 2(C + D3) + D; + Dy defines
a Pl-fibration & := ®F : V = P, D, and Ds are sections of & and D is
contained in a singular fiber of ®, say G. Since Ds is a (—4)-curve, we have

#G > 5. So we have
pP(V)=T722+4(#F -1)+(#G-1) > 9,

which is a contradiction. Hence, ¢ = 2.

Now, a divisor F = 4(C'+ D;)+3D3+42D,+ D, + Ds defines a P!-fibration
® := ®|r : V — P! and Dg is a section of ®. Since p(V) = 7 = 2+ (#F 1),
® has no singular fibers other than F. So V — (C + D) = C? and hence X

becomes a minimal compactification of C2.

{gl 1)2 1)3 1)4 1)5 1)6
OoO——-o0 —O0—O———0

—4 -2 -2 -2 -2 -4

Figure 9

Case (5). Let D = "%, D; be the decomposition of D into irreducible
components such that the weighted dual graph of D is given as in Figure 2,
where we put r = 4, ag = a3 = 2 and a4 = 4. Lemma 2.6 (2) implies that
there exists a (—1)-curve C such that (C-D) = (C-D;) =1,i =1 or 2.
We may assume that ¢ = 1. Then, a divisor F = 2(C + D, + Dy) + D, + D,
defines a P'-fibration ® := @p| : V — P! and D, is a section of ®. Since
p(V) = 6 = 2+ (#F — 1), ® has no singular fibers other than F. So
V —(C + D) = C? and hence X becomes a minimal compactification of CZ2.
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Case (10). Let D = Y%, D; be the decomposition of D into irreducible
components such that the weighted dual graph of D is given as in Figure 10.

D1 D2 D3 D4 Ds D6

o——o0 o—o0—0—0

-5 -2 -2 -2 -2 =2
Figure 10

We note that p(V) =#D +1 =7 and

2 1
#_2 2
| D 3D1 + 3D2
(for the definition of D¥*, see §2). Let M be an irreducible curve on V such
that —(M - D#* + Ky) attains the smallest positive value (cf. §2).
Suppose that |[M+D+ Ky| # 0. Then Lemma 2.4 implies that (M-D,) =
(M-D;)=1and M + D, + D; + Kv ~ 0. We have

(M?) = (D, + D, + Kv)* = 4
and ,
(M-Ky)=(M-—M — D, — D;) = —6.

Hence,

—(M - D* + Ky) =5.

On the other hand, since p(V') = 7, there exists a (—1)-curve E on V. Then
we have

—(E-D* +Ky)=1—(E-D*¥)<1< —(M-D* + Kv),

which is a contradiction. Hence we know that |[M + D + Kv| = 0.

By Lemma 2.5, we may assume that M is a (—1)-curve. Note that (M -
D)=1or2and (M- D;+ D;) =0 or 1 (see §2). We consider the following
three subcases (10)-(i) ~ (10)-(iii) separately.

Subcase (10)-(i): (M - D; + D;) = 0. Then Lemma 2.3 implies that
(M-D)=(M-D;)=1,i=4or5 We may assume that i = 4. A divisor
F = 2(M + D,) + D3 + D5 defines a P!-fibration ® := @ : V — P!, D¢
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is a section of ® and D, + D, is contained in a singular fiber of @, say G.
Since Supp G contains D; which is a (—5)-curve, we have #G > 5. Then

p(V)=T22+ (#F - 1)+ (#G 1) > 9,

which is a contradiction. Hence this subcase does not take place.
Subcase (10)-(ii): (M - D, + D;) = (M - D;) = 1. Then we have

—(M-D#+KV)=§

Lemma 2.3 implies that (M - D3 + Dy + D5 + Dg) = 1. We may assume that
(M-D3)=1or (M- D,)=1.

Assume that (M - D3) = 1. Then, a divisor FF =2M + D, + D3 defines a
Pl-fibration ® := Op:V - P!, D, and D, are sections of ® and D5+ Dg is
contained in a singular fiber of <I>, say G. Since D, is a section of ®, Supp G
contains an irreducible curve E with (E - D,) = 1. By Lemma 2.2 (2), E is
a (—1)-curve. Then we have

1
—(E-D* + Ky) < 3 <—(M- D* + Kv),

which is a contradiction. Similarly, we have a contradiction if (M - Dy) = 1.
Hence this subcase does not take place.

Subcase (10)-(iii): (M - D; + D;) = (M - D;) = 1. By Lemma 2.3,
(M-D3+ Dy+ Ds+ Dg) =1. If (M- D3) =1 or (M - Dg) = 1, then we can
easily see that V — (M + D) = C? (cf. Cases (3) and (5)). Hence X becomes
a minimal compactification of C2.

Suppose that (M - Dy) = 1 or (M - Ds) = 1. We may assume that
(M - Dy) = 1. Then, a divisor F = 2(M + D,) + D3 + Ds defines a P-
fibration ® := @ : V = P!, Dg is a section of ®, D, is a 2-section of ®,
and D, is contained in a singular fiber of ®, say G. By Lemma 2.2 (2) and
p(V) =17, we know that G = E,+ D, + E,, where E; and E, are (—1)-curves,
(E1-D,) = (E;- D) =1 and (E, - E;) = 0. Since D, is a 2-section of ® and
the multiplicity of D; in G is equal to one, we may assume that F; meets
D,. Then

2 1
—(E,-D¥* + Ky)=1- g(El - Dy) — §(El - D,) <0,
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which contradicts Lemma 2.2 (1).

Theorem 1.2 is thus verified.
Appendix

A Fundamental groups of some open rational
surfaces with £ = —oc0

Let X be a normal projective rational surface defined over C with unique
singular point. Assume that the singular point of X is a quotient singular
point. In [10], Gurjar and Zhang proved the following result.

Theorem A.1 With the same notation and dssumptions as above, assume
further that ®(X — Sing X) < 1. Then m (X — Sing X) is a finite group.

In this section, we prove the following result by using the results in [15].

Proposition A.2 With the same notation and assumptions as above, as-
sume further that ®(X — Sing X) = —oo. Then m(X — Sing X) is a finite

abelian group.

Proof. By [10, Lemma 1], it suffices to show that m;(X —Sing X) is abelian.

Assume that X is not log relatively minimal, i.e., there exists an irre-
ducible curve E on X such that (E?) < 0 and (E - Kx) < 0 (cf. [22, Chapter
II, §4]). Let f : X — X’ be the contraction of E. Since #Sing X = 1,
it follows from [22, Capter II, §4] (see also [14]) that X’ has at most one
quotient singular point and ®(X’ — Sing X’) = §(X — Sing X) = —oo. It is
clear that m;(X — Sing X) is a subgroup of m;(X’ — Sing X’). Thus, to prove
Proposition A.2, we may assume that X is log relatively minimal.

Since (X — Sing X) = —oo and X is log relatively minimal, one of the
following two cases takes place by [19, Lemma 2.7] and [14, Theorem 1.1].

(i) There exists a P'-fibration h : X — P! such that every fiber of h is
irreducible and A has only one multiple fiber F.
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(ii) X is a log del Pezzo surface of rank one.

We consider the above two cases separately.

Case (i). By virtue of [14, Theorem 1.1], Sing X € Supp F. Then X —
Supp F = P! x A! and hence m(X — Sing X) = (1). In this case the
assertion holds.

Case (ii). Put P := SingX. If P is of type E,, (n = 6,7,8), then m;(X—P) =
(1) because X is a minimal compactification of C? by Lemma 2.6 (1). If P
is a cyclic quotient singular point, then 7,(X — P) is abelian by Lemma 2.6
(3).

Assume that P is of type D. Let 7 : (V, D) = X be the minimal reso-
lution of X and let D = }"I_, D; be the decomposition of D into irreducible
components such that the weighted dual graph of D is given as in Figure
2. Then Lemma 2.6 (2) implies that there exisits a (—1)-curve E such that
(E-D)=(E-D;)=1, where : = 1 or 2. We may assume that i = 1. Put
F :=2(E + Dy + Do) + D; + D3. By Lemma 2.3, ag = a3 = 2. So F defines
a Pl-fibration ® := @) : V — P!, D, is a section of ® and Ds,..., D, are
contained in a fiber G of ® if r > 5. Here we note that r > 4 and if r = 4 then
7 (V — D) = (1). Assume that r > 5. Then, since p(V) =#D +1=r +2,
G contains a unique (—1)-curve E’ and (G)req = Ds+---+ D, + E'. Let m
be the multiplicity of E’ in G. By using the same argument as in Example
4.2, we know that

B o if m is odd,
m(V - D) = { Z/2Z if m is even.

In particular, m;(V — D) = (X — P) is abelian. Q.E.D.

Remark A.3 In Case (ii), we know that m;(X — Sing X) is finite by virtue
of [8] and [9].

B A proof of a result of Ramanujam

Let k be an algebraically closed field of arbitrary characteristic, which we
fix as the ground field throughout the present section. Let S be a smooth
affine algebraic surface defined over k. Let (V, D) be a pair of a smooth

— 186 —



projective surface V and a reduced normal crossing divisor D on V. We call
(V, D) a normal algebraic compactification of S if S is isomrophic to V — D
(cf. Definition 2.7). A normal algebraic compactification (V, D) of S is said
to be minimal if (E- D — E) > 3 for any (—1)-curve E C D. Note that
minimal normal algebraic compactifications of S exist since S is an affine
algebraic surface.

When S = C?, Morrow [24, Theorem 9] gave a classification of mini-
mal normal algebraic compactifications (V, D) of S. His argument depended
heavily on the following theorem which is the main result of Ramanujam [25]
(see also [23]).

Theorem B.1 If (V, D) is a minimal normal algebraic compactification of
the affine plane A2, then the dual graph of D is linear.

In this section, by using the similar argument to the proof of [16, Theorem
1.1], we give a new proof of Theorem B.1.

Let (V, D) be a minimal normal algebraic compactification of the affine
plane S := A}. The following lemma is easy but useful.

Lemma B.2 (cf. [16, Lemma 2.2]) There ezists an irreducible linear pencil
A on V such that the following conditions (i) ~ (iii) are satisfied.

(i) Bs A C D and a general member of A is a rational curve.

(ii) The morphism ¢ := ®,|s is an A}-fibration onto the affine line A}
without singular fibers.

(iii) Let p : V = V be a composition of blowing-ups with centers at the
base points (including infinitely near base points) of A such that the
proper transform A of A by u has no base points. Then A gives rise
to a P'-fibration ®; on V over P! and there ezists a section of ®; in

D:=V —pu1(9).
Proof. There exists a diagram
VL w L p?

where f (resp. g) is a composition of blowing-ups with centers in D (resp. a
line £ on P?) including infinitely near points. Let P, be a point on £. Here
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we may assume that P, is blown up by g. Let A’ be the irreducible linear
pencil on P? consisting of lines through Py. Then the proper transform g'(A’)
gives rise to a P!-fibration ®,(a/) : W — P! and there exists a section of
®yay in W — g71(S). Moreover, ®ga)g-1(s) : g71(S) = S — Al is an A}-
fibration onto A} without singular fibers. Hence A := f,(¢'(A’)) becomes an
irreducible linear pencil on V satisfying the conditions (i) ~ (iii). Q.E.D.

Proof of Theorem B.1. Let A be an irreducible linear pencil satisfying
the conditions (i) ~ (iii) in Lemma B.2. If Bs A = (), then it is clear that
®, : V — P! is a Pl-bundle over P!, i.e., V is a Hirzebruch surface, and D
consists of a fiber of ®5 and a section of ®, (cf. [12, Lemma 2.2]). So, in this
case, the assertion holds.

Assume that Bs A # 0. Then #BsA=1,BsA€ D and P:=BsAisa
one-place point for a general member of A. Let u : V — V be the shortest
composition of blowing-ups with center P (including infinitely near points
of P) such that the proper transform A of A by ¢ has no base points. Put
D := - u~Y(D). Then V—D=Sand &:=&;: V - P!is a Pl-fibration.
Let Do be the last exceptional curve in the process u. Then Do C D, Dy is
a section of ® and the other components of D are contained in ﬁbers of &.
Let D,,..., D, be all components of D through P. Then £ =1 or 2 since D
is an NC-divisor. By the minimality of the pair (V, D), we know that every
component of D — (Dy + - - - + D) has self-intersection number < —2. Note
that every irreducible component of D is a nonsingular rational curve and
the dual graph of D is a tree because £(S) = —oo (cf. [18, Lemma 1.2.1.3]).

Suppose to the contrary that the dual graph of D is not linear, i.e.,
there exists an irreducible component D’ of D with D/(D — D’) > 3. Let
D—-D" = A +---+ A, be a decomposition of D — D’ into connected
components. Since the dual graph of D is a tree, we have t > 3. So we may
assume that P ¢ A; U A;. Let F be a fiber of & containing y/(D’). Then
1 (A; + Az) C Supp (F). Hence F is a singular fiber.

Let f : V — V; be a sequence of contractions of (—1)-curves and sub-
sequently contractible curves in Supp (F) such that f(u'(D’)) becomes a
(—1)-curve. Note that such a birational morphism exists and f(Dy) is a
section of the P!-fibration ® o f~! : ¥; — P!. If Supp (F) C D then the
weighted dual graph of f,(x'(A;i)) (¢ = 1,2) is the same as that of A;. Hence
we have (f.(¢'(D’)) - fu(Frea + Do — p'(D’))) > 3, which is a contradiction.

Suppose that Supp (F) ¢ D. Let G be a sum of irreducible components
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of F.4 which are not contained in D. Since Flg is a fiber of ¢, we know that
G is irreducible and the multiplicity of G in F is equal to one. So we may
assume that (7 is not contracted in the process of f. Then the weighted dual
graph of f.(¢'(A;)) (2 = 1,2) is the same as that of A;. Hence, by using the
same argument as in the case Supp (F) C D, we obtain a contradiction.

Q.E.D.

Remark B.3 (1) Recently, Kishimoto [12] gave an algebraic proof of [24,
Theorem 9] without using Theorem B.1.

(2) In [24] and [25], Morrow and Ramanujam considered (minimal nor-
mal) “analytic” compactifications of C? and proved that they are also alge-
braic compactifications of C2. In [6, Corollary (9.2)], Fujita proved the same
result by using a different method.

C List of configurations

~ In the following list of configurations, the weight of the vertex correspond-
ing to a (—2)-curve of D is omitted. In (2), (14) and (15), the subgraph
denoted by the encircled A is given as in Figure 1 and the subgraph denoted
by the encircled A* is the weighted dual graph of the adjoint of A, where we
consider A as an admissible rational rod whose weighted dual graph is given
as in Figure 1. In (1), (2), (14), (15) and (16), n > 2. In (2) ~ (32), C is a
(=1)-curve. In (15), D consists of two rods.

(1) (2)

D=M, C —n 7\
O revverrecsnannes le) O A

(3) o-n (4)
90
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