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Minimal singular compactifications of the
affine plane

HIDEO KOJIMA

Abstract. Let $X$ be a minimal compactification of the complex affine plane $C^{2}$ .
In this paper, we show that $X$ is a log del Pezzo surface of rank one and determine
the singularity type of $X$ in the case where $X$ has at most quotient singularities.
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$0$ Introduction
A normal compact complex surface $X$ is called a compactification of the

complex affine plane $C^{2}$ if there exists a closed subvariety $\Gamma$ of $X$ such that
$ X-\Gamma$ is biholomorphic to $C^{2}$ . We denote simply the compactification by
the pair (X, $\Gamma$ ). A compactification (X, F) of $C^{2}$ is said to be minimal if $\Gamma$

is irreducible.
Remmert-Van de Ven [26] proved that if (X, F) is a minimal compactifi-

cation of $C^{2}$ and $X$ is smooth then (X, $\Gamma$ ) $=$ ( $P^{2}$ , line). Brenton [3], Brenton-
Drucker-Prins [4] and Miyanishi-Zhang [21] studied minimal compactffica-
tions of $C^{2}$ with at most rational double points and proved the following
results.

Theorem 0.1 (cf. [3], [4] and [21]) If (X, F) is a minimal compactification of
$C^{2}$ and $X$ has at most rational double points, then $X$ is a log del Pezzo surface
of rank one (for the definition, see Definition 2.1). Further, if Sing $ X\neq\emptyset$ ,
then the singularity type of $X$ is given as one of the following:

$A_{1},$ $A_{1}+A_{2},$ $A_{4},$ $D_{5},$ $E_{6},$ $E_{7},$ $E_{8}$ .
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Conversely, if $X$ is a Gorenstein log del Pezzo surface of rank one such
that the singularity type of $X$ is given as one of the listed as above, then $X$

is a minimal compactification of $C^{2}$ .
Theorem 0.2 (cf. [21, Theorem 2]) Let $X$ be a Gorenstein log del Pezzo
surface of rank one. Then $X$ is a minimal compactification of $C^{2}$ if and only
if $\pi_{1}$ ($X$ –Sing $X$ ) $=(1)$ .

Recently, Ifurushima [7] classified minimal compactifications of $C^{2}$ which
are normal hypersurfaces of degree $\leq 4$ in $P^{3}$ .

In the present article, we study minimal compactifications of $C^{2}$ with at
most quotient singular points (cf. [2]). Let $X$ be a minimal compactification
of $C^{2}$ with at most quotient singular points. We prove that $X$ is a $\log$

del Pezzo surface of rank one and determine the singularity type of $X$ (see
Theorem 1.1).

Here, we propose the following problems:

Problem 1 (Converse of Theorem 1.1) Let $X$ be a log del Pezzo surface of
rank one. Assume that the singularity type of $X$ is given as one of the listed
in Appendix C. Is then $X$ a minimal compactification of $C^{2}$ ?
Problem 2 (cf. [20]) Let $X$ be a log del Pezzo surface of rank one. Assume
that $\pi_{1}$ ($X$ -Sing $X$ ) $=(1)$ . Is then $X$ a minimal compactification of $C^{2}$?

In general, Problems 1 and 2 are false (see \S \S 3 and 4). However, Theorems
0.1 and 0.2 imply that Problems 1 and 2 are true in the case where $X$ has
at most rational double points. Recently, the author [17] classified the log
del Pezzo surfaces of rank one and of index two (see [17, Theorem 1]). By
[17, Theorem 1], we know that Problems 1 and 2 are true if the index of $X$

is equal to two. We prove that Problem 1 is true if the index of $X$ is equal
to three $(Th\infty rem1.2)$ .

In our forthcoming paper, we prove the following result.
With the same notation and assumptions as in Prvblem 1, assume fur-

ther that $X$ has a non-cyclic quotient singular point. Then $X$ is a minimal
compactification of $C^{2}$ .

TERMINOLOGY. A $(-n)$-curve is a nonsingular complete rational curve
with self-intersection $number-n$ . A reduced effective divisor $D$ is called an
NC-divisor (resp. an SNC-divisor) if $D$ has only normal (resp. simple normal)
crossings. We employ the following notation:
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$K_{X}$ : the canonical divisor on $X$ .
$\overline{\kappa}(X-D)$ : the logarithmic Kodaira dimension of an open surface $X-D$

(cf. [11], etc.).
$\rho(X)$ : the Picard number of $X$ .
$F_{n}(n\geq 0)$ : the Hirzebruch surface of degree $n$ .
$M_{n}(n\geq 0)$ : a minimal section of a fixed ruling on $F_{n}$ .
$\# D$ : the number of all irreducible components in Supp $D$ .

1 Results
We state the main results of the present article.
In \S 3, we prove the following result.

Theorem 1.1 Let (X, $\Gamma$ ) be a minimal compactification of $C^{2}$ . Assume that
$X$ has at most quotient singular points and Sing $ X\neq\emptyset$ . Then the following
assertions hold true:

(1) $X$ is a log del Pezzo surface of rank one.
(2) Let $\pi$ : (V, $D$ ) $\rightarrow X$ be the minimal resolution of $X$ , where $D$ is the

reduced exceptional divisor, and let $C$ be the proper trvnnsform of $\Gamma$ on $V$ .
Then, $C\cong P^{1}$ , the divisor $C+D$ is an SNC-divisor and the weighted dual
graph of $C+D$ is given as $(n)(1\leq n\leq 32)$ in Appendix C. In particular,
#Sing $X\leq 2$ .

In \S 5, we prove the folowing result.

Theorem 1.2 Let $X$ be a log del Pezzo surface of rank one. Assume that
the index of $X$ is equal to three, $i.e.,$ $\min${$n\in N|nK_{X}$ is Cartier} $=3$ .
Then $X$ is a minimal compactification of $C^{2}$ if and only if the singularity
type of $X$ is given as one of the following weighted dual graphs (1) $\sim(11)$ .

$-3O$ $-6O$

(1) (2) (3)
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(4) (5)

$-2O$

(6)

$-6O$

(8)

$-5-2O-$

(10)

2 Preliminary results

$-3O$

(7)

$-5-2\mapsto$ $-0_{2}$

(9)

$-4-40\rightarrow$

(11)

We recall some basic notions in the theory of peeling (cf. [19] and [22]).
Let (X, $D$ ) be a pair of a nonsingular projective surface $X$ and an SNC-
divisor $D$ on $X$ . We call such a pair (X, $D$ ) an SNC-pair. A connected
curve $T$ consisting of irreducible components of $D$ (a connected curve in $D$ ,
for short) is a twig if the dual graph of $T$ is a linear chain and $T$ meets
$D-T$ in a single point at one of the end components of $T$ , the other end
of $T$ is called the tip of $T$ . A connected curve $R$ (resp. $F$ ) in $B$ is a rod
(resp. fork) if $R$ (resp. $F$ ) is a connected component of $D$ and the dual graph
of $R$ (resp. $F$) is a linear chain (resp. the dual graph of the exceptional
curves of a minimal resolution of a non-cyclic quotient singularity (cf. [2])).
A connected curve $E$ in $D$ is rational (resp. admissible) if each irreducible
component of $E$ is rational (resp. if there are no (-l)-curves in Supp $E$ and
the intersection matrix of $E$ is negative definite). An admissible rational twig
$T$ in $D$ is maximal if $T$ is not extended to an admissible rational twig with
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more irreducible components of $D$ . For the list of the weighted dual graphs
of all admissible rational forks, see [22, pp. 55\sim 56] and [19, pp. 207\sim 208].

Now, let $A$ be an admissible rational rod. Then the weighted dual graph
of $A$ is given as in Figure 1. Then we denote the admissible rational rod $A$ by
$[a_{1}, \ldots , a_{r}]$ . We denote the determinant of $A$ by $d(A)$ (cf. [22, p. 87], [6, (3.3)],
etc.). The admissible rational rod $[a_{r}, \ldots, a_{1}]$ is called the transposal of $A$ and
denoted by $\ell A$ . We define also $\overline{A}=[a_{2}, \ldots, a_{r}]$ and $\underline{A}=[a_{1}, \ldots, a_{r-1}]$ . We
call $e(A)=d(\overline{A})/d(A)$ the inductance of $A$ . By [6, Corollary (3.8)] (see also
[5, Proposition A.5]), $e$ defines a one-to-one correspondence from the set of al
admissible rational rods to the set of rational numbers in the interval $(0,1)$ .
Hence there exists uniquely an admissible rational rod $A^{*}$ whose inductance
is equal to $1-e({}^{t}A)$ . We call the admissible rational rod $A^{*}$ the adjoint of
$A$ .

$-a_{1}-a_{2}\ldots\ldots\ldots-a_{r-1}-a_{r}\mapsto\ldots\ldots\ldots\mapsto$

$(r\geq 1, a_{i}\geq 2(1\leq i\leq r))$

Figure 1

We state some results concerning log del Pezzo surfaces of rank one wihch
wil be used in \S \S 3\sim 5.

Definition 2.1 A log del Pezzo surface $X$ is a normal projective surface
satisfying the following two conditions:

(i) $X$ is singular but has at most quotient singularities.

(ii) The anticanonical $divosor-K_{X}$ is ample.

$X$ is said to have rank one if $\rho(X)=1$ .

Let $X$ be a log del Pezzo surface of rank one and let $\pi$ : (V, $D$ ) $\rightarrow X$

be the minimal resolution of $X$ , where $D$ is the reduced exceptional divisor.
Let $D=\Sigma_{i}D_{i}$ be the decomposition of $D$ into irreducible components.
Then there exists uniquely an effective Q-divisor $D\#=\sum_{i}a_{i}D_{i}$ such that
$D\#+K_{V}$ is numerically equivalent to $\pi^{*}K_{X}$ . In Lemmas 2.2\sim 2.6, we retain
this situation.
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Lemma 2.2 With the same notation as above, we have:
(1) $-(D\#+K_{V})$ is $nef$ and big. Moreover, for any irreducible curve $F$ ,

$-(D\#+K_{V}\cdot F)=0$ if and only if $F$ is a component of $D$ .
(2) Every $(-n)$ -curve with $n\geq 2$ is a component of $D$ .
(3) $V$ is a rational surface.

Proof. See [27, Lemma 1.1].

Lemma 2.3 There is no $(-1)$ -curve $E$ such that, after contracting $E$ and
consecutively (smoothly) contractible curves in $E+D$ , the divisor $E+D$
becomes a union of admissible rational rods and forks.
Proof. See [27, Lemma 1.4].

By Lemma 2.2 (1), we can find an irreducible curve $M$ such $that-(M\cdot$

$D\#+K_{V})$ attains the smalest positive value. In Lemmas 2.4 and 2.5, we fix
such a curve $M$ .

Lemma 2.4 Suppose that $|M+D+K_{V}|\neq\emptyset$ and $X$ has a singular point
$P$ which is not a rational double point. Then $P$ is a cychc quotient singular
point and the other singular points on $X$ are rational double points.

Proof. By [27, Lemma 2.1], there exists a unique decomposition of $D$ as
a sum of effective integral divisors $D=D‘+D^{\prime\prime}$ such that:

(i) $(M\cdot D_{i})=(D^{n}\cdot D_{i})=(K_{V}\cdot D_{i})=0$ for any component $D_{i}$ of $D^{\prime}$ .
(ii) $M+D^{n}+K_{V}\sim 0$ .

Then Supp $ D^{\prime}\cap SuppD^{\prime\prime}=\emptyset$ and each connected component of $D^{\prime}$ can be
contracted to a rational double point. By the hypothesis, $D^{\prime\prime}\neq 0$ . Since
$M+D^{\prime\prime}+K_{V}\sim 0$ , we know that $D^{u}=\pi^{-1}(P)$ and $D^{n}$ is a linear chain of
smooth rational curves. Q.E.D.

Suppose that $|M+D+K_{V}|=\emptyset$ . The divisor $M+D$ is then an SNC-
divisor, consisting of smooth rational curves and the dual graph of $M+D$ is
a tree (see [27, Proof of Lemma 2.2]). Here we note the folowing lemma.

Lemma 2.5 Suppose $ that|M+D+K_{V}|=\emptyset$ . Then either (V, $D$ ) is $(F_{n}, M_{n})$ ,
where $n=-(D^{2})\geq 2$ , or we may assume that $M$ is a $(-1)$ -curve.
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Proof. See [27, Lemma 2.2] and [8, Proposition 3.6].

We recall the results in [15] concerning a classification of log del Pezzo
surfaces of rank one with unique singular points.

Lemma 2.6 Suppose that #Sing $X=1$ . Put $P$ $:=$ Sing X. Then the
following assertions hold true:

(1) If $P$ is a quotient singular point of type $E_{n}(n=6,7,8)$ (cf. [15] and
[19, p. 208]), then there exists a $(-1)$ -curve $C$ such that $C+D$ is an SNC-
divisor and the weighted dual graph of $C+D$ is given as $(n)(4\leq n\leq 13)$

in Appendix C. In particular, $X$ is a minimal compactification of $C^{2}$ .
(2) Assume that $P$ is a quotient singular point of type $D$ , i.e., the

weighted dual graph of $D$ is given as in Figure 2, where $r\geq 3$ and $a;\geq 2$

for $i=0,3,$ $\ldots,r$ . Then there exists a $(-1)$ -curve $E$ such that $(E\cdot D)=$

$(E\cdot D_{\ell})=1$ , where $t=1$ or 2.
(3) Assume that $P$ is a cyclic quotient singular point. Then there exists

$a(-1)$ -curve $C$ such that $(C\cdot D)=1$ . Moreover, $X-\{P\}$ contains $C^{*}\times C^{*}$ ,
where $C^{*}=C-\{0\}$ , as a Zariski open subset.

$ D_{1O}-D_{0}2\backslash D_{3}\infty$

. . . . . . . . . $.\rightarrow D_{r}$

$D_{2O}/-2^{-a_{0}}-a_{3}$
$-a_{r}$

Figure 2

Proof. (1) See [15, Theorem 2.1].
(2) See [15, Theorem 3.1].
(3) See [15, Theorem 4.1].

We recall Morrow’s result [24, Theorem 9] concerning minimal normal
compactifications of $C^{2}$ .

Deflnition 2.7 Let $S$ be a smooth complex affine surface and let (V, $D$ )
be a pair of a smooth projective surface $V$ and an NC-divisor $D$ on $V$ .
We cal the pair (V, $D$ ) a normal compactification (resp. a normal algebraic
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compactification) of $S$ if $S$ is biholomorphic (resp. isomorphic) to $V-D$ . A
normal compactification (or a normal algebraic compactification) (V, $D$ ) of
$S$ is said to be minimal if $(E\cdot D-E)\geq 3$ for any (-l)-curve $E\subset SuppD$ .

Morrow [24] gave a list of all minimal normal compactifications of $C^{2}$ . In
\S 3, we use the following result.

Lemma 2.8 Let (V, $D$ ) be a minimal normal compactification of $C^{2}$ . Then
$D$ is an SNC-divisor, each irreducible component of $D$ is a smooth rational
curve and the dual graph of $D$ is a linear chain. Moreover, if $\rho(V)\geq 3$ ,
then $D$ contains exactly two irreducible components, say $D_{1}$ and $D_{2}$ , with
non-negative self-intersection numbe $rs$ and $(D_{1}\cdot D_{2})=1$ .
Proof. See [24].

For the list of all boundary dual graphs of the minimal normal compact-
ifications of $C^{2}$ , see [24, Theorem 9].

3 Proof of Theorem 1.1
In this section, we prove Theorem 1.1.
Let (X, $\Gamma$) be a minimal compactification of $C^{2}$ . Assume that Sing $ X\neq\emptyset$

and $X$ has only quotient singular points as singularities. Let $\pi$ : (V, $D$ ) $\rightarrow X$

be the minimal resolution of $X$ , where $D$ is the reduced exceptional divisor,
and letC be the proper transform of $\Gamma onV$ .
Proof of the assertion (1). By [24, Theorems $9\sim 11$ ] (see also [13]), $V$

is a smooth projective rational surface and $V-D$ is isomorphic to $C^{2}$ as
an algebraic variety. So $X$ is a normal projective rational surface by [1] and

$\overline{\kappa}$($X$ –Sing $X$ ) $=-\infty$ . Since $X$ is a minimal compactification of $C^{2}$ , we
have $\rho(X)=1$ . Hence [27, Remark 1.2] and [19, Lemma 2.7] imply that $X$

is a log del Pezzo surface of rank one. This proves the assertion (1).
Proof of the assertion (2). Let $D=\Sigma_{i}D_{i}$ be the decomposition of $D$

into irreducible components. Let $\mu$ : $\tilde{V}\rightarrow V$ be a composite of blowing-ups
such that $D;=\mu^{*}(C+D)_{rcd}$ becomes an NC-divisor and $\mu$ is the shortest
among such birational morphisms. From now on, we call such a birational
morphism $\mu$ a minimal NC-map for the pair (V, $C+D$ ). Let $\tilde{C}$ be the proper
transform of $C$ on $\tilde{V}$ .
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Lemma 3.1 With the same notation as above, $C$ is a rational curve with at
most unibranch singular points.

Proof. Since $\tilde{V}-\tilde{D}\cong C^{2}$ , we have $|\tilde{D}+K_{\overline{V}}|=\emptyset$ . By [18, Lemma I.2.1.3],
each irreducible component of $\tilde{D}$ is a smooth rational curve, $\tilde{D}$ is an SNC-
divisor and the dual graph of $\tilde{D}$ is a tree. Hence $C$ is a rational curve and
each singular point of $C$ is a unibranch singular point. Q.E.D.

Lemma 3.2 With the same notation as above, we have #Sing $X\leq 2$ .

Proof. Suppose to the contrary that #Sing $X\geq 3$ . Since Sing $ X\subset\Gamma$ , we
have

$(\tilde{C}\cdot\tilde{D}-\tilde{C})\geq\#SingX\geq 3$ .
Since $\mu$ is a minimal NC-map for the pair (V, $C+D$ ) and $\tilde{D}$ is an SNC-divisor
(cf. the proof of Lemma 3.1), we have

$(E\cdot\tilde{D}-E)\geq 3$

for every (-l)-curve $ E\subset$ Supp $(\tilde{D}-\tilde{C})$ . So the pair $(\tilde{V},\tilde{D})$ is a minimal
normal compactification of $C^{2}$ (see Definition 2.7). This contradicts Lemma
2.8 because the dual graph of $\tilde{D}$ is not linear by the hypothesis. Q.E.D.

Remark 3.3 By [28], there exist a log del Pezzo surface $X$ of rank one such
that $\pi_{1}$ ($X$ -Sing $X$ ) $=(1)$ and #Sing $X\geq 3$ . By Lemma 3.2, such a surface
is not a minimal compactification of $C^{2}$ . So Problem 2 is false.

Lemma 3.4 The divisor $C+D$ is an SNC-divisor. Namely, $\mu=id$ .

Proof. By Lemma 2.8, it suffices to show that the divisor $C+D$ is an NC-
divisor. Suppose to the contrary that there exists a point $P\in Supp(C+D)$

such that the divisor $C+D$ is not normal crossing at $P$ . Since $D$ is an SNC-
divisor, $\mu$ is a composite of blowing-ups of infinitely near points on $C$ . We
note that the weighted dual graph of $\tilde{D}$ is a tree because $|\tilde{D}+K_{\overline{V}}|=\emptyset$ . Let
$E$ be a (-l)-curve which is exceptional with respect to $\mu$ . By the minimality
of $\mu,$ $(E\cdot D-E)\geq 3$ , i.e., $\tilde{D}$ is not linear. By Lemma 2.8, $(\tilde{V},\tilde{D})$ is not
a minimal normal compactification of $C^{2}$ . Hence there exisits a (-l)-curve
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$H\subset Supp\tilde{D}$ such that $(H\cdot\tilde{D}-H)\leq 2$ . It then follows from the minimality
of $\mu$ that $H=\tilde{C}$ .

Let $f$ : $\tilde{V}\rightarrow W$ be a sequence of contractions of (-l)-curves and sub-
sequently contractible curves in Supp $\tilde{D}$ , starting with the contraction of
$\tilde{C}$ , such that $\tilde{D}_{W}$ $:=f_{*}(\tilde{D})$ is an NC-divisor and has no (-l)-curves $F$ with
$(F\cdot\tilde{D}_{W}-F)\leq 2$ , i.e., the pair $(W,\tilde{D}_{W})$ is a minimal normal compactification
of $C^{2}$ . Note that $f_{*}(E)\neq 0$ because $E$ is a (-l)-curve. Since $(E\cdot\tilde{D}-E)\geq 3$

and the dual graph of $\tilde{D}$ is a tree, we know that the number of connected
components of $\tilde{D}_{W}-f_{*}(E)\geq 2$ and if the equality holds then $(f_{*}(E)^{2})\geq 0$

and every irreducible component of $\tilde{D}_{W}-f_{*}(E)$ has self-intersection number
$\leq-1$ . This contradicts Lemma 2.8 because $\rho(W)\geq 3$ . Q.E.D.

Lemma 3.5 Assume that $(C^{2})\neq-1$ . Then $V=F_{\mathfrak{n}}(n\geq 2),$ $D=M_{n}$ and
$C$ is a fiber of the ruling on V. Namely, the weighted dual graph of $C+D$ is
given as (1) in Appendix $C$.

Proof. If $C$ is not a (-l)-curve, then (V, $C+D$) is a minimal normal
compactification of $C^{2}$ by Lemma 3.4. Since every irreducible component of
$D$ has self-intersection number $\leq-2$ , the assertion follows from [24, $Th\infty rem$

$9]$ (see also Lemma 2.8). Q.E.D.
In the subsequent arguments, we assume that $C$ is a (-l)-curve. Note

that (V, $C+D$ ) is then not a minimal normal compactification of $C^{2}$ because
$(C\cdot D)\leq 2$ by Lemmas 3.2 and 3.4. Let $\nu$ : $V\rightarrow W$ be a sequence of
contractions of (-l)-curves and subsequently contractible curves in $Supp(C+$
$D)$ , starting with the contraction of $C$ , such that $(W, D_{W})$ , where $D_{W}=$

$\nu_{*}(C+D)$ , becomes a minimal normal compactification of $C^{2}$ .
Lemma 3.6 With the same notation and assumptions as above, $(W, D_{W})=$

$(P^{2}, H)$ or $(F_{n}, M_{n}+\ell)$ , where $H$ is a line on $P^{2}$ and $\ell$ is a fiber of a fixed
ruling on $F_{\mathfrak{n}}$ .

Proof. Put $Q:=\nu(C)$ . We note that $Q$ is a unique fundamental point of
$v$ because $C$ is a unique (-l)-curve in Supp $(C+D)$ .

Suppose that $(W, D_{W})$ is isomorphic to neither ( $P^{2}$ , line) nor $(F_{n},$ $M_{\mathfrak{n}}+(a$

fiber of fixed ruling on $F_{\mathfrak{n}}$ )). Then, by [24, Theorem 9] (see also Lemma 2.8),
$D_{W}$ contains two components $D^{\prime}$ and $D^{u}$ such that $(D^{\prime 2})=0,$ $(D^{\prime\prime 2})=n>0$

and $(D^{\prime}\cdot D^{\prime\prime})=1$ (see Figure 3).
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$ D^{\prime}D^{\prime\prime}\leftarrow\rightarrow\ldots\ldots\ldots$

$0$ $n$

$(n>0)$

Figure 3

Since $Q$ is a unique fundamental point of $v$ , we know that $(v^{\ell}(D^{\prime})^{2})\geq-1$

or $(\nu^{\prime}(D^{\prime\prime})^{2})\geq-1$ . This is a contradiction because $C$ is a (-l)-curve and
every irreducible component of $D$ has self-intersection number $\leq-2$ .

Q.E.D.
We put $ V=di1_{Qp}0\cdots$ odil $Q_{1}(W)$ and $v:=dil_{Q;}o\cdots 0$ dil $Q_{1}$ where $\ell\geq 1$

and dil $Q_{i}$ is a blowing-up with center $Q_{i}(i=1, \ldots,\ell)$ . Put $E_{i}$ $:=dil_{Q_{j}}^{-1}(Q_{i})$ .
Then Lemma 3.6 implies that $(E_{i}\cdot v_{:}^{*}(D_{W})_{red}-E_{i})=1$ or 2. Hence we
obtain the following:

Lemma 3.7 With the same notation and assumptions as above, assume fur-
ther that #Sing $X=2$ . Let $D=D^{(1)}+D^{(2)}$ be the decomposition of $D$ into
connected components. Then we have:

(1) One of $D^{(1)}$ and $D^{(2)}$ is a rod.
(2) Assume that $D^{(1)}$ and $D^{(2)}$ are rods. Then $C$ meets a teminal com-

ponent of $D^{(1)}$ or $D^{(2)}$ .
(3) Assume that $D^{(1)}$ is a fork ( $D^{(2)}$ is then a rod by the assertion (1)).

Let $D_{0}^{(1)}$ be the branching component of $D^{\langle 1)},$ $i.e.,$ $(D_{0}^{(1)}\cdot D^{\langle 1)}-D_{0}^{(1)})=3$ .
Then $(C\cdot D_{0}^{(1)})=0$ and $C$ meets a terminal component of $D^{(2)}$ .

Now we determine the weighted dual graph of $C+D$ in the case where
$C$ is a (-l)-curve. We consider the following two cases separately.
Case 1: #Sing $X=1$ . Put $P:=SingX$ . We consider the following three
subcases $1- 1\sim 1- 3$ separately.

Subcase 1-1: $P$ is a cyclic quotient singular point. Note that, by taking a
suitable birational morphism $v$ , we may assume that $W=F_{n}(n\geq 2),$ $D_{W}=$

$ M_{n}+\ell$ , where $\ell$ is a flber of the ruling on $F_{n}$ , and that $Q$ $:=v(C)\not\in M_{n}$ .
Since $D$ is a rod, the weighted dual graph of $\nu^{*}(\ell)oed$ is given as in Figure 4.
In Figure 4, the subgraph denoted by the encircled $A$ is given as in Figure $l$
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and the subgraph denoted by the encircled $A^{*}$ is the weighted dual graph of
the adjoint of $A$ (cf. \S 2), where we consider $A$ as an admissible rational rod
whose weighted dual graph is given as in Figure 1. Hence the weighted dual
graph of $C+D$ is given as (2) in Appendix C.

Figure 4

Subcase 1-2: $P$ is a quotient singular point of type $D$ . Let $D=\sum_{i=0}^{r}D$; be
the decomposition of $D$ into irreducible components such that the weighted
dual graph of $D$ is given as in Figure 2. It then follows form Lemma 3.6 and
the argument before Lemma 3.7 that $C$ meets $D_{1}$ or $D_{2}$ (see also [15, \S 3]).
Hence we know that the weighted dual graph of $C+D$ is given as (3) in
Appendix C.
Subcase 1-3: $P$ is a quotient singular point of type $E_{n}(n=6,7,8)$ . Since
$C$ is a (-l)-curve and $(C\cdot D)=1$ , by using the same argument as in the
proof of [15, Theorem 2.1], we know that the weighted dual graph of $C+D$
is given as $(n)(4\leq n\leq 13)$ in Appendix C.

Case 2: #Sing $X=2$ . Let $D=D^{(1)}+D^{\langle 2)}$ be the decomposition of $D$ into
connected components. By Lemma 3.7 (1), we may assume that $D^{(2)}$ is a
rod. We consider the following two subcases separately.

Subcase 2-1: $D^{(1)}$ is a rod. By Lemma 3.7 (2), we may assume that $C$

meets a terminal component of $D^{(2)}$ . If $C$ meets a terminal component of
$D^{\langle 1)}$ then, by Lemma 3.6, we know that the weighted dual graph of $C+D$
is given as (14) in Appendix C. Assume that $C$ meets a component $D_{i}^{(1)}$ of
$D^{\langle 1)}$ , which is not a terminal component of $D^{(1)}$ . Then, by the argument
before Lemma 3.7, $D_{:}^{(1)}+C+D^{(2)}$ can be contracted to a smooth point. So
$D^{(2)}$ consists entirely of (-2)-curves and $(D_{i}^{(1)})^{2}=-2-\# D^{\langle 2)}$ . Thus, we
know that the weighted dual graph of $C+D$ is given as (15) in Appendix C.
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Subcase 2-2: $D^{(1)}$ is a fork. Let $D_{0}^{t^{1)}}$ be the branching component of
$D^{(1)}$ . Then Lemma 3.7 (3) implies that $C$ meets a terminal component of
$D^{(2)}$ and does not meet $D_{0}^{(1)}$ . Let $T^{(1)}$ be the maximal (admissible rational)

$twi\ovalbox{\tt\small REJECT}$
of $D^{(1)}$ meeting $C$ . By the argument before Lemma 3.7, we know that

$D_{0}^{(1}+T^{(1)}+C+D^{(1)}$ can be contracted to a smooth point. So we can
determine the weighted dual graph of $D_{0}^{(1)}+T^{(1)}+C+D^{(1)}$ . Hence, by using
Lemma 3.6, we know that the weighted dual graph of $C+D$ is given as $(n)$

$(16\leq n\leq 32)$ in Appendix C. For example, if the weighted dual graph of $D$

is given as in Figure 2 then, by virtue of Lemma 3.6, we know that $T^{(1)}$ is
a (-2)-curve. Hence the weighted dual graph of $C+D$ is given as (16) in
Appendix C.

The proof of Theorem 1.1 is thus completed.

4 Counterexamples
In this section, we give counterexamples to Problems 1 and 2 (see Exam-

ples 4.2 and 4.3).

Counterexample to Problem 1. Let $X$ be a log del Pezzo surface of rank
one and let $\pi$ : (V, $D$ ) $\rightarrow X$ be the minimal resolution of $X$ , where $D$ is
the reduced exceptional divisor. In Example 4.1 (resp. 4.2) below, we shall
construct a log del Pezzo surface $X$ of rank one such that the weighted dual
graph of $D$ is given as in Figure 5 and $X$ is a compactification of $C^{2}$ (resp.
not a compactification of $C^{2}$ ).

Figure 5
Example 4.1 Let $\ell$ be a fiber of the ruling on $F_{2}$ (see Figure $6-(i)$ ). Let $\mu$ :
$V\rightarrow F_{2}$ be a birational morphism such that the configuration of $\mu^{-1}(M_{2}+\ell)$

is shown as in Figure 6-(ii), where $C$ is the last exceptional curve in the
process of $\mu$ . Put $D$ $:=\mu^{*}(M_{2}+\ell)_{red}-C$ . Then the weighted dual graph of
$D$ is given as in Figure 5. Let $v:V\rightarrow X$ be the contraction of $D$ and put
$\Gamma$ $:=v_{*}(C)$ . It is then clear that (X, $\Gamma$ ) is a minimal compactification of $C^{2}$ .
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$M_{2}$

(i) (ii)

Figure 6

Example 4.2 Let $\ell_{1}$ and $\ell_{2}$ be fibers of the ruling on F5 (see Figure $7-(i)$ ).
Let $\mu$ : $V\rightarrow F_{5}$ be a birational morphism such that the configuration of
$\mu^{-1}(M_{5}+\ell_{1}+\ell_{2})$ is shown as in Figure 7-(ii). Put $D$ $:=\mu^{*}(M_{5}+\ell_{1}+$

$\ell_{2})_{rcd}-(C_{1}+C_{2})$ . Then the weighted dual graph of $D$ is given as in Figure
5. A divisor $\mu^{*}(\ell_{1})$ defines a P’-fibration $\Phi$

$:=\Phi_{|\mu(\ell_{1})|}$ : $V\rightarrow P^{1}$ and
$\varphi;=\Phi|_{V-D}$ : $V-D\rightarrow P^{1}$ is an $A^{1}- fibration$ (i.e., a general fiber of $\varphi$

is isomorphic to the affine line $A^{1}$ ) onto $P^{1}$ . So $\overline{\kappa}(V-D)=-\infty$ (cf. [18,
Chapter I]). Let $\nu$ : $V\rightarrow X$ be the contraction of $D$ . Then $\rho(X)=1$ . By
[27, Remark 1.2] and [19, Lemma 2.7], $X$ is then a log del Pezzo surface of
rank one.

Now we calculate the fundamental group of $V-D=X$ -Sing $X$ . Since $\Phi$

has just two singular fibers $\mu^{*}(\ell_{1})$ and $\mu^{*}(\ell_{2})$ and the multiplicity of $C_{1}$ (resp.
$C_{2})$ in $\mu^{*}(\ell_{1})$ (resp. $\mu^{*}(\ell_{2})$ ) is equal to two (resp. four), we know that every
fiber of $\varphi$ is irreducible and $\varphi$ has just two multiple fibers $m_{1}\Gamma_{1}$ and $m_{2}\Gamma_{2}$

with $\{m_{1}, m_{2}\}=\{2,4\}$ . By [6, Proposition (4.9)], $\pi_{1}(V-D)$ is generated by
$\sigma_{1}$ and $\sigma_{2}$ with the relation $\sigma_{1}\sigma_{2}=\sigma_{1}^{2}=\sigma_{2}^{4}=1$ . Hence $\pi_{1}(V-D)\cong Z/2Z$ .
Since $\pi_{1}$ ($X$ –Sing $X$ ) $\neq(1)$ , we know that $X$ is not a compactification of
$C^{2}$ .

Counterexample to Problem 2. In Remark 3.3, we note that there exists
a log del Pezzo surface $X$ of rank one such that $\pi_{1}$ ($X$ –Sing $X$) $=(1)$ and
#Sing $X\geq 3$ . Hence, by Theorem 1.1, Problem 2 is false. In Example 4.3
below, we give an example of a log del Pezzo surface $X$ of rank one such that
$\pi_{1}$ ( $X$ –Sing $X$ ) $=(1)$ , #Sing $X=1$ and $X$ is not a compactification of $C^{2}$ .
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Figure 7

Example 4.3 Let $\ell_{1}$ and $\ell_{2}$ be fibers of the ruling on $F_{n}(n\geq 2)$ . See
Figure 8-(i). Let $\mu$ : $V\rightarrow F_{n}$ be a birational morphism such that the
configuration of $\mu^{-1}(M_{n}+\ell_{1}+\ell_{2})$ is shown as in Figure 8-(ii). Put $D$ $:=$

$\mu^{*}(M_{n}+\ell_{1}+\ell_{2})-(C_{1}+C_{2})$ . Let $v$ : $V\rightarrow X$ be the contraction of $D$ .
Similarly to Example 4.2, we know that $X$ is a log del Pezzo surface of rank
one with #Sing $X=1$ , and $\pi_{1}$ ($X$ –Sing $X$ ) $=\pi_{1}(V-D)=(1)$ . However,
$X$ is not a compactification of $C^{2}$ by Theorem 1.1.

$F_{n}(n\geq 2)$

$\leftarrow^{\mu}$

(i) (ii)

Figure 8

We propose the following problem:

Problem 3 Let $X$ be a log del Pezzo surface of rank one. Assume that
$\pi_{1}$ ( $X$ –Sing $X$ ) $=(1)$ and the singularity type of $X$ is given as one of the
listed in Appendix C. Is then $X$ a minimal compactification of $C^{2}$ ?
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5 Proof of Theorem 1.2
In this section, we prove Theorem 1.2
Let $X$ be a log del Pezzo surface of rank one and of index three and let

$\pi$ : (V, $D$ ) $\rightarrow X$ be the minimal resolution of $X$ , where $D$ is the reduced
exceptional divisor. Since the index of $X$ is equal to three, each singular
point of $X$ is either a rational double point or a quotient singular point of
index three. It is clear that $X$ has at least one quotient singular points of
index three.

Lemma 5.1 Let $P\in X$ be a quotient singular point of index three. Then
the singularity type of $P$ is given as the following weighted dual grvrph $(n)$

$(1\leq n\leq 9)$ . In particular, $P$ is a cyclic quotient singular point or of type
$D$ .

O $O$ $\rightarrow$

$-3$ $-6$ $-5$ $-2$

(1) (2) (3) (4)

$\underline{\mathfrak{n}}$

$-4-2\mapsto$
. . . . . . . . . . $\infty$

$-2$
$-4(n\geq 0)$

(5)

$\underline{n}$
$-4-2\mapsto$

. . . . . . . . . .$\infty$
$-2$ $-3$

$-2(n\geq 0)$

(6)

$\underline{n}$
$-2-3-2\infty$

. . . . . . . . . .$\infty$
$-2$ $-3$

$-2(n\geq 0)$

(7)
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(8)
$(n\geq 0)$

$-2-3\infty\cdot\cdot\frac{n}{-2-2\rightarrow}\nearrow^{-2}-2$

$(n\geq 0)$

(9)

Proof. See [29, Proposition 6.1].

By using Theorem 1.1 and Lemma 5.1, we can prove the following:

Lemma 5.2 Assume that $X$ is a minimal compactification of $C^{2}$ . Then the
weighted dual graph of $D$ is given as $(n)(1\leq n\leq 11)$ in Theorem 1.2.

Proof. Since $X$ is a minimal compactification of $C^{2}$ , #Sing $X\leq 2$ .
We first treat the case #Sing $X=1$ . Put $P;=$ Sing $X$ . Then $P$ is a

quotient singular point of index three. If $P$ is a cyclic quotient singular point
then, by Theorem 1.1, the weighted dual graph of $D$ looks like (1) or (2) in
Appendix C. So it follows from Lemma 5.1 that the weighted dual graph of
$D$ is given as one of (1) $\sim(4)$ in Theorem 1.2. If $P$ is not a cyclic quotient
singular point, then $P$ is of type $D$ and the weighted dual graph of $D$ looks
like (3) in Appendix C. So it follows from Lemma 5.1 that the weighted dual
graph of $D$ is given as (5) in Theorem 1.2.

We next treat the case #Sing $X=2$ . Assume that $X$ has a non-cyclic
quotient singular point, say $P$ . Theorem 1.1 then implies that $P$ is not
a rational double point. So $P$ is of type $D$ by Lemma 5.1 and hence the
weighted dual graph of $D$ looks like (16) in Appendix C. By using Lemma
5.1 again, we know that the index of $P$ is then not equal to three. This is a
contradiction. Hence we know that all singular points of $X$ are cyclic quotient
singular points. Then the weighted dual graph of $D$ looks like (14) or (15) in
Appendix C. Hence, by using Lemma 5.1, we know that the weighted dual
graph of $D$ is given as $(n)(6\leq n\leq 11)$ in Theorem 1.2. Q.E.D.
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We prove that if the singularity type of $X$ is given as $(n)(1\leq n\leq 11)$

in Theorem 1.2 then $X$ contains $C^{2}$ as a Zariski open subset. We treat the
cases (3), (5) and (10) (see $Th\infty rem1.2$ ) only. The other cases can be treated
similarly.

Case (3). Let $D=\Sigma_{:=1}^{6}D_{i}$ be the decomposition of $D$ into irreducible
components such that the weighted dual graph of $D$ is given as in Figure 9.
Lemma 2.6 (3) implies that there exists a (-l)-curve $C$ such that $(C\cdot D)=1$ .
By Lemma 2.3, we may assume that $(C\cdot D)=(C\cdot D_{i})=1,$ $i=2$ or 3.

Assume that $i=3$ . Then, a divisor $F=2(C+D_{3})+D_{2}+D_{4}$ defines
a $P^{1}$-fibration $\Phi$

$:=\Phi_{|F|}$ : $V\rightarrow P^{1},$ $D_{1}$ and $D_{5}$ are sections of $\Phi$ and $D_{6}$ is
contained in a singular fiber of $\Phi$ , say $G$ . Since $D_{6}$ is a (-4)-curve, we have
$\# G\geq 5$ . So we have

$\rho(V)=7\geq 2+(\# F-1)+(\# G-1)\geq 9$ ,

which is a contradiction. Hence, $i=2$ .
Now, a divisor $F=4(C+D_{2})+3D_{3}+2D_{4}+D_{1}+D_{5}$ defines a $P^{1}- fibration$

$\Phi$ $:=\Phi|F|$ : $V\rightarrow P^{1}$ and $D_{6}$ is a section of $\Phi$ . Since $\rho(V)=7=2+(\# F-1)$ ,
$\Phi$ has no singular fibers other than $F$. So $V-(C+D)\cong C^{2}$ and hence $X$

becomes a minimal compactification of $C^{2}$ .

Figure 9

Case (5). Let $D=\sum_{1=0}^{4}D_{i}$ be the decomposition of $D$ into irreducible
components such that the weighted dual graph of $D$ is given as in Figure 2,
where we put $r=4,$ $a_{0}=a_{3}=2$ and $a_{4}=4$ . Lemma 2.6 (2) implies that
there exists a (-l)-curve $C$ such that $(C\cdot D)=(C\cdot D_{i})=1,$ $i=1$ or 2.
We may assume that $i=1$ . Then, a divisor $F=2(C+D_{1}+D_{0})+D_{2}+D_{3}$
defines a P’-fibration $\Phi;=\Phi_{|F|}$ : $V\rightarrow P^{1}$ and $D_{4}$ is a section of $\Phi$ . Since
$\rho(V)=6=2+(\# F-1),$ $\Phi$ has no singular fibers other than $F$ . So
$V-(C+D)\cong C^{2}$ and hence $X$ becomes a minimal compactification of $C^{2}$ .
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Case (10). Let $D=\sum_{i=1}^{6}D_{i}$ be the decomposition of $D$ into irreducible
components such that the weighted dual graph of $D$ is given as in Figure 10.

$-D_{\underline{1}}D_{2}o_{52}$

Figure 10

We note that $\rho(V)=\# D+1=7$ and

$D^{\#}=\frac{2}{3}D_{1}+\frac{1}{3}D_{2}$

(for the definition of $ D\#$ , see \S 2). Let $M$ be an irreducible curve on $V$ such
that $-(M\cdot D\#+K_{V})$ attains the smallest positive value (cf. \S 2).

Suppose that $|M+D+K_{V}|\neq\emptyset$ . Then Lemma 2.4 implies that $(M\cdot D_{1})=$

$(M\cdot D_{2})=1$ and $M+D_{1}+D_{2}+K_{V}\sim 0$ . We have

$(M^{2})=(D_{1}+D_{2}+K_{V})^{2}=4$

and
$(M\cdot K_{V})=(M\cdot-M-D_{1}-D_{2})=-6$ .

Hence,
$-(M\cdot D^{\#}+K_{V})=5$ .

On the other hand, since $\rho(V)=7$ , there exists a (-l)-curve $E$ on $V$ . Then
we have

$-(E\cdot D^{\#}+K_{V})=1-(E\cdot D^{\#})\leq 1<-(M\cdot D^{\#}+K_{V})$ ,

which is a contradiction. Hence we know that $|M+D+K_{V}|=\emptyset$ .
By Lemma 2.5, we may assume that $M$ is a (-l)-curve. Note that $(M\cdot$

$D)=1$ or 2 and $(M\cdot D_{1}+D_{2})=0$ or 1 (see \S 2). We consider the following
three subcases (10)-(i) $\sim(10)-(iii)$ separately.

Subcase (10)-(i): $(M\cdot D_{1}+D_{2})=0$ . Then Lemma 2.3 implies that
$(M\cdot D)=(M\cdot D_{i})=1,$ $i=4$ or 5. We may assume that $i=4$ . A divisor
$F=2(M+D_{4})+D_{3}+D_{5}$ defines a $P^{1}- fibration\Phi$ $:=\Phi_{|F|}$ : $V\rightarrow P^{1},$ $D_{6}$
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is a section of $\Phi$ and $D_{1}+D_{2}$ is contained in a singular fiber of $\Phi$ , say $G$ .
Since Supp $G$ contains $D_{1}$ which is a (-5)-curve, we have $\# G\geq 5$ . Then

$\rho(V)=7\geq 2+(\# F-1)+(\# G-1)\geq 9$ ,

which is a contradiction. Hence this subcase does not take place.
Subcase (10)-(ii): $(M\cdot D_{1}+D_{2})=(M\cdot D_{2})=1$ . Then we have

$-(M\cdot D^{\#}+K_{V})=\frac{2}{3}$ .

Lemma 2.3 implies that $(M\cdot D_{3}+D_{4}+D_{5}+D_{6})=1$ . We may assume that
$(M\cdot D_{3})=1$ or $(M\cdot D_{4})=1$ .

Assume that $(M\cdot D_{3})=1$ . Then, a divisor $F=2M+D_{2}+D_{3}$ defines a
$P^{1}- fibration\Phi$ $:=\Phi_{|F|}$ : $V\rightarrow P^{1},$ $D_{1}$ and $D_{4}$ are sections of $\Phi$ and $D_{S}+D_{6}$ is
contained in a singular fiber of $\Phi$ , say $G$ . Since $D_{1}$ is a section of $\Phi$ , Supp $G$

contains an irreducible curve $E$ with $(E\cdot D_{1})=1$ . By Lemma 2.2 (2), $E$ is
a (-l)-curve. Then we have

$-(E\cdot D^{\#}+K_{V})\leq\frac{1}{3}<-(M\cdot D^{\#}+K_{V})$ ,

which is a contradiction. Similarly, we have a contradiction if (M. $D_{4}$ ) $=1$ .
Hence this subcase does not take place.

Subcase (10)-(iii): $(M\cdot D_{1}+D_{2})=(M\cdot D_{1})=1$ . By Lemma 2.3,
$(M\cdot D_{3}+D_{4}+D_{5}+D_{6})=1$ . If $(M\cdot D_{3})=1$ or $(M\cdot D_{6})=1$ , then we can
easily see that $V-(M+D)\cong C^{2}$ (cf. Cases (3) and (5)). Hence $X$ becomes
a minimal compactification of $C^{2}$ .

Suppose that $(M\cdot D_{4})=1$ or $(M\cdot D_{5})=1$ . We may assume that
$(M\cdot D_{4})=1$ . Then, a divisor $F=2(M+D_{4})+D_{3}+D_{5}$ defines a $P^{1_{-}}$

fibration $\Phi$
$:=\Phi_{|F|}$ : $V\rightarrow P^{1},$ $D_{6}$ is a section of $\Phi,$ $D_{1}$ is a 2-section of $\Phi$ ,

and $D_{2}$ is contained in a singular fiber of $\Phi$ , say $G$ . By Lemma 2.2 (2) and
$\rho(V)=7$ , we know that $G=E_{1}+D_{2}+E_{2}$ , where $E_{1}$ and $E_{2}$ are (-l)-curves,
$(E_{1}\cdot D_{2})=(E_{2}\cdot D_{2})=1$ and $(E_{1}\cdot E_{2})=0$ . Since $D_{1}$ is a 2-section of $\Phi$ and
the multiplicity of $D_{2}$ in $G$ is equal to one, we may assume that $E_{1}$ meets
$D_{1}$ . Then

$-(E_{1}\cdot D^{\#}+K_{V})=1-\frac{2}{3}(E_{1}\cdot D_{1})-\frac{1}{3}(E_{1}\cdot D_{2})\leq 0$ ,
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which contradicts Lemma 2.2 (1).

Theorem 1.2 is thus verified.

Appendix

A Fundamental groups of some open rational
surfaces with $\overline{\kappa}=-\infty$

Let $X$ be a normal projective rational surface defined over $C$ with unique
singular point. Assume that the singular point of $X$ is a quotient singular
point. In [10], Gurjar and Zhang proved the following result.

Theorem A.l With the same notation and assumptions as above, assume
further that $\overline{\kappa}$($X$ –Sing $X$ ) $\leq 1$ . Then $\pi_{1}$ ($X$ –Sing $X$ ) is a finite group.

In this section, we prove the following result by using the results in [15].

Proposition A.2 With the same notation and assumptions as above, as-
sume further that $\overline{\kappa}$( $X$ –Sing $X$ ) $=-\infty$ . Then $\pi_{1}$ ( $X$ –Sing $X$ ) is a finite
abelian group.

Proof. By [10, Lemma 1], it suffices to show that $\pi_{1}$ ( $X$ -Sing $X$ ) is abelian.
Assume that $X$ is not log relatively minimal, i.e., there exists an irre-

ducible curve $E$ on $X$ such that $(E^{2})<0$ and $(E\cdot K_{X})<0$ (cf. [22, Chapter
II, \S 4]). Let $f$ : $X\rightarrow X^{\prime}$ be the contraction of $E$ . Since #Sing $X=1$ ,
it follows from [22, Capter II, \S 4] (see also [14]) that $X^{\prime}$ has at most one
quotient singular point and $\overline{\kappa}$( $X^{\prime}$ –Sing $X^{\prime}$) $=\overline{\kappa}$( $X$ –Sing $X$ ) $=-\infty$ . It is
clear that $\pi_{1}$ ($X$ -Sing $X$ ) is a subgroup of $\pi_{1}$ ( $X^{\prime}$ -Sing $X^{\prime}$). Thus, to prove
Proposition A.2, we may assume that $X$ is log relatively minimal.

Since $\overline{\kappa}$($X$ –Sing $X$ ) $=-\infty$ and $X$ is log relatively minimal, one of the
following two cases takes place by [19, Lemma 2.7] and [14, Theorem 1.1].

(i) There exists a $P^{1}- fibrationh$ : $X\rightarrow P^{1}$ such that every fiber of $h$ is
irreducible and $h$ has only one multiple fiber $F$ .
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(ii) $X$ is a log del Pezzo surface of rank one.

We consider the above two cases separately.

Case (i). By virtue of [14, Theorem 1.1], Sing $ X\in$ Supp $F$ . Then $X-$
Supp $F\cong P^{1}\times A^{1}$ and hence $\pi_{1}$ ($X$ –Sing $X$ ) $=(1)$ . In this case the
assertion holds.
Case (ii). Put $P:=SingX$ . If $P$ is of type $E_{n}(n=6,7,8)$ , then $\pi_{1}(X-P)=$

(1) because $X$ is a minimal compactification of $C^{2}$ by Lemma 2.6 (1). If $P$

is a cyclic quotient singular point, then $\pi_{1}(X-P)$ is abelian by Lemma 2.6
(3).

Assume that $P$ is of type $D$ . Let $\pi$ : (V, $D$ ) $\rightarrow X$ be the minimal reso-
lution of $X$ and let $D=\sum_{i=0}^{r}D_{i}$ be the decomposition of $D$ into irreducible
components such that the weighted dual graph of $D$ is given as in Figure
2. Then Lemma 2.6 (2) implies that there exisits a (-l)-curve $E$ such that
$(E\cdot D)=(E\cdot D_{i})=1$ , where $i=1$ or 2. We may assume that $i=1$ . Put
$F:=2(E+D_{1}+D_{0})+D_{2}+D_{3}$ . By Lemma 2.3, $a_{0}=a_{3}=2$ . So $F$ defines
a $P^{1}- fibration\Phi$ $:=\Phi_{|F|}$ : $V\rightarrow P^{1},$ $D_{4}$ is a section of $\Phi$ and $D_{5},$

$\ldots,$
$D_{r}$ are

contained in a fiber $G$ of $\Phi$ if $r\geq 5$ . Here we note that $r\geq 4$ and if $r=4$ then
$\pi_{1}(V-D)=(1)$ . Assume that $r\geq 5$ . Then, since $\rho(V)=\# D+1=r+2$ ,
$G$ contains a unique (-l)-curve $E$‘ and $(G)_{red}=D_{S}+\cdots+D_{r}+E^{\prime}$ . Let $m$

be the multiplicity of $E^{\prime}$ in $G$ . By using the same argument as in Example
4.2, we know that

$\pi_{1}(V-D)=\left\{\begin{array}{ll}(1) & if m is odd,\\Z/2Z & if m is even.\end{array}\right.$

In particular, $\pi_{1}(V-D)=\pi_{1}(X-P)$ is abelian. Q.E.D.

Remark A.3 In Case (ii), we know that $\pi_{1}$ ( $X$ –Sing $X$ ) is finite by virtue
of [8] and [9].

B A proof of a result of Ramanujam
Let $k$ be an algebraically closed field of arbitrary characteristic, which we

fix as the ground field throughout the present section. Let $S$ be a smooth
affine algebraic surface defined over $k$ . Let (V, $D$ ) be a pair of a smooth
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projective surface $V$ and a reduced normal crossing divisor $D$ on $V$ . We call
(V, $D$ ) a normal algebmic compactification of $S$ if $S$ is isomrophic to $V-D$
(cf. Definition 2.7). A normal algebraic compactification (V, $D$ ) of $S$ is said
to be minimal if $(E\cdot D-E)\geq 3$ for any (-l)-curve $E\subset D$ . Note that
minimal normal algebraic compactifications of $S$ exist since $S$ is an affine
algebraic surface.

When $S=C^{2}$ , Morrow [24, Theorem 9] gave a classification of mini-
mal normal algebraic compactifications (V, $D$ ) of $S$ . His argument depended
heavily on the following theorem which is the main result of Ramanujam [25]
(see also [23]).

Theorem B.1 If (V, $D$ ) is a minimal normal algebraic compactification of
the affine plane $A_{k}^{2}$ , then the dual graph of $D$ is linear.

In this section, by using the similar argument to the proof of [16, Theorem
1.1], we givea new proof of Theorem B.1.

Let (V, $D$ ) be a minimal normal algebraic compactification of the affine
plane $S:=A_{k}^{2}$ . The folowing lemma is easy but useful.

Lemma B.2 (cf. [16, Lemma 2.2]) There exists an irreducible linear pencil
$\Lambda$ on $V$ such that the following conditions (i) $\sim(iii)$ are satisfied.

(i) Bs $\Lambda\subset D$ and a general member of $\Lambda$ is a rational curve.

(ii) The $mo$rphism $\varphi$
$:=\Phi_{\Lambda}|_{S}$ is an $A_{k}^{1}- fibration$ onto the affine line $A_{k}^{1}$

without singular fibers.
(iii) Let $\mu$ : $\tilde{V}\rightarrow V$ be a composition of blowing-ups with centers at the

base points (including infinitely near base points) of $\Lambda$ such that the
proper transform $\tilde{\Lambda}$ of $\Lambda$ by $\mu$ has no base points. Then $\tilde{\Lambda}$ gives rise
to a $P^{1}$ -fibration $\Phi_{\overline{\Lambda}}$ on $\tilde{V}$ over $P^{1}$ and there exists a section of $\Phi_{\overline{\Lambda}}$ in
$\tilde{D}$

$:=\tilde{V}-\mu^{-1}(S)$ .

Proof. There exists a diagram

$V\leftarrow^{f}W\rightarrow^{g}P^{2}$ ,

where $f$ (resp. g) is a composition of blowing-ups with centers in $D$ (resp. a
line $\ell$ on $P^{2}$ ) including infinitely near points. Let $P_{0}$ be a point on $\ell$ . Here
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we may assume that $P_{0}$ is blown up by $g$ . Let $\Lambda^{\prime}$ be the irreducible linear
pencil on $P^{2}$ consisting of lines through $P_{0}$ . Then the proper transform $g^{\prime}(\Lambda^{\prime})$

gives rise to a $P^{1}- fibration\Phi_{g^{\prime}(\Lambda^{\prime})}$ : $W\rightarrow P^{1}$ and there exists a section of
$\Phi_{g^{\prime}(\Lambda^{\prime})}$ in $W-g^{-1}(S)$ . Moreover, $\Phi_{g\langle\Lambda^{\prime})}/|_{g}-1\langle s$ ) : $g^{-1}(S)\cong S\rightarrow A_{k}^{1}$ is an $A_{k^{-}}^{1}$

fibration onto $A_{k}^{1}$ without singular fibers. Hence $\Lambda$
$:=f_{*}(g^{\prime}(\Lambda^{\prime}))$ becomes an

irreducible linear pencil on $V$ satisfying the conditions $(i)\sim(iii)$ . Q.E.D.

Proof of Theorem B.l. Let $\Lambda$ be an irreducible linear pencil satisfying
the conditions (i) $\sim$ (iii) in Lemma B.2. If Bs $\Lambda=\emptyset$ , then it is clear that
$\Phi_{\Lambda}$ : $V\rightarrow P^{1}$ is a $P^{1}$-bundle over $P^{1}$ , i.e., $V$ is a Hirzebruch surface, and $D$

consists of a fiber of $\Phi_{A}$ and a section of $\Phi_{A}$ (cf. [12, Lemma 2.2]). So, in this
case, the assertion holds.

Assume that Bs $\Lambda\neq\emptyset$ . Then #Bs $\Lambda=1$ , Bs $\Lambda\in D$ and $ P:=Bs\Lambda$ is a
one-place point for a general member of $\Lambda$ . Let $\mu$ : $\tilde{V}\rightarrow V$ be the shortest
composition of blowing-ups with center $P$ (including infinitely near points
of $P$ ) such that the proper transform $\tilde{\Lambda}$ of $\Lambda$ by $\mu$ has no base points. Put
$\tilde{D}$

$:=\mu^{-1}(D)$ . Then $\tilde{V}-\tilde{D}=S$ and $\tilde{\Phi}$

$:=\Phi_{\overline{\Lambda}}$ : $\tilde{V}\rightarrow P^{1}$ is a $P^{1}- fibration$ .
Let $\tilde{D}_{0}$ be the last exceptional curve in the process $\mu$ . Then $\tilde{D}_{0}\subset\tilde{D},\tilde{D}_{0}$ is
a section of $\tilde{\Phi}$ and the other components of $\tilde{D}$ are contained in fibers of $\tilde{\Phi}$ .
Let $D_{1},$

$\ldots,$
$Dp$ be al components of $D$ through $P$ . Then $\ell=1$ or 2 since $D$

is an NC-divisor. By the minimality of the pair (V, $D$ ), we know that every
component of $D-(D_{1}+\cdots+D_{\ell})$ has self-intersection number $\leq-2$ . Note
that every irreducible component of $D$ is a nonsingular rational curve and
the dual graph of $D$ is a tree because $\overline{\kappa}(S)=-\infty$ (cf. [18, Lemma I.2.1.3]).

Suppose to the contrary that the dual graph of $D$ is not linear, i.e.,
there exists an irreducible component $D$ ‘ of $D$ with $D^{\prime}(D-D^{\prime})\geq 3$ . Let
$D-D^{\prime}=A_{1}+\cdots+A_{\ell}$ be a decomposition of $D-D^{j}$ into connected
components. Since the dual graph of $D$ is a tree, we have $t\geq 3$ . So we may
assume that $P\not\in A_{1}\cup A_{2}$ . Let $\tilde{F}$ be a fiber of $\tilde{\Phi}$ containing $\mu^{\prime}(D^{\prime})$ . Then
$\mu^{\prime}(A_{1}+A_{2})\subset Supp(\tilde{F})$ . Hence $\tilde{F}$ is a singular fiber.

Let $f$ : $\tilde{V}\rightarrow\tilde{V}_{1}$ be a sequence of contractions of (-l)-curves and sub-
sequently contractible curves in Supp $(\tilde{F})$ such that $f(\mu^{\prime}(D^{\prime}))$ becomes a
(-l)-curve. Note that such a birational morphism exists and $f(\tilde{D}_{0})$ is a
section of the $P^{1}- fibration\tilde{\Phi}of^{-1}$ : $\tilde{V}_{1}\rightarrow P^{1}$ . If Supp $(\tilde{F})\subset\tilde{D}$ then the
weighted dual graph of $f_{*}(\mu^{\prime}(A_{i}))(i=1,2)$ is the same as that of $A_{i}$ . Hence
we have $(f_{*}(\mu^{\prime}(D^{\prime}))\cdot f_{*}(\tilde{F}_{rcd}+\tilde{D}_{0}-\mu^{\prime}(D^{\prime})))\geq 3$ , which is a contradiction.

Suppose that Supp $(\tilde{F})\not\subset\tilde{D}$ . Let $\tilde{G}$ be a sum of irreducible components
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of $\tilde{F}_{red}$ which are not contained in $\tilde{D}$ . Since $\tilde{F}|_{S}$ is a fiber of $\varphi$ , we know that
$\tilde{G}$ is irreducible and the multiplicity of $\tilde{G}$ in $\tilde{F}$ is equal to one. So we may
assume that $\tilde{G}$ is not contracted in the process of $f$ . Then the weighted dual
graph of $f_{*}(\mu^{\prime}(A_{i}))(i=1,2)$ is the same as that of $A_{i}$ . Hence, by using the
same argument as in the case Supp $(\tilde{F})\subset\tilde{D}$ , we obtain a contradiction.

Q.E.D.

Remark B.3 (1) ${\rm Re} cently$, Kishimoto [12] gave an algebraic proof of [24,
Theorem 9] without using Theorem B.1.

(2) In [24] and [25], Morrow and Ramanujam considered (minimal nor-
mal) ”analytic” compactifications of $C^{2}$ and proved that they are also alge-
braic compactifications of $C^{2}$ . In [6, Corollary (9.2)], Fujita proved the same
result by using a different method.

C List of configurations
In the following list of configurations, the weight of the vertex correspond-

ing to a (-2)-curve of $D$ is omitted. In (2), (14) and (15), the subgraph
denoted by the encircled $A$ is given as in Figure 1 and the subgraph denoted
by the encircled A* is the weighted dual graph of the adjoint of A, where we
consider $A$ as an admissible rational rod whose weighted dual graph is given
as in Figure 1. In (1), (2), (14), (15) and (16), $n\geq 2$ . In (2) $\sim(32),$ $C$ is a
(-l)-curve. In (15), $D$ consists of two rods.

(1)
$D=M_{n}$ $C$

$0\cdots\cdots\cdots\cdots\cdots\cdot\cdot 0$

$-n$ $0$
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(14)

$(m\geq 1)$

$(t\geq 0)$

–190–



$(t\geq 0)$

$(t\geq 0)$

$(t\geq 0)$

$(t\geq 0)$
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$(t\geq 0)$

$(t\geq 0)$

$(t\geq 0)$

$(t\geq 0)$
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$(t\geq 0)$

$(t\geq 0)$

$(t\geq 0)$
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