Regeneration in Quaternionic Analysis

Xiao Dong LI

In Complex Analysis of Several Variables, Matsugu [6] gave a necessary and sufficient condition that any pluriharmonic function g on a Rieman domain Ω over a Stein manifold is a real part of a holomorphic function on Ω . In Quaternionic Analysis, Nôno [8] gave a necessary and sufficient condition that any harmonic function f_1 on a domain Ω in C² has a hyper-conjugate harmonic function f_2 so that the function $f_1 + f_2 j$ is hyperholomorphic on Ω . Marinov [5] developed systematically a theory of regenerations of regular functions. The main purpose of the present paper is to add a regeneration in Quaternionic Analysis.

The author would like to express his hearty gratitude to the referee for many valuable suggestions.

1. Regeneration

Let Ω be a complex manifold and f be a holomorphic function on Ω . Then its real part f_1 is a pluriharmonic function on Ω . Let (Ω, φ) be a Rieman domain over a Stein manifold S and $(\tilde{\Omega}, \tilde{\varphi})$ be its envelope of holomorphy over S. Then, Matsugu [6] proved that the necessary and sufficient condition that, for any pluriharmonic function f_1 on Ω , there exists a pluriharmonic function f_2 on Ω so that $f_1 + f_2 i$ is holomorphic on Ω is that there holds $H^1(\tilde{\Omega}, Z) = 0$, where Z is the ring of integers.

The field \mathcal{H} of quaternions

(1)
$$z = x_1 + ix_2 + jx_3 + kx_4, \quad x_1, x_2, x_3, x_4 \in \mathbb{R}$$

is a four dimensional non-commutative R-field generated by four base elements 1, i, j and k with the following non commutative multiplication rule:

(2)
$$i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.$$

 x_1, x_2, x_3 and x_4 are called, respectively, the real, i, j and k part of z. In the papers Nôno [7], [8], [9], [10] and Marinov [5] loco citato, two complex numbers

(3)
$$z_1 := x_1 + ix_2, \quad z_2 := x_3 + ix_4 \in \mathbb{C}$$

are associated to (1), regarded as

$$(4) z = z_1 + z_2 j \in \mathcal{H}.$$

The quaternionic conjugate z^* of $z = z_1 + z_2 j \in \mathcal{H}$ is defined by

They identify \mathcal{H} with $C^2 \cong \mathbb{R}^4$, denote a quaternion valued function f by $f = f_1 + f_2 j$ and use fully the theory of functions of several complex variables. Concerning further notations, definitions and citations, please refer to a paper [15] of a colleague of the author in a back number of the present Journal.

Using Laufer's results [4], Nôno [8] proved that the necessary and sufficient condition that, for any complex valued harmonic function f_1 on a domain Ω in \mathbb{C}^2 , there exists a complex valued harmonic function f_2 on Ω so that $f_1 + f_2 j$ is hyperholomorphic on Ω is that Ω is a domain of holomorphy.

Marinov [5] named those constructions of conjugate functions, regenarations and developped the theory of regenerations in Quaternionic Analysis using $\bar{\partial}$ -analysis of Hörmander [3]. The main purpose of the present paper is to add a regeneration, using Dolbeault Isomorphism from resolution of sheaves. Because we use the results of Son[13], we adapt the notations $x = x_1 + x_2i + x_3j + x_4k$ for quaternions x.

2. Main Theorems

Let Ω be a domain in $\mathcal{H} \times \mathcal{H} \cong \mathbb{R}^4 \times \mathbb{R}^4 = \mathbb{R}^8$ of two quaternionic variables $x = x_1 + x_2i + x_3j + x_4k \cong (x_1, x_2, x_3, x_4)$ and $y = y_1 + y_2i + y_3j + y_4k \cong (y_1, y_2, y_3, y_4)$, and $f = f_1 + f_2i + f_3j + f_4k$ be a quaternion valued function of class C^{∞} in Ω . The differential operators D_x and D_y are represented under the multiplication rule (2) as follows:

(6)
$$D_x f := \left(\frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2}i + \frac{\partial}{\partial x_3}j + \frac{\partial}{\partial x_4}k\right)(f_1 + f_2i + f_3j + f_4k) = \left(\frac{\partial f_1}{\partial x_1} - \frac{\partial f_2}{\partial x_2} - \frac{\partial f_3}{\partial x_3} - \frac{\partial f_4}{\partial x_4}\right) + \left(\frac{\partial f_1}{\partial x_2} + \frac{\partial f_2}{\partial x_1} - \frac{\partial f_3}{\partial x_4} + \frac{\partial f_4}{\partial x_3}\right)i + \left(\frac{\partial f_1}{\partial x_3} + \frac{\partial f_2}{\partial x_4} + \frac{\partial f_3}{\partial x_1} - \frac{\partial f_4}{\partial x_2}\right)j + \left(\frac{\partial f_1}{\partial x_4} - \frac{\partial f_2}{\partial x_3} + \frac{\partial f_3}{\partial x_2} + \frac{\partial f_4}{\partial x_1}\right)k.$$

and

(7)

$$\begin{split} fD_{\mathbf{y}} &:= (f_1 + f_2 i + f_3 j + f_4 k) (\frac{\partial}{\partial y_1} + \frac{\partial}{\partial y_2} i + \frac{\partial}{\partial y_3} j + \frac{\partial}{\partial y_4} k) = \\ & (\frac{\partial f_1}{\partial y_1} - \frac{\partial f_2}{\partial y_2} - \frac{\partial f_3}{\partial y_3} - \frac{\partial f_4}{\partial y_4}) + (\frac{\partial f_1}{\partial y_2} + \frac{\partial f_2}{\partial y_1} + \frac{\partial f_3}{\partial y_4} - \frac{\partial f_4}{\partial y_3})i + \\ & (\frac{\partial f_1}{\partial y_3} - \frac{\partial f_2}{\partial y_4} + \frac{\partial f_3}{\partial y_1} + \frac{\partial f_4}{\partial y_2})j + (\frac{\partial f_1}{\partial y_4} + \frac{\partial f_2}{\partial y_3} - \frac{\partial f_3}{\partial y_2} + \frac{\partial f_4}{\partial y_1})k. \end{split}$$

The conjugate operators $\overline{D_x}$ and $\overline{D_y}$ of D_x and D_y are defined as follows:

(8)
$$\overline{D_x} := \frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2}i - \frac{\partial}{\partial x_3}j - \frac{\partial}{\partial x_4}k, \overline{D_y} := \frac{\partial}{\partial y_1} - \frac{\partial}{\partial y_2}i - \frac{\partial}{\partial y_3}j - \frac{\partial}{\partial y_4}k.$$

Theorem 1. Let Ω be a domain in the space \mathbb{R}^8 of 8 real variables $x := (x_1, x_2, x_3, x_4)$ and $y := (y_1, y_2, y_3, y_4)$, f_1, f_2, f_3 be functions of class C^{∞} on Ω . If there exits a function f_4 of class C^{∞} on Ω such that the quaternion valued function $f = f_1 + f_2 i + f_3 j + f_4 k$ is a biregular function on Ω , the real valued functions f_1, f_2, f_3 satisfies the integrability condition

$$d\omega = 0$$

on Ω , where the differential form ω of degree 1 is given by

(10)
$$\omega =$$

$$(-\frac{\partial f_1}{\partial x_4} + \frac{\partial f_2}{\partial x_3} - \frac{\partial f_3}{\partial x_2}) dx_1 + (\frac{\partial f_1}{\partial x_3} + \frac{\partial f_2}{\partial x_4} + \frac{\partial f_3}{\partial x_1}) dx_2 + (-\frac{\partial f_1}{\partial x_2} - \frac{\partial f_2}{\partial x_1} + \frac{\partial f_3}{\partial x_4}) dx_3 + (\frac{\partial f_1}{\partial x_1} - \frac{\partial f_2}{\partial x_2} - \frac{\partial f_3}{\partial x_3}) dx_4 + (-\frac{\partial f_1}{\partial y_4} - \frac{\partial f_2}{\partial y_3} + \frac{\partial f_3}{\partial y_2}) dy_1 + (-\frac{\partial f_1}{\partial y_3} + \frac{\partial f_2}{\partial y_4} - \frac{\partial f_3}{\partial y_1}) dy_2 + (\frac{\partial f_1}{\partial y_2} + \frac{\partial f_2}{\partial y_1} + \frac{\partial f_3}{\partial y_4}) dy_3 + (\frac{\partial f_1}{\partial y_1} - \frac{\partial f_2}{\partial y_2} - \frac{\partial f_3}{\partial y_3}) dy_4.$$

Conversely, if f_1, f_2, f_3 satisfies the integrability condition (9)-(10) on Ω and if the domain Ω satisfies $H^1(\Omega, Z) = 0$ for the ring Z of integers, then there exits a function f_4 of class C^{∞} on Ω such that the quaternion valued function $f = f_1 + f_2 i + f_3 j + f_4 k$ is a biregular function on Ω .

Proof. If there exists such a real valued function f_4 on Ω , by definition, its differential ω is given by

(11)
$$\omega := \frac{\partial f_4}{\partial x_1} dx_1 + \frac{\partial f_4}{\partial x_2} dx_2 + \frac{\partial f_4}{\partial x_3} dx_3 + \frac{\partial f_4}{\partial x_4} dx_4 + \frac{\partial f_4}{\partial y_1} dy_1 + \frac{\partial f_4}{\partial y_2} dy_2 + \frac{\partial f_4}{\partial y_3} dy_3 + \frac{\partial f_4}{\partial y_4} dy_4.$$

Solving $D_x f = 0$ from (6) and $f D_y = 0$ from (7) as linear equations with partial derivatives of f_4 unknown and substituting them in (11), we have the representation (10) of ω by f_1, f_2, f_3 . Since ω is the differential of f_4 , we have the integrability condition (9).

Let p be a non negative integer, R be the constant sheaf of real numbers over Ω, \mathcal{E}^p be the sheaf of germs of differential forms of degree p with coefficients of class C^{∞} over the domain $\Omega \subset \mathbb{R}^8$, d be the usual differential operator $d^p : \mathcal{E}^p \to \mathcal{E}^{p+1}$ and $\iota : \mathbb{R} \to \mathcal{E}^0$ be the canonical injection. Then, by the lemma of Poincaré, the above operators give a fine resolution

(12)
$$0 \to \mathbb{R} \to \mathcal{E}^0 \to \mathcal{E}^1 \to \cdots \to \mathcal{E}^p \to \mathcal{E}^{p+1} \cdots$$

of the constant sheaf R over Ω . By the theorem of Dolbeault [1], we have the following Dolbeault's isomorphism

(13)
$$H^{p}(\Omega, R) \cong H^{0}(\Omega, (d^{p})^{-1}(0))/d^{p-1}(H^{0}(\Omega, \mathcal{E}^{p-1}))$$

for any positive integer p. By the universal coefficient theorem [12], we have $H^p(\Omega, R) \cong H^p(\Omega, Z) \otimes R$ and, hence, $H^p(\Omega, R) = 0$ if and only if $H^p(\Omega, Z) = 0$, for any positive integer p. Therefore, from the assumptions $H^1(\Omega, Z) = 0$ and (9), we have $\omega \in H^0(\Omega, (d^1)^{-1}(0)) = d^0(H^0(\Omega, \mathcal{E}^0))$ and there exists $f_4 \in H^0(\Omega, \mathcal{E}^0)$ such that $\omega = d^0 f_4$. The quaternion valued function $f := f_1 + f_2 i + f_3 j + f_4 k$ of class C^{∞} on Ω satisfies $D_x f = 0$ by (6) and $\omega = d^0 f_4$, and $fD_y = 0$ by (7) and $\omega = d^0 f_4$. Hence the function f is the desired biregular function on Ω with f_4 as k part for the real part f_1 , i part f_2 and j part f_3 given.

Corollary. Let Ω be a domain in \mathbb{R}^8 with $\mathrm{H}^1(\Omega, \mathbb{Z}) = 0$ for the ring \mathbb{Z} of integers, f_1, f_2, f_3 be functions of class C^{∞} on Ω satisfying the integrability condition (9)-(10). Then f_1, f_2, f_3 are harmonic functions on Ω .

Proof. By the theorem, there exists a real valued function f_4 of class C^{∞} on Ω such that the quaternion valued function $f = f_1 + f_2i + f_3j + f_4k$ is biregular on Ω . Since we have

(14)
$$\Delta_x f := \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2} + \frac{\partial^2 f}{\partial x_4^2} = \overline{D_x} D_x f = 0,$$
$$f \Delta_y := \frac{\partial^2 f}{\partial y_1^2} + \frac{\partial^2 f}{\partial y_2^2} + \frac{\partial^2 f}{\partial y_3^2} + \frac{\partial^2 f}{\partial y_4^2} = f D_y \overline{D_y} = 0,$$

 f_1, f_2, f_3, f_4 are harmonic on Ω .

q.e.d.

An open set Ω in \mathbb{R}^8 is said to be a Son domain if, for any pair of quaternion valued functions $g = g_1 + g_2 i + g_3 j + g_4 k$ and $h = h_1 + h_2 i + h_3 j + h_4 k$ of class C^{∞} on Ω with $gD_y = D_x h$, there exists a quaternion valued function $f = f_1 + f_2 i + f_3 j + f_4 k$ of class C^{∞} on Ω with $D_x f = g$ and $fD_y = h$. By Son [13], a product domain Ω of a simply connected domain Ω_x in the space \mathbb{R}^4 of variables $x := (x_1, x_2, x_3, x_4)$ and a simply connected domain Ω_y in the space \mathbb{R}^4 of variables $y := (y_1, y_2, y_3, y_4)$ is a Son domain.

Lemma. Let Ω be a Son domain in the space \mathbb{R}^8 of 8 real variables $x := (x_1, x_2, x_3, x_4)$ and $y := (y_1, y_2, y_3, y_4)$ and \mathcal{R} be the sheaf of germs of biregular functions $f = f_1 + f_2 i + f_3 j + f_4 k$ over Ω . Then, there holds $\mathrm{H}^1(\Omega, \mathcal{R}) = 0$.

Proof. Let \mathcal{Q} be the sheaf of germs of quaternion valued functions $q = q_1 + q_2 i + q_3 j + q_4 k$ of class C^{∞} over Ω in the space \mathbb{R}^8 , $\mathcal{U} = \{U_{\lambda}; \lambda \in \Lambda\}$ be an open covering of the Son domain Ω and $\mathcal{C} = \{f_{(\lambda_1, \lambda_2)}; \lambda_1, \lambda_2 \in \Lambda\}$ be a 1-cocycle of the covering \mathcal{U} with coefficients in the sheaf \mathcal{R} . By the definition, the 1-cocycle \mathcal{C} satisfies the condition of compatibility

(15)
$$f_{(\lambda_1,\lambda_2)} + f_{(\lambda_2,\lambda_3)} + f_{(\lambda_3,\lambda_1)} = 0$$

in $U_{\lambda_1} \cap U_{\lambda_2} \cap U_{\lambda_3}$ for any $\lambda_1, \lambda_2, \lambda_3 \in \Lambda$ with non empty $U_{\lambda_1} \cap U_{\lambda_2} \cap U_{\lambda_3}$. Since each $f_{(\mu,\nu)}$ is biregular in each $U_{\mu} \cap U_{\nu}$ for any $\mu, \nu \in \Lambda$, each $f_{(\mu,\nu)}$ is of class C^{∞} in each $U_{\mu} \cap U_{\nu}$. Hence the cocycle C is a cocycle of the covering \mathcal{U} with coefficients in the sheaf Q of germs of quaternion valued functions of class C^{∞} . Since we have $H^1(\mathcal{U}, Q) = 0$ by the partition of the unity, there exists a 0-cochain $\{f_{(\mu)}; \mu \in \Lambda\}$ of the covering \mathcal{U} with coefficients in the sheaf Qsuch that its coboundary is the 1-cocycle C, i. e., each $f_{(\mu)}$ is a function of class C^{∞} in each U_{μ} and there holds $f_{(\mu,\nu)} = f_{(\nu)} - f_{(\mu)}$ in each $U_{\mu} \cap U_{\nu}$. Since $f_{(\mu,\nu)}$ is biregular in $U_{\mu} \cap U_{\nu}$, we have $0 = D_x f_{(\mu,\nu)} = D_x f_{(\nu)} - D_x f_{(\mu)}$ and $0 = f_{(\mu,\nu)} D_y = f_{(\nu)} D_y - f_{(\mu)} D_y$ in each U_{μ} . This means that, if we put $g = D_x f_{(\mu)}, h = f_{(\mu)} D_y$ in each U_{μ} , the pair (g, h) of the functions g and h is a well-defined pair of quaternion valued functions of class C^{∞} on Ω satisfying the condition of compatibility $gD_y = D_x h$. Since Ω is a Son domain, there exits a function f of class C^{∞} on Ω such that $D_x f = g, fD_y = h$. We put $r_{(\mu)} = f_{(\mu)} - f$ on U_{μ} . Then, the revised 0-cochain $\{r_{(\mu)}: \mu \in \Lambda\} \in C^0(\mathcal{U}, \mathcal{R})$ has the 1-cocycle C as its coboundary. q.e.d.

Theorem 2. Let Ω be a Son domain in the space \mathbb{R}^8 of 8 real variables $x := (x_1, x_2, x_3, x_4)$ and $y := (y_1, y_2, y_3, y_4)$. Then, there holds $\mathrm{H}^1(\Omega, \mathbb{Z}) = 0$, if and only if, for any functions f_1, f_2, f_3 of class \mathbb{C}^{∞} on Ω satisfying the integrability condition (9)-(10), there exists a function f_4 of class \mathbb{C}^{∞} on Ω such that the quaternion valued function

 $f = f_1 + f_2 i + f_3 j + f_4 k$ is a biregular function on Ω .

Proof. Let \mathcal{P} be the sheaf of germs of triples (f_1, f_2, f_3) of functions f_1, f_2, f_3 of class C^{∞} over Ω satisfying the integrability condition (9)-(10). We consider the sheaf homomorphism $\mathcal{R} \ni f = f_1 + f_2 i + f_3 j + f_4 k \rightsquigarrow \pi(f) := (f_1, f_2, f_3) \in \mathcal{P}$. Then, by (6) and (7), the kernel of the homomorphism π is isomorphic to the constant sheaf R of real number field. So, we consider the inclusion ι associating, to each real number $r \in \mathbb{R}$, the germ of the constant functions $rk \in \mathcal{R}$. By Theorem 1, the short exact sequence

$$(16) 0 \to \mathbf{R} \to \mathcal{P} \to \mathbf{0}$$

of sheaves over Ω , given by the homomorphisms ι and π , is exact and induces a long exact sequence

(17)
$$H^{0}(\Omega, \mathbb{R}) \to H^{0}(\Omega, \mathcal{R}) \to H^{0}(\Omega, \mathcal{P}) \to H^{1}(\Omega, \mathbb{R}) \to H^{1}(\Omega, \mathcal{R}) \to H^{1}(\Omega, \mathcal{P})$$

of cohomology of Ω . Since we have $H^1(\Omega, \mathcal{R}) = 0$ by the above lemma, we have the isomorphism

(18)
$$\mathrm{H}^{1}(\Omega, \mathbf{R}) \cong \mathrm{H}^{0}(\Omega, \mathcal{P})/\pi(\mathrm{H}^{0}(\Omega, \mathcal{R})).$$

By the universal coefficient theorem [12], $H^1(\Omega, R) = 0$ if and only if $H^1(\Omega, Z) = 0$. Hence we have the equivalence

(19)
$$H^{1}(\Omega, \mathbb{Z}) = 0 \Longleftrightarrow H^{0}(\Omega, \mathcal{P}) = \pi(H^{0}(\Omega, \mathcal{R})),$$

what was to be proved.

3. Weak Solutions

Theorem 3. Let Ω be a domain in the space \mathbb{R}^8 of 8 real variables $x := (x_1, x_2, x_3, x_4)$ and $y := (y_1, y_2, y_3, y_4)$ with $\mathbb{H}^1(\Omega, \mathbb{Z}) = 0$, f_1, f_2, f_3 be distributions on Ω satisfying the integrability condition (9)-(10) in the sense of distribution. Then, the functions f_1, f_2, f_3 are distributions defined by functions of class \mathbb{C}^∞ on Ω and there exits a function f_4 of class \mathbb{C}^∞ on Ω such that the quaternion valued function $f = f_1 + f_2i + f_3j + f_4k$ is a biregular function on Ω .

Proof. In the proof of Theorem 1, we replace the sheaf \mathcal{E}^p of germs of differential forms of degree p with coefficients real valued functions of class C^{∞} over the domain Ω by the sheaf \mathcal{D}^p of germs of differential forms of degree p with coefficients distributions over the domain Ω . Then, we have the other generalized Dolbeault's isomorphism

(20)
$$H^{1}(\Omega, R) \cong H^{0}(\Omega, (d^{1})^{-1}(0))/d^{0}(H^{0}(\Omega, \mathcal{E}^{p})),$$

where $(d^1)^{-1}(0)$ is the sheaf of germs of closed 1-forms $\sum_{\nu=1}^4 (g_\nu dx_\nu + h_\nu dy_\nu)$ with coefficients g_ν, h_ν , which are distributions. By assumption, we have $\omega \in H^0(\Omega, (d^1)^{-1}(0)) = d^0(H^0(\Omega, \mathcal{D}^0))$. Hence, there exists a distribution f_4 on Ω such that ω is its differential in the sense of distribution. Then, we have $\Delta_x f = \overline{D_x} D_x f = 0, f \Delta_y = f D_y \overline{D_y} = 0$ and each

part f_{ν} of $f = f_1 + f_2 i + f_3 j + f_4 k$ is a distribution on Ω which is a weak solution of the typical elliptic equation $(\Delta_x + \Delta_y)f_{\nu} = 0$ of Laplace. Directly by Theorem 7.2 of Yoshida [14] written in Japanese or, more precisely, by combination of Sobolev's Lemma with the theory of Friedrichs [2] as is indicated there [14] in Japanese, each part f_{ν} of f is of class C^{∞} on the domain Ω and we can apply Theorem 1.

References

- P. Dolbeault, Formes différentilles et cohomologie sur une variété analytique complexe, Ann. Math. 64(1956), 83-130.
- [2] K. O. Friedrichs, On differentiability of the solutions of linear elliptic differential equations, Comm. Pure and Appl. Math. 6(1953), 299-326.
- [3] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966.
- [4] H. B. Laufer, On sheaf cohomology and envelopes of holomorphy, Ann. Math. 84(1966), 102-118.
- [5] M. S. Marinov, Regeneration of regular quaternion functions, 20th Summer School "Applications of Mathematics in Engeneering" Varna(1994), 85-101.
- Y. Matsugu, Pluriharmonic functions as the real parts of holomorphic functions, Mem. Fac. Sci. Kyushu Univ. 36(1982), 157-163.
- [7] K. Nôno, Hyperholomorphic Functions of a Quaternionic Variable, Bull. Fukuoka Univ. of Educ. **32**(1983), 21-37.
- [8] K. Nôno, Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions, Revue Roumaine de math. pures et appl. **31**-2(1986), 159-161.
- [9] K. Nôno, Runge's Theorem for complex valued harmonic and quaternion valued hyperholomorphic functions, ibid. **32**-2(1987), 155-158.
- [10] K. Nôno, Domains of Hyperholomorphy in $\mathbb{C}^2 \times \mathbb{C}^2$, Bull. Fukuoka Univ. of Educ. **36**(1987), 1-9.
- [11] L. Schwarz, Théorie des distributions, I et II, Hermann(1950, 1 951).
- [12] E. H. Spinier, Algebraic topology, MacGraw-Hill, New York, 1966.
- [13] L. H. Son, Cousin Problem for biregular functions with values in a Clifford Algebra, Complex Variables 20(1992), 255-263.
- [14] K. Yoshida, *Theory of distributions*(in Japanese), Kyoritsu Shuppan(1956).
- [15] D. G. Zhou, Envelope of hyperholomorphy and hyperholomorphic convexity, Nihonkai Math. J. 8(1997), 139-145.

Address of the author

Graduate School of Mathematics, Kyushu University 33, FUKUOKA, 812-8581, Japan

e-mail: xli@math.kyushu-u.ac.jp

Received May 25, 1998

Revised March 15, 1999