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I? THEORY FOR THE OPERATOR
A+ (k x z) - V IN EXTERIOR DOMAINS

TOSHIAKI HISHIDA

ABSTRACT. In exterior domains of R3, we consider the differential operator A+ (kxz)-V with
Dirichlet boundary condition, where k stands for the angular velocity of a rotating obstacle.
We show, among others, a certain smoothing property together with estimates near ¢ = 0 of
the generated semigroup (it is not an analytic one) in the space L2. The result is not trivial
because the coefficient k X z is unbounded at infinity. The proof is mainly based on a cut-off
technique. The equation 8;u = Au + (k X ) - Vu can be taken as a model problem for a
linearized form of the Navier-Stokes equations in a domain exterior to a rotating obstacle.
This paper is a step toward an analysis of the Navier-Stokes flow in such a domain.

Key words and phrases: differential operators with unbounded coefficients, exterior domains,
semigroups, smoothing effects.

1. Introduction and statement of main results
Let © C R3 be a compact obstacle which is bounded by a smooth surface I'. In the
exterior domain = R3\ O we consider the initial boundary value problem

Oiu = Au+ (k x z) - Vu, zeN, t>0,

u(z,t) =0, zel, t>0,
(1.1) (=)

u(z,t) — 0, |z| = o0, t >0,

u(z,0) = a(x), z €,

where k = (0,0,1)T, so that k x £ = (—z2,71,0)T. The aim of the present paper is to
establish some fundamental properties for the differential operator A+(kxz)-V in exterior
domains. It is proved that the operator with homogeneous Dirichlet boundary condition
generates a semigroup having a certain smoothing property and enjoys an elliptic regularity
estimate in the space L2.

Let us explain the motivation of this study. Assume that the exterior domain § is
occupied by a viscous incompressible fluid and that the obstacle O is rotating about the
r3-axis with angular velocity k. We then consider the fluid motion governed by the Navier-
Stokes equation in the domain Q(t) = {O(t)z; = € Q}, where
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Unless the obstacle @ is axisymmetric, the domain Q(t) actually varies with time ¢. In
general it is not so easy to treat directly initial boundary value problems in exterior domains
with moving boundaries. It is reasonable to reduce our problem to an equivalent one in
the fixed domain Q by using the coordinate system attached to the rotating obstacle
together with an appropriate transformation of unknown functions. Borchers [3] has first
constructed the Navier-Stokes flow as a weak solution to the reduced problem. Chen and
Miyakawna, [4] have also discussed the existence and some decay properties of weak solutions
to the related Cauchy problem. One of the important problems is now to find a unique
strong solution. To this end, we have to carry out the analysis of a linearized form of the
reduced Navier-Stokes equation, which is given by (see (3, 4, 8])

(Ou = Au+ (kxz)-Vu—kxu—Vp, zeN, t>0,
V:u=0, z€eN, t>0,

(1.2) { u(z,t) =0, zel, t>0,
u(z,t) — 0, |z] = o0, t >0,
| u(z,0) = a(z), Tz €Q,

where u and p denote, respectively, unknown velocity vector field and pressure of the fluid.
The coefficient k x = of the convection term is understood as the rigid motion rotating
about the z3-axis. Since this unbounded coefficient is a significant feature of the problem
(1.2), we consider (1.1) as a model problem for (1.2).

For the study of semilinear problems associated with (1.1) (we keep the Navier-Stokes
equations in mind), the following properties for the operator A + (k x z) - V play crucial
roles: the generation of a semigroup, its smoothing property, an elliptic regularity estimate
and an embedding property for the domains of fractional powers. In this paper we discuss
them in the framework of L? theory. As already mentioned, the essential difficulty is the
growth at infinity of the coefficient of (k x x)-V, which cannot be treated as a perturbation
of the Laplace operator. It is also impossible to apply the technique of Agmon [1] (see also
Tanabe [15, Chapter 3]) on the generation of analytic semigroups. In fact, as shown in
Proposition 3.8, the related semigroup for the Cauchy problem in R3 is never analytic on
L2(R3); besides, it is not a differentiable semigroup in the sense of Pazy [12, Chapter 2].
This tells us that the operator (k x ) - V does not conserve some properties of the Laplace
operator. Nevertheless, as clarified in this paper, the generated semigroup possesses a
certain smoothing property in the space LZ.

Concerning differential operators with unbounded coefficients in another function space
over RY, we find the work of DaPrato and Lunardi [5]. They have studied the Ornstein-
Uhlenbeck operator Af = Tr [QD?f] + (Bz) - Vf in RY, where Q is a symmetric positive
definite matrix and B is a nonzero matrix. Such a class of operators covers A+ (kxz)-V.
For the generated semigroup S(t), they have shown the following result: S(t) is not an
analytic semigroup on UCB(RY), the space of the uniformly continuous and bounded
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functions in RV, but it enjoys the remarkable smoothing properties D7 S(t)f € UCB(RN)
for all f € UCB(R"),j € N and t > 0 with sup,gw~ |D?[S(t)f](z)| = O (t79/2) ast — 0
for j = 1,2. They have also derived Schauder type estimates for the operator A.

Although their results are interesting, it is difficult to apply directly them to the Navier-
Stokes equations. So, we here independently develop the L? theory for the operator A +
(kxzx)-V in exterior domains as well as in R3 because, as is well known, L? is the standard
function space in the Navier-Stokes theory.

We define the linear operator Lo : L%(2) — L?(Q2) by

(1.3)

D(Lo) = {u € H3(Q) N Hj(Q); (k x x) - Vu € L3(Q)},
£o=—A—(kX$‘)-V. E

Here, for integer m > 0, H™(Q) = W™2%(Q), and W™P(Q) is the usual LP Sobolev
space. By HF'()) we denote the completion of C$°(2), the class of smooth functions
with compact supports, in H™(f2). Since the operator Lo has an unbounded coefficient,
elliptic regularity estimates as given in Agmon, Douglis and Nirenberg [2] are not clear.
To derive such an a priori estimate in L?(Q) is also our task (Theorem 2). Therefore, at
present, it is not so easy to show the closedness of £q directly. But it is verified that Lg is
a closable operator with dense domain in L?(Q2) (section 2). We thus define the operator
L:L%(Q) — L%(Q) by ~

(1.4) L = Lo (the closure of Lo).

We start with the result on the generation of a semigroup.

Theorem 1. The operator L is m-accretive, so that —L generates a (Cp) semigroup
{e7t€},., of contractions on L*(Q).

We next give an L? a priori estimate for the operator £ and clarify the domain D(L).
Theorem 2. For each u € D(L), we have
u € H*(Q) N H}(Q), (k x z) - Vu € L?(Q).

There is a constant C > 0 such that

(1.5) lullz2(q) + [(k x z) - Vu|| L2y < CII(1 + L)u|| L2y,

for all w € D(L). As a result, D(L) = D(Lo) and, therefore, L = L.

By Theorem 1 fractional powers £*,0 < a < 1, of £ are well defined as closed operators
in L?(2). An embedding property of Sobolev type for the domains of £ is given by the
following theorem.
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Theorem 3. Let m = 0,1. Assume that 2 < p < o0 if m = 0, and that 2 < p < 6 if
m = 1. Put a = 3(1/2 — 1/p)/2 + m/2. Then there is a constant C = C(m,p) > 0 such
that D(L*) C W™P(QQ) with estimate

(1.6) [ullwme@) < CIl(1 + L)%ull L2(n),

for all u € D(L*).

We finally present the result on the smoothing effect for the semigroup {e~*¢};>( ob-
tained in Theorem 1. Let A be the operator from L?(f2) into itself defined by

1.7) D(A) = HX(Q)NHAQ), A=-A,

which is closed on account of the well known L? estimate ([2, 6])

(1.8) lull g2 < CHQA + A)ull L2 (), u € D(A).

By Theorem 2 we have D(L) C D(A). The operator A is nonnegative selfadjoint so that
its fractional powers A® are well defined. The following theorem asserts that e~*<a is in
D(A) for all t > 0 without any regularity assumptions on a, and that e *4q is in D(L)
for all ¢ > O under the additional assumption (k x z) - Va € H=*°(Q) = ,,>c H ™(Q),
where H~™((Q) is the dual space of HJ*(2).

Theorem 4. (i) Suppose that a € L*(2?). Then e~ *a € D(A) for allt > 0. Let
0 < a < 1. Then there is a constant C = C(a) > 0 such that '

(1.9) |A%e~*a]| @ < Ct™%lallLa(q),

forO0<t<1.
(ii) Suppose that a € L%(Q) and that (k x z) - Va € H™™(Q) for some integer m > 0.
Then e~*£a € D(L) for all t > 0, and

(1.10) Le~ta € C ((0,00); L%(R)), e *a € C ((0,00); L%()),
with

d__ic —tc
(1.11) P a+ Le **a =0, t>0,

in L?(S2). Let 0 < a < 1. Then there is a constant C = C(m, a) > 0 such that

(1.12)
%€ allzaay < € [t~ lallzay + 7/ {1k x 2) - Vallg-mioy + el }]
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for0 <t < 1.

(iii) Suppose that a € D(L®) for some 0 < 6 < 1 and that (k X =) - Va € H™™(Q2) for
some integer m > 0. Let § < a < 1. Then there is a constant C = C(6,m,a) > 0 such
that

(1.13)
e al| aiqy < C [t~ lall ey + 1~ HET {1k x 2) - Vall -y + lallgen ]

forO<t<1.
(iv) Let 0 < a < 1. Then

(1.14) ”A“e_wa"m(n) =0 (t""‘) as t—0,

for all a € L?(Q2), and

(1.15) ",C"‘e‘ma”m(m =0 (t"") as t—0,

for all a € L?(Q) satisfying (k X z) - Va € H~1().

By the known method in nonhomogeneous problems (Pazy [12, Chapter 4]), the result
(ii) of Theorem 4 implies that the function

t
u(t) = / e~ (t=9)L p(s)ds,
0
is of the same class as (1.10) and satisfies

Z—:+Cu=F(t), 0<t<T; wu(0)=0,

in L2(Q2) if the forcing term fulfills
F e C® (I; L*(Q)) n L' (0,T; L*(Y)) ,
(kxz)-VFecC® (LH Q) nL (0,T; H*(Q)),

with some Hélder exponent o € (0,1) for every compact interval I C (0,7'). Estimates .
(1.9), (1.12) and (1.13) near t = O together with (1.6) are useful in proving the local
existence of the strong solution to the semilinear problem associated with (1.1).

To overcome the difficulty caused by the lack of boundedness of the coefficient of £, we
employ the method based on a cut-off procedure, which is for instance similar to [9, 14].
In the proof of Theorem 1, besides the accretivity (section 2), we construct the resolvent
(A + £)~! for Re A > 0 by using resolvents for R3 and for a bounded domain near the
boundary I' (section 5). It is noted that the surjectivity of A + £ does not follow from
the simple consideration of the adjoint operator £* of £ since D(L*) as well as D(L) is
not clear before the proof of Theorem 2. In the proof of Theorems 2 and 3, a key step
is that u € D(L) implies Au € L?(2). We prove such a regularity property for a unique
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solution to the boundary value problem (section 5). In the proof of Theorem 4, we employ
the cut-off procedure once again for the initial boundary value problem with the aid of
some smoothing properties of solutions in R? and in bounded domains (section 7). For the
problem in R?® we make full use of the Fourier transform together with an explicit formula
of the solution (section 3), while the operator A+ (kx x)-V in bounded domains generates
an analytic semigroup (section 4).

In order to construct a unique local solution of the Navier-Stokes equations in the
exterior of a rotating obstacle, the above theorems for the associated operator are necessary.
Most part of the method developed here combined with Bogovskii’s technique for the
recovery of the solenoidal condition in cut-off procedures can be applied to the problem
(1.2); this will be discussed elsewhere [7, 8].

The content of this paper is as follows. In section 2 we show the accretivity of £. In

sections 3 and 4 we respectively carry out the analysis of the operator A + (k x z) -V in
R3 and in bounded domains. Section 5 is concerned with the construction of the resolvent
(A + £)7! to prove Theorem 1. In section 6 we derive L? a priori estimates to prove
Theorem 2 together with Theorem 3. The final section is devoted to the investigation of
the smoothing effect for the semigroup e~*¢ to prove Theorem 4.
Notation. Besides the symbols which have been already introduced, we adopt the follow-
ing notation. For a domain G in R3, we denote the norm of L2(G) by || - |le = || - [l z2(q)-
For simplicity, we use the abbreviation ||-|| for ||- ||, where Q = R3\ @ is the given exterior
domain. The scalar product on L?(Q2) and some duality pairings are denoted by (:,-). We
set C; = {\ € C; Re )\ > 0}, that is, the right half complex plane.

2. Accretivity

In this section we prove that the operator £ defined by (1.4) is accretive and has the
dense domain in L?(2). It follows from the relation D(L) D D(Lo) D C () that D(L) is
dense in L%(£2). So, it is sufficient to show the accretivity of the operator £q. In fact, this
implies that Lo is closable (so that £ = Ly is well defined), and that £ is also accretive
(Tanabe [15, Chapter 2]).

First of all, since we easily observe the following lemma without using the accretivity,
we give its proof.

Lemma 2.1. The operator L defined by (1.3) is closable in L3().
Proof. Suppose that u; € D(Lo),||luj]| — 0,]|Cou;j —v]| — 0 as j — oo. For every
p € C§°(L2), an integration by parts together with V - (k x ) = 0 yields
(Louj, p) = (uj, —Ap+(kxz)- V) 50 as j— oo
We thus have (v, ) = 0, which implies v=0. O

Due to the special structure of (k x ) - V, we obtain the following lemma, which just
asserts that the operator Lo is accretive in L2(Q).

Lemma 2.2. For each u € D(Lo), we have

(2.1) Re (Lou,u) = ||Vu|.
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Proof. Let u € D(Lp). An integration by parts yields the following equality for large
R>0:

/ ((k x z) - Vu]adr = -—/ u[(k x z) - Vu]dz,
Qr Qr

where Qp = {z € Q;|z| < R}. Here, note that the integral on I' vanishes because of
u € H}(Q), and that the integral on || = R does because of = - (k x ) = 0. Since
(k x ) - Vu € L?(Q), letting R — oo in the above equality implies ((k x =) - Vu,u) =
— (u, (k x =) - Vu), so that Re ((k x z) - Vu,u) = 0. We thus obtain (2.1). O

Corollary 2.8. For each u € D(L), we have u € H}() with the relation (2.1), so that £
is an accretive operator in L%(Q)). As a result, the operator A + L has a continuous inverse
for each A € C;..

Proof. For u € D(L), we take u; € D(Lo) so that ||u; —u||p(c) — 0 as j — oo. Then, by
(2.1) the sequence {u;} is a Cauchy one in H'(f2) so that |lu; — u||g1(q) — 0 as j — oo.
This implies v € H}(Q) with (2.1). It follows from (2.1) for u € D(L) that

(2.2) A+ L)ullllull = Re Allull® + [Vull®,  ue D),
which implies
(2.3) A+ L)ull ZRe AMlull,  ue D).

Therefore, we obtain the latter assertion. O

Remark 2.1. By (2.3) the operator 1+ £ has a closed range on account of the closedness of
L. Consider the adjoint operator £* of £, which is of the form —A+ (kx z)-V. If 1+ L*
is injective, then 1 + £ is surjective so that £ is an m-accretive operator. However, the
same argument as above implies (2.3) with £ replaced by £* for only u belonging to the
completion of D(Lo) under the graph norm of £*. Since D(L*) is not clear (at present)
and may be larger, this consideration is not sufficient for the proof of the m-accretivity of
L. The surjectivity of 1 + £ will be proved directly through the corresponding boundary
value problem in section 5.

8. The operator A + (kx z)-V in R3
Let L., be the operator from L?(R3) into itself defined by

D(Le0) = {u € H*(R3); (k x x) - Vu € L*(R3)},
Leo=—-A—(kxz) V.

Then the same way as in Lemma 2.2 implies that L. is a densely defined accretive
operator in LZ(R3). Thus the operator L. ¢ is closable so that we can define the operator
Le: L?(R3) — L%(R3) by

Le = Le,o (the closure of L.p).
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It is evident that the operator L. has the same property as in Corollary 2.3. Therefore,
for each A € C; and f € L?(R3), we have the uniqueness of solutions in D(L.) for the
equation

(3.1) M+Leu=f in L*R3),

which corresponds to the spectral steady problem

(3.2) M —Au—(kxz) - Vu=f, z € R3.

The first purpose of this section is to prove the following proposition.

Proposition 8.1. The resolvent set p(—L.) of the operator —L. contains the right half
plane C,. As a result, the operator L. is m-accretive, so that —L. generates a (Cp)
semigroup {e~tf<};>¢ of contractions on L?(R3).

For the proof of Proposition 3.1, we have to establish the existence of the solution to
(3.1) for every f € L?(R3). The equation (3.2) is formally deduced from the Laplace
transform of

(3.3) 8v = Av + (k x z) - Vo, z eR3,t>0,
(3.4) v(z,0) = f(z), z € R?,

with respect to the time variable. By a direct calculation (cf. the reduction of (1.2) in [8])
the function

(3.5) v(z,t) = [UM)f] (z) = [2f] (O®)z), =z eR%t>0,

satisfies the initial value problem (3.3) and (3.4) with f € L?(R3), where

36 [ @ = )= [ e fpay.

It is easy to see that

3.7 IU @) fllre = || [*2£] (O®) )|gs = lle** Fllre < lIfllRs, ¢ >O.

Set U(0) = I. It is possible to show that the family {U(t)}:>0 is 2 (Cp) semigroup on
L?(R3). But, at present, the coincidence between the domain of its infinitesimal generator
and the domain D(L.) of L. defined above is not clear (this will be clarified later). The
solvability for (3.1), however, can be established by using U ().

—110 —



Lemma 3.2. For each A € C; and f € L?(R3), there exists a unique solution u € D(L¢)
to (3.1). This solution possesses the regularity Au € L*(R3) with estimate

(3.8) lAu|lrs < || fllrs,

and is of class

(3.9) u € H?(R3), (k x =) - Vu € L3(R3).

Proof. The uniqueness of solutions in D(L.) can be deduced in the same way as in the
proof of Corollary 2.3 (as already mentioned). For given A € C; and f € L?(R3), we may
expect that the solution to (3.1) is given by

(3.10) ue, ) = [ e MU@N@E,
0
which is in L2(R3) because of (3.7). We have to prove that u(}\) = u(-,A) € D(L.). We
first show that Au()\) € L?(R3) with estimate (3.8). Consider the Fourier transform of
u(\) with respect to the space variable:
FuOVIEQ) = 86,V = @02 [ e u(z, Nz
R3

(3.11)
_ /0‘” e~ FU(t)f] (€)dt,

where i = v/=1. For v(t) = U(t)f € L*(R3), we have (k x z) - Vv € §'(R3), the class of
temperate distributions. We thus take the Fourier transform of the initial value problem
(3.3) and (3.4). One can verify

(3.12) Fl(k x z) - Vov] = (k x €) - V¢,
so that
(3.13) FIU®)FIE) = B(&, 1) = e €It FO1)E).

Therefore, by (3.11) and (3.13) the Fubini and the Plancherel theorems imply

/ €[4 [aGe, N 2de
R3
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This yields Au()\) € L%(R3) with estimate

lAu(Vllrg = FlAuM)]llrg < lIfllrs-

From this it follows that u € H?(R3) and that (kxz)-Vu = Au—Au— f € L2(R3). Hence,
u € D(Lc,0) C D(L.), so that we can consider L u. By (3.3)—(3.5), (3.7) and (3.10) we
obtain

L) == [ e HOU@dt = £ - du),

in L?(R3). Thus, u()) is actually the solution to (3.1). We have completed the proof. O

Proof of Proposition 3.1. Lemma 3.2 asserts that the operator A+ L, is bijective in L2 (R3)
for every A € C,. This implies C; C p(—L.) so that £, is an m-accretive operator. By
the Lumer-Phillips theorem (Pazy [12, Chapter 1]) the operator —C, generates a (Cp)
semigroup {e~*%<};5( of contractions. O :

We here mention that the semigroup {e™tCe};>0 exactly coincides with the family
{U(®)}+t>0 given by (3.5). In fact, since the unique solution to (3.1) is given by (3.10),
the resolvent is of the form

o0
(3.14) OA+L)1 = / eMU(t)dt, AeC,.
0
On the other hand, we have

A+L) = /m e Metledt AeC,,
0

by the standard theory of semigroups ([12, 15]). Therefore, for all f and ¢ in L2(R3) we
get

i " e UE) S, p)dt = i " e (et £, p)dt.
0 0
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It follows from the uniqueness of the inverse Laplace transform in the class of continuous
functions that (U(f)f,¢) = (e %4 f, p) for all ¢ € L?(R3). We thus obtain U(t) f = e~t4 f
for all f € L?(R3) and ¢ > 0.

Besides

(3.15) 1O+ £e) ™ flles < gl e,

we give some estimates for the derivatives of the resolvent.

Lemma 3.3. It holds that

- 1
(3.16) | IV + )™ flles < gzgyiza e
(3.17) ID%(r + £2)™ fllns < I,

for all A € C; and f € L%(R3).

Proof. Set u = (A + L.)"1f. Then the relation ||D?u||gs = ||Aul|gs (by using the Riesz
transform) and (3.8) give (3.17). By ([Vullgs < [Aullre|lullre < ||fllrs||ullre, estimate
(3.15) implies (3.16). O

The following proposition presents an L? a priori estimate for the operator £.. This is
the entire space version of Theorem 2.

Proposition 8.4. For each u € D(L.), we have

u € H3(R3), (k x z) - Vu € L%(R3),

with estimates
(3.18) |Aul|lgs < ||Leul|gs,

(3.19) Nk x z) - Vaullrs < 2[|Ceullrs.

There is a constant C > Q such that

(3.20) llull 72 ®s) + |(k x ) - Vullrs < C[(1 + Le)ullgs »

for all u € D(L.). As a result, D(L.) = D(L.) and, therefore, L = L. -

Proof. For u € D(L.) and XA > 0, we set f = (A+Le)u € L2(R3). Then, by Lemma 3.2 the
unique solution » to (3.1) with such f is of class (3.9) so that D(L.) = D(L.,0). Further,
by (3.8) we have
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| Aullrs < [Iflire = [|(A + Le)ullre.
Letting A — 0 yields (3.18). From this it follows that

[(k x ) - Vullrs = [[Low + Aullgs < 2[|Leullrs,
which is just (3.19). We thus obtain

lullazms) + I(k x z) - Vullgs < C (| Aullrs + [lullrs) + 2(|Leullrs
< C(IlLeullrs + llullrs) ,
for u € D(L.). Since 1 + L. has a bounded inverse, the above estimate gives (3.20). O

We will derive the smoothing effect for the semigroup {U(t)}:>0 given by (3.5) (and
Proposition 3.1).

Proposition 8.5. Suppose that f € L?(R3). Then U(t)f € H™(R3) for all t > 0 and
every integer n > 1. Given an integern > 1,let 0 < s <n. If f € H*(R3) = (1 -
A)~*/2 [L%(R®)], then there is a constant C = C(n — s) > 0 such that

(3.21) ID™U(t)flire < C t~ 2| f|| o ms),

for t > 0, where D™ denotes each of derivatives of n-th order.

Proof. Since we have

[, lefene2ier 7]

for 0 < s < n, the formula (3.13) gives U(t)f € H"(R3) with estimate (3.21). O

Proposition 8.6. Suppose that f € L?(R3) and that (k x z) - Vf € H-™(R3) for some
integer m > 0, where H~™(R3) denotes the dual space of H™(R3). Then (kxz)-VU(t)f €
H™(R3) for all t > 0 and every integer n > 0 with estimate

-~ 2
flowe)| de<ct

2
3?
R€

(3.22) I(k x ) - VU@)fll (o) < C(EA1)™H72||(k x 2) - V|| g-m ),

fort >0, wheret A1 =min{t¢,1} and C = C(m +n) > 0.

Proof. Set g = (k x z) - Vf and v(t) = U(t)f. By (3.12), (3.13) and (k x &) - € = 0, we
obtain

Fl(k x z) - Vz0](€) = (k x £) - Veo(6,t) = e Kt (k x £) - V¢ [f(O(t)f)] :
Since § = (k x £) - V¢ f and since k x (O(£)€) = O(t)(k x £), we have

§0()8) = [k x (0O - ([VF] 0W&)) = (kx ) - V¢ [flo®e)] -
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Combining the above equalities yields

(3.23) Flk x 2) - Vo](€) = e € 50(1)6),

in S’(R3). Hence, it follows from

[ a+lepre e gomer d
I

‘ 2t R?
{ gl if m=n=0,

[(m_i’_-:n) A 1] ) ”g"ir—m(na) if m+n>0,

2

that (k x z) - Vv € H*(R3) with estimate (3.22). O

By (3.23) it turns out that U(t) is not an analytic semigroup on L2(R3) although it
possesses the smoothing effect (3.21). This will be proved in Proposition 3.8.

The next proposition is concerned with the existence of a strong solution to the Cauchy
problem.

Proposition 8.7. Suppose that f € L2?(R3) and that (k x z) - Vf € H™®(R3) =
Usaso H-™(R3). Then U(t)f € D(L.) for all t > 0, and

LeU()f eC ((Oa oo);Ha(Rs)) ’ U()f € Cl ((0’ w);Ha(Rs)) ’
with
(3.24) %U(t) F+LUBf =0, t>0,

in H*(R3) for every s > 0.

Proof. Set g = (k x z) - Vf and v(t) = U(t)f. By Propositions 3.4, 3.5 and 3.6 we have
v(t) € D(L.) and L.v(t) € H*(R3) for all t > 0 and every s > 0. By (3.13) and (3.23) we
make a change of variable n = O(t/2)¢ to obtain

L)t + h) = n[2e” M R F(O(t/2 + hyn) — e E+RF(O(8/2 + h)n)
= e~ */2 (L 0)(n, /2 + h).

Using this relation, we get

| Lev(t + ) — Lv(E)l|Fr- ey
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)€t + ) — (Cea)(e, 1) de

- [ a+ieny
= [ @+ nlye o [T, o/2 -+ b~ Eeodm /)| dn

< (max {3, 1})" ICo(t/2+ ) - Loo(t/2)I3s
= Cat A1) *|U /4 + h)Lev(t/4) — U(/4)Le0(t/4)]s.

Hence, L.v € C ((0, co); H*(R3)). The same reasoning as above gives

v(t + h) —o(t) 2

h

+ Lev(t)

Ho(R?)
v(t/2 + h) — v(t/2)
h R

Ut/4+ h)v(t/4l)z —UC/AED) | f g ayoe/a)

2

<C,(tA1)"® + L.v(t/2)

=C,(t A1)

2
R3

Since v(t/4) € D(L.), letting h — 0 implies that v € C! ((0, c0); H*(R3)) with (3.24). O

Remark 8.1. It seems to be difficult to show further regularity properties of the semigroup
with respect to the time variable under the assumptions of Proposition 3.7. If, in addition,
(kxz)-V[(kxz) Vf] € H *(R?), then we obtain U(-)f € C? ((0, c0); H*(R3)) for
every s > 0; we do not enter into the detail.

We finally prove the following proposition.

Proposition 8.8. The semigroup {U(t)}:»0 on L?(R3) given by (8.5) (and Proposition
3.1) is not analytic.

Proof. Suppose that {U(t)}:>0 is an analytic semigroup. Then for all f € L?(R3) and
t >0, we have U(t)f € D(L.) (see [12, 15]); in particular, (k x ) - VU(t)f € L?(R3) by
Proposition 3.4. Therefore, for g = (k x z)- Vf € S'(R3) with § = (kx&)-Ve f, it follows
from (3.23) that

(3.25) et ge I2(R}), VfeL?(R3),Vi>o.

We fix ¢ € S(Rg), the class of rapidly decreasing functions, so that p(¢) = 1 for €] < 2.
Let £ = (1,0,0)T and consider the function f given by

f=Ffer®),  flo -t e rwy,

where 7! is the inverse of the Fourier transform (3.11). Then

Vel = (TR LDl ¢ gy,
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so that

—&2

g tecB={6cR%|t -0 <1}

9(&) =

We thus observe
—21€1%t |~ (2 _oee &5
€ Ig(€)| de € £6d€=007
R3 B 1€ — €|
for each t > 0, which is a contradiction to (3.25). O

The proof of Proposition 3.8.shows also that {U(t)}+>0 is not a differentiable semigroup
in the sense of Pazy [12, Chapter 2].
Remark $.2. Lunardi and Vespri [11] have discussed generation of (Co) semigroups in
LP(RYN) by elliptic operators of the type

N 5 Nroa 0

i,J=1

The coefficients a;(z) and b;(z) are allowed to be unbounded, and thus the operator A +
(k x z) -V is covered. But the proof of Proposition 3.1 is easier than that of [11], in which
more delicate argument is necessary because of the lack of continuity of g;;(x).

Remark 8.8. DaPrato and Lunardi [5] have studied nice smoothing properties of the
semigroup S(t) (it is neither strongly continuous nor analytic) in UCB (RY) generated by
the Ornstein-Uhlenbeck operator

Af =Tx [QD?*f] + (Bz)- V/,

as mentioned in section 1. It has been also pointed out in [5, Section 2] that S(t) is an
analytic semigroup in suitable weighted LP spaces under either of the following assump-
tions: (i) QB is symmetric and Det B # 0, (ii) all the eigenvalues of B have negative
real part. But, clearly, the operator A + (k x z) - V is not covered.

4. The operator A + (k x z) - V in bounded domains
Let D be a bounded domain with smooth boundary. Define the operators £, and A,
from L2(D) into itself by
D(Ls) = D(Ay) = H*(D) N Hg(D),
,Cb=Ab—(kX.’B)'V,
Ap = —A.

In the case of bounded domains, it is possible to deal with £} as A plus its perturbation.

For 6§ >0 and r > 0, set
™
Ss(r) = {A € Cilarg A < T +8A > 7}, To=Ts(@U{0}

We begin with the following lemma.
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Lemma 4.1. The operator —Ly is closed, and generates an analytic (Cy) semigroup
{e7**}i>0 on L2(D).

Proof. We use the standard method of perturbation. For any 1 > 0, there is a constant
C, > 0 such that

106 x 2)- Vulp < (sug el ) 1Vullo = (sup el ) [ 43724,
< CllAull32llullg® < nll Asullp + Collullp.

(4.1)

Thus the closedness of A, implies that of £;. Fix € € (0,7/2) arbitrarily. It is well known
(see, for instance, [12]) that there is a constant K, > 0 such that

_ K
A+ 4) " fllp < TTM"J‘"D’ A € Zr/2-c, f € L*(D).
This together with (4.1) enables us to take a constant r. > 0 so that

1
l(k x ) - V(A + Ap) | La(py— L3(D) < 50 A€ Tgac(re)

Then, by the Neumann series we obtain ¥, /2_.(r:) C p(—Lp) with estimate

(42) IA+L)7 o = [+ 47 [1 - (k x2)- VO + )] 1| < 2|f|

for all A € %,/5_.(r:) and f € L?(D). We thus obtain the assertion by the standard
theory of analytic semigroups ([15]). O

We next refine the result of Lemma 4.1.

Proposition 4.2. (i) There are constants § > 0 and M > 0 so that the resolvent set
p(—Lyp) of the operator —L; contains X5 and

(43) 10+ £ fllo < 11

for all A € %5 and f € L?(D). As a result, the analytic semigroup e~t% obtained in
Lemma 4.1 is uniformly bounded.
(ii) There is a constant M > 0 so that

M

(44) IO+ £ llp < G pmalflo:

(4.5) ID*(\ + Ly)" ' fllp < M||fllp,
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for all A € Ts and f € L?(D).
(iii) There is a constant C > 0 so that

(4.6) lull g2y < CliLoullp,

for all u € D(Lyp).

Proof. By the same calculation as in section 2 the operator L is also accretive in L2(D).
Moreover, by the Poincaré inequality we get

(4.7) IA + Lo)ullpllullp = Re Allul} + IVullb > (Rex + p)llullp,

for u € D(Lyp), where p > 0 is the least eigenvalue of Ap. On account of the closedness of
Ly, the operator A + L for Re A > —u has both a closed range and a continuous inverse.
Consider the adjoint operator £} = A+ (k x z) - V with domain D(L}) = H?(D)NH}(D)
(cf. Tanabe [15, Chapter 3]). Since L} also satisfies (4.7) so that A + Lp is surjective for
Re A > —pu, we obtain {\A € C;Re A > —pu} C p(—Lp) with estimate

1
-1 < _ 2 .
NA+ L) fllp < —Rz/\+u”f"D’ Re A > —yu, f € L*(D)

This together with (4.2) gives (i). We next show (iii). By (4.1) and (4.3) with A = 0 we
have

1 1
(4.8) l4sullp < lI€sullp + 5l Asullp + Cllullp < CliLsullp + 3l 4sullp,

which together with the well known L? estimate ||lu||g2(p) < C|lApullp ([2, 6]) implies
(4.6). We finally show (ii). Let A € X5 and f € L%(D). Then it follows from (4.3) and
(4.6) that ||(A + Lb)~ ! flla2(p) < C|If|lp, which yields (4.5). Since

IVO+£o) 7 fllp = 4320+ L)1,
< 1 4sh + L) AIBZ IO+ L) 1B,
(4.3) and (4.5) imply (4.4). We have completed the proof. [

By (i) of Proposition 4.2 fractional powers L of Ly are well defined.

Proposition 4.8. For each 0 < a < 1, it holds that D(L§) = D(Ay) with equivalent
norms. In particular, D(,C,l,/ %) = H}(D) with equivalent norms.

Proof. Let u € H2(D) N H}(D). By (4.8) we have obtained

(4.9) |l Avullp < CliLoullp-
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On the other hand, it follows from (4.1) that

1
I(k x 2) - Vallp < 3 (I€sullp + [I(k x 2) - Vullp) + Cllullp,

so that

1
l(k x z) - Vullp < 5 |ILpulip + Cllulip-

This together with ||Cpulp < ||Apullp + |[(k x z) - Vu||p implies that

(4.10) ICeullp < CllAsullD-

In the proof of (i) of Proposition 4.2, it is proved that £; is an m-accretive operator. Since -
Ay is nonnegative selfadjoint, it is also m-accretive. Applying the Heinz-Kato inequality
[10, Section 3] (see also Tanabe [15, Chapter 2]) to estimates (4.9) and (4.10), we obtain
the assertion. O

5. Construction of the resolvent, proof of Theorem 1
In this section we construct the resolvent (A + £)~! concretely to prove the following
proposition.

Proposition 5.1. The resolvent set p(—L) of the operator —L contains the right half
plane C, .
We first observe that Proposition 5.1 immediately implies Theorem 1.

Proof of Theorem 1. By Proposition 5.1 together with Corollary 2.3, the operator £ is m-
accretive in LZ(£2). The assertion thus follows from the Lumer-Phillips theorem ([12]). O

We will prove Proposition 5.1. In what follows we assume A € C, throughout. Given
f € L?(Q), we have already established in Corollary 2.3 the uniqueness of solutions in
D(L) for the equation

(5.1) M+Lu=f in L%Q).
Since D(L) C H(?) (Corollary 2.3), this equation corresponds to the following boundary

value problem with spectral parameter:

(5.2) M —Au—(kxz) - Vu=f, z e,
(5.3) wu=0 zel.
We intend to construct the solution to (5.2) and (5.3) with the aid of the results in sections
3 and 4 via a cut-off procedure. We fix b > 0 such that O = R3\ Q C {z € R3;|z| < b},

and set D = {z € Q;|x| < b+ 3}. For given f € L%(Q2), define the functions f. € L?(R3)
and f, € L*(D) by
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f(z) (z € Q),

0 (z € 0), fo(z) = f(=) (z € D).

(5.4) n@w{

Let p € C*®(R3) be a fixed function satisfying

0 (lz| £b+1),

. <p< =
(5.5) osest  v@={ Sia
We set
(5.6) Ue = Re(A)f = (A +£e)—1fea Up = Rb(’\)f = ()‘ + ['b)_lfln
and
(5.7) w=RA)f = pRNf + (1 — p)Rs(N)f € L*(2).
Since u, and uy are, respectively, solutions to
(5.8) M — Au, — (k X z) - Vue = fe, z € R3,

Aup — Aup — (k X z) - Vup = fo, z €D,

(5.9) up =0, z e MU {x;|z| =b+3},

the function w should satisfy

(5.10) M — Aw — (k x z) - Vw = f +T(\)f, zeq,

“as well as the boundary condition (5.3) on I', where the remaining term is given by

(5.11) T f = —2Vp- V(ue — up) — [Ap + (k x ) - Vip] (ue — ub).-

We first deduce the regularity of the function w = R(\)f.

Lemma 5.2. For each A € C; and f € L?(R), the function w = R())f defined by (5.7)
is of class

w € H3(Q) N H}(Q), (k x z) - Vw € L*(Q),
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with estimate ||Aw|| = ||AR(AN) f|| < Ci||f|l, where the constant Cy > 0 is independent of
f e L3(Q).
Proof. We first show that Aw € L?(Q2). By (5.7) with (5.6) we have

Aw = pAue + (1 — p)Aup +2Vip - V(ue — up) + (Ap)(ue — up).
It follows from (3.8) and (4.5) that

(5.12) lpAte|| < |AR(N)flirs < || fellrs = IIfIl,

(5.13) (1 — p)Aup|| < JARL(A)fllp < Clifsllp < CIIfIl-
Also, by (3.15), (3.16), (4.3) and (4.4) we get

(619 IV - V(e ~ )l < € { e + i A
(5.15) Ia¢) e )l < € { ghs + o I

Collecting (5.12)—(5.15), we obtain Aw € L?(2). Since w satisfies the boundary condition
(5.3), the standard elliptic regularity theory ([2]) for the Laplace operator implies that
w € H3(Q) N Hj(S2). Furthermore, by (5.14) and (5.15) we have T/(\)f € L3(). We so
get (kxz) - Vw = Aw — Aw — f — T(A\)f € L?(Q). This completes the proof. O

The following lemma plays an important role for the proof of Proposition 5.1.

Lemma 5.8. Suppose that A € C,. The operator 1 + T'(\) has a bounded inverse in
L?(2), where T'()\) is given by (5.11).

Proof. Since the support of T'(\)f is a compact set in D, Lemma 3.3 and Proposition
4.2 imply that T'(\) is a bounded operator from L?(S2) into H} (D) for each A € C,. The
operator T'()) is thus compact in L?(2). Hence, by the Fredholm alternative it is sufficient
to show the injectivity of the operator 1 + T'(A). To do so, we employ the argument of
Iwashita [9, Section 3]. Suppose that f € L%(Q) fulfills [1 + T'(\)]f = 0. By (5.10) the
function w defined by (5.7) with such f satisfies \w — Aw — (k x z) - Vw = 0 in Q as
well as (5.3) on I'. Since w € D(Lo) C D(L) by Lemma 5.2, it follows from Corollary
2.3 that w = 0 in L?(2). Therefore, for almost all  satisfying |z| > b + 2, we have
ue(z) = [Re(A)f]l(z) = O, which yields f(z) = 0 by (5.8). Similarly, for almost all z € Q
satisfying |z| < b+ 1, we have uy(z) = [Rp()\) fl(z) = 0, and thus f(z) = 0 by (5.9). So
the support of f is contained in {z;b+ 1 < |x| < b+ 2}. We now consider the Dirichlet
problem in the ball B = {z;|z| < b+ 3}: _

(5.16) {,\u—Au-(kxz)-Vu=f, T € B,

u=0, |z| = b+ 3.

—122 —



Define uj on B by up(z) = up(z) (if £ € D) and by up(z) = 0 (if z € © = B\ D). We
denote the restriction of u. on B by the same symbol. Then both %, and u, are solutions to
(5.16), and belong to H2(B) N H3(B). By the same argument as in section 2, the solution
to (5.16) in the class H2(B) N H}(B) is unique for each A € C,, so that @ = u,. in L?(B).
Therefore, up = @ue + (1 — p)up = w = 0 in L2(D). By (5.9) again, f(z) = 0 for almost
all z € D. After all, we have obtained that f = 0 in L?(€2). Thus the operator 1 + T'(\)
is injective in L2(Q). O

Proof of Proposition 5.1. For each A € C; and f € L%(2), weset u = R(\) [1 +T(\)]"* £.
It then follows from Lemmas 5.2 and 5.3 that the function u is of class

u € H*(Q) N HA (D), (k x x) - Vu € L*(Q),

with estimate

(5.17) lau|l < Cilllt + T £l < Mall £,

where the constant M), > 0 is independent of f € L%(Q2). So, u € D(Lo) C D(L) and it is
actually the solution to (5.1). The uniqueness of solutions in D(L) has been already proved
in Corollary 2.3. As a result, the operator A+ £ is bijective for all A € C;. We thus obtain
C4+ C p(—L) with the representation of the resolvent (A +£)~! = R(\)[1 +T(\)]":. O

6. L? estimates, proof of Theorem 2 and Theorem 3
This section clarifies the domains of the operators £ and £* together with some esti-
mates to prove Theorem 2 and Theorem 3.

Proof of Theorem 2. Given u € D(L), we set f = (1 + L)u € L?(Q). By the proof of
Proposition 5.1 the unique solution u to (5.1) with such f should belong to D(Lp). We
thus obtain D(L) = D(Lg). From this it follows that D(L) C D(A). By (5.17) with A =1
we have also '

(6.1) | Aull < My[|f|| = Mal|(1 + L)ull,

for all u € D(L). By (6.1) we get

(6.2) l(k x z) - Vu|| = [lu+ Au — fI| < (1 + M1)||(1+ L)ul| + ||u].
Collecting (1.8), (6.1) and (6.2) leads us to

lull 2 (@) + (K x ) - Vul| < C|(1 + L)ul| + Cllu|l.
Since 1 + £ has a bounded inverse, the above estimate gives (1.5). O

Proof of Theorem 3. We make use of the relation D(L) C D(A) with estimate (6.1).
Since both 1 + £ and A are m-accretive operators in L?(2) by Theorem 1, we can apply
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the Heinz-Kato inequality ([10, 15]). We then get D(L*) = D ((1+ £)*) C D (A®) for
0 < a <1 with estimate

(6.3) 1A% < eV ME| (1 4+ L)ull,

for u € D(L*). Let m,p and a be the exponents as in Theorem 3. Then, combining the
well known embedding estimate

lullwme@) < Clm, p)(|A%u|| + [lul)),  u € D(A%),

with (6.3), we obtain (1.6). O

Remark 6.1. 1t is possible to give another proof of Theorem 3 without using the operator
A. Due to the m-accretivity of L, its purely imaginary powers £** are bounded operators
for all s € R with estimate (Kato [10, Section 2], Priiss and Sohr [13, Example 2)):

”C"" L2(Q)— L2() < e%lsl. An important consequence of the uniform boundedness of
L for |s| < 1 is the coincidence between D(L*) and the complex interpolation space
[L3(Q), D(L)] , for each 0 < a < 1 (see, for instance, Triebel [16]). Since we have already
known the relation D(£) C H?(S2) with estimate (1.5) in Theorem 2, it follows from the

reiteration theorem, an embedding property and the interpolation of LP Sobolev spaces
([16]) that

D(£") = [L*(), D(L)]a € [L*(Q), H*(Q)]a = [L*(Q), [L*(), H*(]1/2) 5
= [L*(Q), H' (D))2a € [L*(Q), LO(Q))2a = LP(9),

for0<a<1/2,2<p<6andl/p=1/2—2a/3. Similarly, for 1/2<a<1,2<p<6
and 1/p=1/2 - (2a — 1)/3, we get

D(£*) c [[L%Q), H*(Q)y/2, H* ()], _, C [H}(Q), W(Q)]2a-1 C WP(Q).

We thus obtain (1.6) for m = 1. It remains to show the case m = 0,1/2 < a < 3/4,6 <
P < co. But, in this case, we take 2 < ¢ < 3 satisfying 1/p = 1/g — 1/3 and utilize (1.6)
with m =1 to get D(L*) c W19(Q) c LP(Q).

7. Smoothing effect, proof of Theorem 4
In this section we derive some smoothing properties of the semigroup {e~*<};>( obtained
in Theorem 1. Consider the Cauchy problem for the evolution equation

(7.1) %1:- +Lu= t>0; u(0)=a,

in L?(Q2), which corresponds to the initial boundary value problem (1.1). By Theorem 1
this problem has a strong solution u(t) = e~*£a, provided that a € D(£). We here intend
to prove that e t£q is the strong solution to (7.1) under an weaker assumption.
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Let the constant b > 0 and the bounded domain D be the same as in section 5. We also
fix two functions 7, { € C*(R3) so that

0 (lz| <),
0<n<1, "($)={1 (x| > b+1),
1 (el<b+),
0<(¢<1, C(‘c)—{o (Iz] > b+ 3).

Given a € L?(Q2), we define the functions a, € L?(R®) and a, € L?(D) by

(7.2)

&wr={“”“” (F€D. @) =¢@al) (e D),

0 (z € O),

which are different from (5.4). The reason why we here introduce the functions 7 and ( is
Lemma 7.2 below. In what follows, the symbols [ - ] and | - ], are respectively adopted for

other functions. Let U(t) = e~ *4¢ be the semigroup given by (8.5) (and Proposition 3.1),
and V(t) = e"*4* the analytic semigroup obtained in section 4. We set

(7.3) ve(t) = U(t)ae, up(t) = V(t)as.

Making use of the fixed function ¢ € C*°(R3) satisfying (5.5), we define the function
v(t) € L%(Q) by

(7.4) v(t) = pre(t) + (1 — p)up(),
which satisfies ||[v(t)|| < 2||a|| for t > 0 and

(7.5) lv(t) — all < |[ve(®) — ae||gs + |[v6(t) —as||, =0 as t—o0.
We have the relations

(7.6) Av = pAve + (1 — p)Av, +2Vip - V(ve — 1) + (Ap)(ve — vp),

(7.7) (kxz)-Vv=09p[(k xz) Vo] + (1 — p)[(k X z) - Vup] + [(k x ) - Vp](ve — ),

so that

(7.8) Ov = Av + (k x z) - Vv + $[a], z€eN, t>0,

as well as the boundary condition v = 0 on I'; where the remaining term is given by
(7.9) ®a](t) = -2V - V(ve — vp) — [Ap + (k X T) - Vip](ve — b).

We first deduce the regularity of the function v(t) defined by (7.4) and justify the
equation (7.8) in L?(Q2).
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Lemma 7.1. Suppose that a € L%(2). Then v(t) € D(A) for all t > 0. I, in addition,

(7.10) (k xz)-Vae H™(RQ), 3 integer m > 0,

then v(t) € D(L) for allt > 0, and

(7.11) Lv € C ((0,00); L*(9)), v € C' ((0,00); L*(Q)) ,
with

(7.12) % + Lv = P[a], t>0; v(0)=a,

in L3().

Proof. By (7.6) we make use of Proposition 3.5 for U(t) together with the analyticity of
V(t) to obtain Av(t) € L3(R2) for ¢t > 0. Since v =0 on T, we get v(t) € D(A4) = H3(Q) N
Ho (£2) ([2])- Let us assume (7.10). From this it follows that (k x z) - Va, € H~™(R3)
since

|((k x z) - Vae, ¥)|
(7.13) <k x z) - Val| g-m (@) lmbll () + llall (K x z) - Vn] ]|
< C (lI(k x z) - Val| g-mq) + llall) 18]l ams),
for all ¥ € C§°(R®). So, Proposition 3.6 implies that (k x z) - Vve(t) € L?(R3). And,

therefore, (7.7) gives (k x z) - Vu(t) € L?(Q2). We thus obtain v(t) € D(L) for t > 0. By
(7.6) and (7.7) we have

[|Lv(t + k) — Lu(t)||
< [[£Leve,n(t)llrs + ClIVUen (t)IRe + Cllve,n (2)lIre
+ 16,0l D + ClIVvp,u (E)llp + Cllvss ()|l D,

and

v(t + h’)1 —v(?) + Lo(t) — <I>[a](t)“
< veh(t) + v”"‘l(t) + Lpv (t)"

where v n(t) = ve(t + h) — ve(t), vo,n(t) = vp(t + h) — vp(t). Hence, it follows from
Proposition 3.7 for U(t) together with the analyticity of V(t) that Lv(t) is continuous in
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L?(Q) and that v(t) is differentiable in L?(Q2) with the equation of (7.12). Since ®[a](t) as
well as Lv(t) is continuous, v(t) is of class C!. The initial condition of (7.12) is satisfied
in L2(2) on account of (7.5). This completes the proof. [0

Using Lemma 7.1, we consider (d/ds){e~(t=#)£y(s)} for 0 < s < t to obtain

(7.14) e a = v(t) — w(t), t>0,

in L?(Q) under the condition (7.10), where

(7.15) w(t) = -/O‘t e~ (t=9)L B[qg](s)ds.

By Proposition 3.5 for U(t) together with the analyticity of V' (), it is possible to see that
®[a](t) € D(L) C D(A) for all t > 0 with estimates

(7.16) | I@fal@)ll < CtAL)~Y2|lal,
(7.17) lA®[a]()]| < C(t A1)~*2|al,
(7.18) (k x z) - V@[a]@®)I| < Ct A1)~ lall,

where t A1 = min{¢, 1} (see Lemma 7.3 below). The function w(t) is well defined by (7.15)
in L2(Q) on account of (7.16). However, (7.17) and (7.18) are too singular near ¢t = 0 to
prove w(t) € D(L) directly. In order to control the behavior of LP[a](t), we impose the
further regularity on a as the first step (Lemma 7.5). We begin with the following lemma.

Lemma 7.2. Suppose that a € D(A%) with 0 < 6§ < 1. Then the functions a. and a
defined by (7.2) respectively satisfy

a. € H¥(R?), ap € D(4}).
There is a constant C = C(6) > 0 such that

(7.19) ”ﬁ”st (R?) < C”““D(A‘)a

(720) "gg”D(Ag) < C”“”D(A‘)a

for all a € D(A9).

Proof. For a domain G in R3, we define X to be the set of all bounded continuous
functions f from the strip S = {z € C;0 < Re z < 1} to the space L?(G) so that:
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(7.21) f is analytic on the open strip S° = {z € C;0 < Re z < 1},

(7.22) f(2) € H3(G) N H}(G) if Rez=1,

(7.23) 1fllxe = max{sup 1£Gs)lla, sup £ +i3)||H=(G)} < oo.
s€ER s€ER

Then X¢ is a Banach space equipped with norm || - || x, and complex interpolation spaces
between L? Sobolev spaces over the domain G(= Q,R3, D) are defined in terms of Xg
([16]). For each a € D(A®) = [L?(), D(A)]s and for every € > 0, there is a function
fe € Xq such that f.(6) = a with

(7.24) Ifellxa < llalliz2@),pca)s +€ < Cllallp(as) +&.
Bearing [f.(6)], = a. and [f.(6)], = as in mind, we will see that

(7.25) [fe()le € Xrs,  [fe ()] € Xb.
The analyticity of f. implies that both

520 [ LELE@@E = [ (16) @n@a@s,

55z /D [fe ()]s (=) @) = /n [e(2)) ()¢ (=) R @)z,

are analytic for all g € L?(R3) and h € L?(D) since ng,¢h € L%(2). We thus get (7.21).
Other conditions (7.22), (7.23), boundedness and continuity are easily verified from the
definition (7.2) of the symbols [ - ], and [ - ], so that we obtain (7.25) with estimates

(7'26) < C"fe"Xnv

Xya

[fe ()l

where C > 0 is independent of £ > 0. Hence,

O, < Clfellxa,

ae = [f:(9)]. € [L*(R®), H*(R®)]s = H*(R?),
a = [f:(8)], € [L*(D), D(A)ls = D(A}).
Furthermore, it follows from (7.24) and (7.26) that
[fs()]e

lesll peagy < € |||, < € (lalloas +e)-
Since € > 0 is arbitrary, we obtain (7.19) and (7.20). O
By using Lemma 7.2 we derive the estimates of ®{a](t) near t = 0 for a € D(A?).

"&”H”(R") <C Xps <C ("a”D(A‘) +€) ’
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Lemma 7.8. Suppose that a € D(A%) with 0 < § < 1. Then the function ®[a] defined
by (7.9) enjoys ®[a](t) € D(L) C D(A) for allt > 0. There is a constant C = C(6) > 0
such that

(7.27) 12[a]®)]] < CEAD)~2+ |lafl pas),
(7.28) 1A2[a)(®)]l < C(t A 1)*/**lall pas),
(7.29) I(k x z) - Velal@)l| < C(¢ A1) *|lall peas),

for all t > 0 and a € D(A®), where t A1 = min{t,1} and (-); = max{ -, 0}.

Proof. Since we are concerned with the behavior of ®[a](t) near ¢t = 0, we have only to
investigate the highest order term [A + (k X z) - V]V (ve — vp) for the proof of (7.28) and
(7.29). By Lemma 7.2 we have a, € H?(R3). It thus follows from (3.21) together with
(7.19) that

(7.30) 1A [Voe®)]llgs < Ct™3>* ||ac|| yras sy < Ct**llallp(as)-

Similarly, we get

(7.31) Ve - {(k x ) - V[V ()]} < CllD?ve(t)llrs < Ct™||all p(as).-
‘We next consider

[A + (k X ) - V]V’Ub =V [Avb + (k x z) - V'vb] + k x [V'vb].
By Proposition 4.3 we have

A + (k x z) - VIVu@)llp < |V [CeV®)as |||, + IV )asll,
<C ”,Cg'/zV(t)gQ”D +C |l£ll,/2V(t)%l|D .

We have only to investigate the first term of the right hand side. Since a;, € D(A§) by
Lemma 7.2 and since V(%) is a bounded analytic semigroup, it follows from Proposition
4.3 and (7.20) that

|68/ Oas] < 052 |1ctall , < O3+ lasll pgag, < O lallnias)

Therefore, we obtain
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(7.32) A + (k x ) - VIVup(8)llp < C(t A1)732*|la| p(as)-
By (4.6), Proposition 4.3 and (7.20) we have

(7.33) l(k x z) - V [Ves(®)]llp < C ||V ()as|p < Ct~ *lall p(as)-
Combining (7.32) with (7.33) yields

(7.34) 1A [Vos@)lllp < CEA1)"32*4|al| pas).

We gather (7.30), (7.31), (7.33) and (7.34) to obtain (7.28) and (7.29). The proof of (7.27)
is similar, and is omitted. Since the support of ®[a](t) is compact, estimates (7.27)—(7.29)
imply that ®[a](t) € D(L£). O

In Lemma 7.1 the regularity properties of v(¢) have been already deduced. The following
lemma gives some estimates of v(t) near ¢ = 0 for a € D(A%).

Lemma 7.4. Suppose that a € D(A®) with 0 < § < 1. Then the function v(t) defined by
(7.4) satisfies

(7.35) lAv(@)|l < CE A1)"*|allp(asy,

with a constant C = C(§) > 0 independent of t > 0. In addition, let us assume (7.10).

Then there are constants C = C(6) > 0 and C' = C'(m) > 0 such that
l(k x ) - Vo (@)

(736) —(1/2-6) U -m/2

<Ct *llallpaey +C" ¢ AL)™™2 (lI(k x z) - Va|| g-mq) + llall) ,

fort > 0.
Proof. As in (7.31) and (7.33), we have

(7.37) |lAve(t)llrs < Ct~*|lallp(acy, IVve(t)llre < Ct~ Y279+ |la|| p(as,

(7.38) lAvw@®)llp < Ct™**llallpasy,  IVes(®)llp < Ct=C/2=9+||a|| p(as).

In view of (7.6), estimates (7.37) and (7.38) imply (7.35). By (7.7), (3.22), (7.13) and
(7.38) we get

l(k x z) - Vo(2)||
S CEAL)™2(|(k x 2) - Vae|| y-m(gsy + Ct~ 2+ lall pasy + Cllall
< C@EAL)™2 (||(k x z) - Val g-m(q) + llall) + Ct= /2784 la|| p(46),
which gives (7.36). O

In order to derive the smoothing effect for the semigroup e~*
rather smooth as the first step.

£ we assume that a is
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Lemma 7.5. Suppose that a € D(A%) for some 1/2 < § < 1 as well as (7.10). Then
e *a € D(L) C D(A) for all t > 0. For each T > 0, there is a constant Ct = Cp(8) > 0
such that

(7.39) |Ae™*a|| < C1 t71*|lall p(as),

(7.40) [|Ce™*a]| < Cr t~*llallpeasy +C" (¢ A1)™™/2 (ll(k x 2) - Vallg-may + llall) ,

for0 <t < T, where C' = C' (m) > 0 is the constant in (7.36).

Proof. By (7.27)—(7.29) with § > 1/2 we have ®[a] € L' (0,T; D(L)) for all T > 0. On
account of the closedness of £, the function w(t) defined by (7.15) belongs to D(L) for all
t > 0 with

Lw(t) = /0 t e~ (t=9)L £d[a](s)ds,

so that (7.27)—(7.29) give

(7.41) ILw®)ll < Crllallpasy,  llw@)ll < CTllallpas),
for 0 <t < T. Also, (6.1) and (7.41) lead us to

lAw @)l < Mi||(1 + L)w(®)|| < Crllal pcas)-

By (7.14) the above estimate combined with (7.35) implies that e~*¢a € D(A) for t > 0
with (7.39). Likewise, it follows from (7.35), (7.36) and (7.41) that e *4a € D(L) fort > 0
with (7.40). This completes the proof. 0O

We next assume that a is a little smooth and show the same results as Lemma 7.5.

Lemma 7.6. Suppose that a € D(A®) for some 0 < § < 1/2 as well as (7.10). Then the
assertions of Lemma 7.5 hold true.

Proof. Since ®[a](t) € D(L) by Lemma 7.3, we can apply Lemma 7.5 with a replaced by
®[a](t). Indeed, by (7.40) with m = 0 we get

”,Ce"(t"’)cé[a](s)”

(7.42)
< Cr (t — )~ =972||8[a)(s)|| p(ac+orr2) + C'|| (k x z) - V@[a](s)]l,

for 0 < s <t < T. We use the momentum inequality for fractional powers ([15]) to obtain

(7.43) 1@{a](®)ll peac+array < Ct A1) T2 lall pias),

—131 —



from (7.27) and (7.28). In view of (7.42), estimates (7.43) and (7.29) imply that

e~ (¢~ )LP[a] € L' (0,t; D(L)),
and, therefore, w(t) € D(L) for t > 0 with estimate

(7.44) ILw@®)l < Cr t=Y2*||al| p(as),

for 0 <t < T. By (6.1), Aw(?) also satisfies the same estimate as (7.44). This combined
with (7.35) gives (7.39) for § > 0 by virtue of (7.14). We also collect (7.35), (7.36) and
(7.44) to obtain (7.40) for § > 0. We have completed the proof. O

To obtain both (7.39) and (7.40) for § = 0, it is possible to repeat a procedure similar
to that in the proof of Lemma 7.6. This will be done below in the proof of Theorem 4.

Proof of (i) of Theorem 4. By Lemma 7.6 we have (7.39) with § = 1/4. We employ it
with a replaced by ®[a](t) € D(L). Estimates (7.27) and (7.28) for § = 0 together with
the momentum inequality then yield

”Ae_(t"’)‘:@[a](s)” < Cr (¢ — 8)"¥4||B[a)(s)l| par/ay
< Cr (t—3)"¥*(s A1)"¥4||a],

for 0 < s <t < T. Since A is closed, it holds that w(t) € D(A) for ¢t > 0 with estimate

(7.45)

(7.46) lAw@)l|l < Cr t~Y?|jal,

for 0 <t < T. As the first step, we assume (7.10); then we have (7.14). Therefore, it
follows from (7.35) with § = 0.and (7.46) that e~*“a € D(A) for t > 0 with estimate

(7.47) | Ae~*a|| < Cr t™Y|jal,

for 0 < ¢ < T. As the next step, we assume only a € L%(2) and take a; € C°(2) such
that a; — a in L?() as j — co. Then estimate (7.47) for a; implies that e~* a € D(A)
for t > 0 because A is closed. We obtain also (7.47) for every a € L?(f2). Hence, the
momentum inequality gives (1.9) for 0 < a < 1. We have completed the proof. O

Proof of (ii) of Theorem 4. An integration by parts yields

[((k x z) - V@[a](t), ¥)| = |~ (2lal(t), (k x z) - V)| < || [z|@[a] @) IV,
for ¢ € C§°(2). This implies that

(& x z) - Ve[a] ()l g-1(q)
< | =l @la] @)
< C(IVve®)llrs + IVos(B)lip + l[ve(®)llrs + llvs(2)llD)
S C@EAD)Tal|.

(7.48)
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By Lemma 7.6 we have (7.40) with § = 1/4 and m = 1. Using it together with (7.48),
(7.27) and (7.28), we obtain

”[,e_(t_’)‘c@[a] (s)”
< Cr (t — 8)"3/4||2[a)(s)l| p(arva)
+C' {(t =) ALY2 (JI(k x 2) - Ve[a)()l| -1y + I 2Lal )
< Cr (t—5)"4(s A1)~ 4|[af + C {(t — 8) A1} M2 (s A1)"V/2|la],

for 0 < s <t <T. Therefore, w(t) € D(L) for t > 0 with estimate

(7.49) ILw®)| < Cr t=/?||all,

for 0 < t < T. By (7.14) we gather (7.35), (7.36) and (7.49) to obtain that e~*¢a € D(L)
for all t > 0 with estimate (7.40) for § = 0. Therefore,

Le™*a € C ([r,00); L*(Q)) , e *a € C* ([r,00); L*(Q)),
with
-ii—e_t['a + Le t¥a =0, t>T,
dt
in L%(Q) for all 7 > 0, which implies (1.10) together with (1.11). Applying the momentum

inequality to (7.40) with § = 0, we obtain (1.12) for 0 < @ < 1and 0 < t < 1. This
completes the proof. O

Proof of (iii) of Theorem 4. For a € D(L%) c D(A%) for 0 < § < 1, we have already
obtained (7.40) by Lemmas 7.5 and 7.6. On the other hand, we have also

(7.50) Lleta =etE L0,
so that
(7.51) |CPe ]| < || %]

We here observe (7.50) for completeness although the proof is the same as that for gen-
erators of analytic semigroups given in literature (for instance [12]). For each € > 0 and
f € L?(Q), it holds that

(6 + L:)_6f — 'f‘%a‘j/ 36—le—a(s+£)fds’
0

where I'(-) is the gamma function. Given a € D(L?), we set f = et (e + £)%a in the
above formula to obtain (¢ + £)%e* (e + £)?a = e~**a. Therefore, e~*4a € D(L’) with
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(e + L)%e "t a = et (e + L)%a. Letting ¢ — 0 implies (7.50). Now, by (7.40) and (7.51)
we make use of the momentum inequality to get

leoetal| < € [|£0e=a]| = [|ce=ta]|
< o=+ ||c%a)) ¥ oy EEE,,
la— 11— a=$
+Ct™ RS || £8a]| T2 (|I(k x 2) - Vallg-may + llall)

for § <a<1and0<t< 1, which together with (6.3) completes the proof of (1.13). O

Proof of (iv) of Theorem 4. Given a € (0,1], we fix § € (0,a). Let a € C$*(R2) c D(L9).
Then it follows from (1.13) with m = 0 that

Ic=e~*a]| < Ct=*3|lall p(es) + Cll(k x ) - Vall,

for 0 <t <1, which yields (1.15) for a € C§°(£2). We are also led to (1.14) for a € CP ()
on account of (6.3). We next suppose that a € L?(Q2) and that (k x z)-Va € H~1(Q). For
every € > 0, we take a. € C§°(f2) such that |[|a. — a|| < &. By virtue of (1.12) with m =1
we have

|ce *a|| < ||[C*e "t a.|| + Ct~% + Ct=/2||(k x ) - V (ae — )l gr-1(0) »

for 0 <t < 1. We have already obtained (1.15) for a, € C3°(2), so that the estimate
above gives lim;_,o t* ||L*e~*£a|| < Cé. Since € > 0 is arbitrary, we arrive at (1.15). By
the same approximation procedure as above with the aid of (1.9), we obtain (1.14) for
a € L2(2). We have completed the proof. O
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