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1. Introduction

Let M(x) be a regression function on the real line R and # be the unique root of the
equation M (x)=0. In practical problems there exist some cases where the use of a
process which converges to 6 from below (in some sense) is advantageous to us. For
instance, § may be an optimal level in operating a system where the costs caused by
operating at a level above 6 are considerably greater than those caused by operating at
a level below 6. EicunorN and Zacks [3] considered this situation in the problem of
finding an optimal dosage of drugs which have secondary harmful effects in addition to
their therapeutic effects. ANBAR [1] has proposed the modified Robbins-Monro (R-M)
procedure X, and has proved that X. converges almost surely (a. s.) to ¢ as # tends to
infinity and that, with probability one, X» exceeds ¢ only finitely many times. IsoGAl
(6] has obtained the same results as above for the case where there exist errors in set-
ting the x-levels.

However some situation may occur where the regression function M (x) varies with
the time. This situation has been treated by several authors (for example, by Dupa¢ [2]
and WATANABE [9]). In this paper we also consider this situation. Let M»(x) be a re-
gression function on R at time » and 6. be the unique root of the equation M, (x)=0.
The modified R-M procedure X, defined by ANBar [1] will be used. The aim of this
paper is to derive the rate of convergence of X»—&» to zero by using the method due to
Hevpe [4], and to show that, with probability one, X»—6@x» exceeds zero only finitely
many times.

In Section 2 we shall give notations and prove several auxiliary results which are
needed for Section 3. In Section 3 the main results will be proved.

2. Preliminaries and auxiliary results

In this section we shall give notations which are used throughout this paper and
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prove several auxiliary results which are needed for the next section.
The modified R-M procedure by ANBAR [1] is defined as follows:

X, is any random variable with E [X?] < oo,
2.1) Xnr1=Xn—anYn+bn) forn=1,2,...,

where {@x} is a sequence of positive numbers, {b»} is a sequence of real numbers and
{yn} is a sequence of random variables. In this paper we assume the following assum-
ptions be valid.

Assumption. (1) {Ya(x)} is a sequence of random variables which depend on parameter
x € R, and for each #» and x the expectation of Y»(x) exists, and the regression function
My (x) is Borel measurable on R and has the unique root 6. of the equation M, (x)=0,
where

(2.2) Mn(x)=E[Yan(x)].
(i) y« in (2. 1) is a random variable which has conditional distribution given Xj,
..., Xn equal to that of Y» (X») given Xa.
By Assumption (ii) we get
(2.3) ElynlXsy ..., Xul=Mn(X»n) a.s,
where E [+|+] denotes the conditional expectation operator. We can rewrite (2. 1) as
2.4) Xnr1=Xn—0nMn(Xn)—anbn+anvn forn=1,2,...,
where
vVn=Mn(Xn)—yn for n=1, 2,... .
Clearly
(2.5) Elva| Xy, ..., Xu]=0 a.s.,

so that {vx} is a martingale difference. In this paper G, C,,... denote appropriate posi-
tive constants.

LemMA 2.1. Let {an)} be a sequence of positive numbers with lim ar=a >%. Then
n—oo

i‘. (mrm)~2~2a—1)"Y(nry) ! as n—> oo,

m=n,
where ny is a positive integer such that
1—awn—1>0 for all n = ny,
”n
ra= II (1—ajj~Y) for all n=mn,
j=ny

and “an ~ bn as n—>oo” means lim an/bn=1.
Nn—co

Proor. It suffices to show that
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(2.1.1)  @Qa—Dnry }ng (mym)~2—>1 as n — oo,

0

For any ¢ > 0 with 2(a—e) > 1 there exists a positive integer #; = #n, such that for all j
=m

ate >aj>a—e and 1—(ate);~1 >0,

which implies

212 [ (A—(@te)i < [ (—ajiH< [ (1A—(e—e)j™
+1 j=m+1 j=m+1

j=m
forall w >m =mn;. Let any (0<% <(1) be fixed. By using (2.3) of Sacks [8] there
exists a positive integer #n, = #n, such that for all n > m = n,
H+1(1—(a+6)j‘1) > 1 —nn=C+Om+e

j=m

(2.1.3) n _
I (A—(e—e)) < A+mn==om* =,

j=m

which, together with (2. 1. 2), yields
2.1.4) 1} mZn (mym)~?

n n
= 3 m 2 rarm L2 > (1—n)2n—2@+t9 3 m2at+e—2
m= n2 m= n2
for all #=mn,. According to Lemma 4 of Sacks [8] there exists a positive integer nz =n,

such that for all n=n3
min 2@+ —2 > <1_’7)(2(“+5)—1)‘1n2(“+5)—1
="2

(2.1.5) n
m};n m2@—972 < (1+7)(2(a—e)—1)"n2 -1,

which, together with (2. 1. 4), implies

n

(2.1.6) lign inf Qa—Lnry > (mrm) 2 =1.

m=mn

Since by (2. 1. 2) and (2. 1. 3) nr%2 < Cin!—2¢*—* for all » = n3 and some constant C; >0,
using 2(a—e) > 1 we get

2.1.7Y nri—0 as n—>oo,
It follows from (2. 1. 2), (2. 1. 3) and (2. 1. 5) that

n
72 SV (mrm) 2
m=n0

=7 :;g}:o (mrm) 2+A+73Q2(a—e)—1)"x—t  for all n = #ns,
which, together with (2. 1. 7), yields
(2.1.8)  lim sup (2a—Dymr2 m:ﬁno (mrm)~2 = 1.
Thus by (2. 1. 6) and (2. 1. 8) we obtain (2. 1. 1). This completes the proof.

The following proposition gives the a.s. and mean square convergences of X,—¥8x to zero.
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ProprosiTION 2. 2. Suppose that the following conditions are fulfilled :
There exist three sequences of positive numbers {en}, {on} and {Ax}, and a sequence of
real numbers {bn) such that

2.2.1) (x—0)Mau(x)>0 if |x—0n|=¢en foralln=1,
(2.2.2) inf {|Ma(x)|: en<|x—0n|<exl)=pn  forall n=1,
2.2.3) M) =A.A4+{x—04]) forall xR and all n=1,
(2.2. 4) ,,21 @2 EL(Mn(Xn)—Yn(Xn))2] < oo,

(2.2.5) limer=0, 0<en=<1 forallnz=1, igg anAn=0,

n—roo

Ms

AnpPn= 0, ilanlbn |< o0
n=

n=1

Il

and
(2.2.6) ni:":l 10— 0,41 | < oo
Then we have
’}i_glo | X,,—0,1=0 a.s.
and
lim E[(Xn—0n)*]=0.
ProoF. Let Zn=Xn—0n for each n=1. By (2.4),(2.2.3),(2.2.4) and E[X? ] < o
we get
2.2.7) E[X3]1<o  forallnz=1,
which implies
(2.2.8) E[Z%]1< foralln = 1.
It follows from (2. 4) that
2.2.9) Zp1=TnlZ1, ..., Zn)+Un for each n =1,
where
(2.2.10) Tu(ri..., t0)=Tu(rn)=1rn+0,—0,+1)—a8nMn(rn+0n)—anbn

for (ry,..., 72) € R" and n=1, and Un=anv» for eachn=1..
By (2. 5) and (2. 2. 4) we have

(2.2.11) E[UnlZy,...,Z41=0 as. forallnz=1
and
(2.2.12) 3 ELU]< o».

According to (2. 2. 5) there exists a positive integer N such that
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(2.2.13) 1—anAn=0 for all = N.

We shall estimate T (7y,..., 7») given by (2. 2. 10). Let #(=N) be fixed.
Case 1 where |7x|<en.

By (2. 2. 3) we get
| Ta(rm) | = 70|+ 10, —0pt1| +@nAn(1+ |70 |)+-an|bal,
which, together with |7»|<e,» <1, implies
(2.2.14) | Ta(rn) | <en+ 0,—0, 41| +2anAn-+an|bal.
Case 2 where en<|7n|<enl

Assume that 7, >>0. Since by (2. 2. 1) Mu(7n+0n)= | Mu(r»-+82)|, it follows from (2. 2. 2)
that

Tn(ra) <|7n|+10,,— 01| —an | Mu(rn+02)| +an|bnl
=|7n|l+10,—0, 111 —@npn+an|bn].
On the other hand, by (2. 2. 3) and (2. 2. 13) we get
Tu(rm)=|rn| —10p—0ps1] —an| Mn(rn-+0n)| —an|ba|
=|7n|—10,—0p+1] —anAn(L+ |7n|)—an|ban|
=—{10,—0nt1|+anAn+tan|bal}.
Thus the above relations imply
(2.2.15) |Tu(ra)| < max{|0n—0n+1| +anAn-+an|bnl,
|70 | —@non+0n—0ni1| +an|bnl}.
When 7, <0, in the same way as above we get (2. 2. 15).
Case 3 where |7, |=e; L
In the same way as case 2 we have
(2.2.16) |Tu(rn)|= max{|0,—0,+1|+anAntan|bnl,
|7n|+100—0pnt1|+an|bnl}.
Define 7»(ry, ..., 7a) as follows: for (ry,..., 7») & R"

1 —1
Tn(yyeee, ¥n)= 7,,(,,”):{ AnPn if |7n|.<$n
0 otherwise.

By (2. 2. 14), (2. 2. 15) and (2. 2. 16) we obtain
(2.2.17)  |Tu(ry, ..., ro)| < max{en+|0,—0,+1| +2anAn+an|bnl,
[ 72| —Tn(f’h covis ")+ |0n—0ni1| +an|bnl}
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for all (74,..., 72)E R” and all # =N. It follows from (2. 2. 5) and (2. 2. 6) that
(2.2.18) 1llim {ent+10,—0,+1| +2anAn+an|bn|} =0
and

(2.2.19) ,.21 (10n—0,11| Fan|bn|}<oco.

Since lim 1= o, for any sequence of real numbers {r»} with sup |7m|< o there exists
m=1

a positive integer N;(=N) such that sg]g |7m|<ex?! for all n=N,;. Hence by the defini-
me
tion of v» we get va(7y, ..., ¥n)=anp» for all n = N;, which, together with (2. 2. 5), yields
(2.2.20) ﬁl Yn(Yy, ..., Yn)=o0.
n=

We note that Lemma 1 of WATANABE [9] remains valid by replacing any constant X; in
[9] by any random variable X; with E[ X}]<{co. Thus by (2. 2. 8), (2. 2. 9), (2. 2. 11), (2.
2.12), (2. 2. 17) to (2. 2. 20) and Lemma 1 of WATANABE [9] we obtain the result. This
completes the proof.

The following lemma gives the rate of convergence of E[(X»—0»)?] to zero, which
will be useful for proving theorems in the next section.

LEMMA 2.3. Assume the following conditions:
(2.3.1) (x—0,)Ms(x) =0 forall x© R and all n=1,
there exist two sequences of positive constanls {Kni} and {Kny) such that
(2.3.2)  Kni|2—0n| < | Mn(%)| < Kns | %x—0n| for all xE R and all n=1,
(2.3.3) }ll_glo K2, /n=0
and
(2.3.4) Kl:,i,g Ky >0,

there exists a sequence of nonnegative valued Borel measurable function Ln(x) on R such
that

(2.3.5) E[Mn(x)—Ya(x)2]1<Ln(x) forallx&ER and alln=1
and

(2.3.6) In=o0(logzn),
where ln=FE{ Ln(Xx)] < oo and log;n=log(log n),

(2.3.7)  |0,—0p41]l=0(n"32(logan)'/2)
and an=An"1 where A is an arbitrary positive number with

(2.3.8) 24K, > 1.

Let {bn} be any sequence of real numbers satisfying
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(2.3.9) b2 < Cogyn)/n  forall n=3
b1=0b,=0,

where C, is some positive constant. Then, Proposition 2. 2 holds and there exists a positive
constant C such that

(2.3.10) E[(Xn—0r)2]=< C(logyn)/n for all n=3.
Proor. Since i an=o0 and 3 Kni/n=o0 by (2.3. 4), there exists a sequence of posi-"
n=1 n=1
tive numbers {r.} such that

Tn=1 for all n =1, lim 7,=0, i‘,l (Knimtn) [0 = oo
n—=

N—o0

and i‘. antn=oco. In Proposition 2.2 let en=rn, on=Kni7n, An=Kny. Then by the

n=1
conditions of this lemma all the conditions of Proposition 2. 2 are fulfilled. Thus Proposi-
tion 2. 2 holds. Next, we shall show (2.3.10). Let Zn=X.—0x for each n=1. By (2. 4)

and (2. 5) we get
(2.3.11) E[Z%,,1=E[Z%]+0n—0,+1)?F+a%E (ML Xn)]+a% E [v2 ]1+a3 b5,

+20,—0,+DE[Zn]+202 buE [ Mn(Xn)]1—20nE[ZnMn(Xn)]
—20nbnFE [ Zn]—2a1n(0,—0,4+1) E [Mn(Xn) ] —2anbn(0,—0,+1)
for all #=1. Define @« (x) as follows: for each n=1
Mn(x)/(x—0x)  if x#0x
Qn (%) :{ )
ay if x=0,,
where a, is an arbitrary constant with K,; <ax<K,s. Hence
(2.3.12) Muy(x)=Qn(x)(x—0x) for all x &R and all n=1.
Here, by (2. 3. 1) and (2. 3. 2) we get
(2.3.13) Ku=@Qn(x) =K, for all x &R and all n=1.
It follows from (2. 3. 12) and (2. 3. 13) that
(2.3.14) ELM2%2(Xn)]=<K2%,E[Z2%] foralln=1
and
(2.3.15) |E[Mn(Xn)|=KnE[|Znl|] for all n=1.
By (2. 3. 15) and the inequality
(2.3.16) 2|ab|<ka?+k1b2 for any a, b &R and any k£ >0,
we have
(2.3.17)  2a%|bnE[Mn(Xn) ]| = Kpp02E[Z2 1+ K pa% b2 for all n=1.
By (2. 3. 5) we get
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(2.3.18) E[v:]=in foralln=1.
Since by (2. 3. 12) and (2. 3. 13) E [ZuMn(X»)] = K,1 E[Z%], we have
(2.3.19) —2auE [ZaMn(Xn) ] <—2K,1an E[Z2] for all n=1.

From (2. 3. 8) there exists a positive number ¢ such that 2AK; (1—¢)>1. It follows from
(2.3.12), (2. 3.13) and (2. 3. 16) that for all n =1

(2.3.20) 2ax|bnE[Zn]|< 271K eanE [Z%]+2(Kie) L anb?,
(2.3.21) 2an|0p—0n+1| |E[Mn(Xn)]l
< 271K eanE[Z2%2]+2K 2%, (K e) 10, (0,—0,+1)%
(2.3.22) 2an|bn||0n—0ni1|< anbi +an(0,—0,+17
and
(2.3.23) 21|0,—0,41| |[E(Zn]|< 27 K ean E [Z2]+2(K e) a1 (0,—0,+1)%

Hence by (2. 3. 11), (2. 3. 14), (2. 3. 17) to (2. 3. 23) and the assumption that K,; = K, for
all z=1, we have

(2. 3. 24) EI:Z%,.H:] é (1—2AK1 n—1 an)E[Z?,]
+ (142K%x K 6) tan+an+2 (K1) a1} (0n—0n11)?
4@ In + (L4 Kng) a2 +(1+2 (Ki8) D anb? ,

where 8,=1—(3¢/4)—K2%,(2K;)"'an— Kn;(2K;)lan. Since by (2. 3.3) and (2. 3. 4)
lim Kny/n =0, from (2. 3. 3) there exist a positive integer 7, = 3 and some constant C,

n—oco

> 0 such that

(2.3.25) (K%,+Kn2)2Ky)a, <e/4 and an=<1 for all n=n,
and

(2.3.26) 1+2K2,(Kie) tantan+2(Kie) ta,;'< Cya;t for all »>1.
By (2. 3. 9), (2. 3. 24), (2. 3. 25) and (2. 3. 26) we get

(2.3.27) E[Z%,,1=A—&nYE[Z2]4+Csn(0,—0,+1)2+ Csn2ln

+C3n—2logsn for all n=n,,

where §=2AK,(1—e)(C>1). Let dn=FE[Z2%2] and

n
o oI a-&-y if n>m
Bmn = j=m+1
1 if n=m.
It is clear that there exist a positive integer n;(">#n,) and a positive constant C, such that

(2.3.28) 0< Bmn= Cmn—émé¢ forall n=m=n—1.
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Since by (2. 2. 8) and (2. 3. 27)

n

Apr1 = Bt wln,+Cs 3 Brnt(Op—0 s y)?

m=n1

+Cs i Bonn m—2 Im=+ Cs ‘ﬁ Bomn m—21og, m for all n=mn,
m=mn, m=mn,

and dn, < oo, using (2. 3. 28) we have
(2.3.29) dyis = Gln—t+n—¢ 31 MO, Opsr
="

n n
+n=¢ 3% mé—2Un+n—¢ > mé—2log, m) for all n=n,.
m:nl m:nl

According to Lemma 4 of Sacks [8], (2.3.6), (2. 3. 7) and the fact that £°>1 we get
nl—élog, n)—1 é mé—2log, m =< GCg,
m="n,
nl—¢(loge n)—1 Zn] mE—2m < G,
m=mn,

m=¥(logs Wt 3} MO0yt = G
and B .
nl—¢(loge n)~1 =< G
for all » =n,, which, together with (2. 3. 29), imply
Ap+1/(n—tlogon) < G for all n=#;.
Thus there exists a positive constant C such that
dn =< Cn—llogyn for all »=3.

This completes the proof.

3. Results

9

In this section the results of the previous section are used to prove the main results.

Assume the following conditions:
3.1 |0n—0u+1] =0(n~3/2(logs m)'2),
3.2) Mu(x)=a1;(n) (x—0n)+az(n) (x—0n)2+o0((x—04)2)
for each n=1, where a;(#) >0 and a, (%) are constants depending only on # with
(3.3) Ll_r}}o a;(n)=a; >0
and
G4 3 Slogam) ey ()| < o,

and o(x2) means “o(x2)/x2—0 as |x|—0",
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there exists a sequence of positive numbers {»»} such that

(3.5) R=sup sup E[| Va(x)|2+"m] < oo

n=1l x€R

and

(3.6) 0<n=9n<oo,
where Va(®)=Mn(®*)—Yn(x), 7= inf 7» and 7=sup 7,

= nz=1 nz=1

there exists a finite positive constant o2 such that for any sequence of real numbers {xx}
with x4 —0n—0 as n—

3.7 E[V2%(xn)]—>0®2 asn— oo,
The following result concerning the rate of x»—6@» to zero is analogous to that of HEYDE
[4].

THEOREM 3.1. Let {bn} be any sequence of real numbers satisfying

(3.1.1) ba=o0((n—1logy n)!’2)

b1=b2=0.

Assume all the conditions of Lemma 2.3 except for (2. 3. 7) and (2. 3. 9), and the conditions
B.1)to (3.7). Then we have

n=0n+Ac(2Aa;(n)—1)"12{,(2n—1log, n)'/? as. for all n=3,
where the sequence of random variables {Cn, n = 3} has ils set of a.s. limit points confined
to [—1, 1] with

lim sup {n=1 a.s., and liminfl,=—1 a.s.

n—oo n—ca

Proor. We shall proceed the proof along that of Theorem 2.1 in Heype [4]. We
note that under the conditions of this theorem all the conditions of Lemma 2.3 are ful-
filled. It follows from (2. 3. 2), (2. 3. 8), (3. 2) and (3. 3) that

3B.1.2) ae(n)=K,; forall n=1
and
3.1.3) 2Aa;=2AK;>1.

Let dn=ay(n)(Xn—0n)2+0((Xn—0x)?) and Zn=Xn—0x. By (2. 4) and (3. 2) we get
3.1.4) Zp+1=PBoenZ3+ Eaﬁmn(ﬂm—0m+ 1)—Am2|;‘3 Bmnm—10m

+A ésﬂmnm—lvm-—ADn for all n=3,

where

] 0 a-Aemiy ifa>m
mn j=m+1
1

if n=m
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and

(3.1.5) D= 33 Byum~'bm.

From (3. 3) and (3. 1. 2) there exists a positive integer 7, such that
0<1—Aay(j)j 1 <1—AK! for all j = ny,
by which we get |
(3.1.6) | Bmn| = CmAK1p—AK, foralln=m=1
and
B.L.7)  Bmn=rarm=l  for all n=m =mn,,
where
ra= 1 A—Aa()i-HC>0)  for all n = n,

J]=ng

Since by (2. 2. 8) |Z3|< = a.s., using (3. 1. 3) and (3. 1. 6) we have
(3 1. 8) ,an ZgZO((n—l logz n)1/2> a.s.
It follows from (3. 1. 6) that

nV/2 (loga 1)=12 30 | Bn | | Om—Opet |
(3.1.9) m=3

< G, nl/2—AK; (log, n)—1/2 f} MAK1[0,,— 0, 1]
m=3
According to Lemma 4 of Sacks [8] and (3. 1. 3) we get
n

) MAK 1=3/2(log, m)L/2 ~ (AKl — %) AR, 12 (logz )2 as n—>co,
m=

which, together with (3.1) and the Toeplitz lemma (LokVE [7], page 238), implies that
the right hand side (R. H. S.) of (3.1.9) converges to zero as # tends to infinity.
Hence

(3.110) 31 Bun(@n—OmiD=0((n=" logy m)"*).

In the same manner as (3. 1. 10), by using (3. 1. 1) we get
(3.1.11) Du=o0((n—1logsn)l’?),

By (3.1.6) we have

nV2(logam) ™2 33 | Bn | an(m)| 23
m=
(3.1.12) =< Canl2—AK:(logan)—V2 3 mAK1=12(log, m)V2 X (m logs m)—1/2 |ax(m) | 23, .
m=3

Since by (2. 3. 10) and (3. 4)
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3 O loga m)~V2|ay ()| E [ 23] < oo,
it holds that

31 (nlogam) 2 a()| 2 <o as,

n=3

which, together with (3. 1. 3), (3. 1. 12) and the Kronecker lemma (LokvE [7], page 238),

implies that the R. H. S. of (3. 1. 12) converges to zero as z tends to infinity. Hence
(3.1.13) }’isﬂmn m—lay(m) Z% =o0((n—tlog,m)V2)  as.
m=

Since by Lemma 2.3 Z»—0 a.s. as m— oo, there exists a positive constant C,, possibly

depending on o, such that
[0(Z%) | = Cy 2% a.s. for all m =1,
which, together with (3. 1. 6), yields

n/2 (logy m)=2 31 | Bmnm=10(Z5) |
m=
= C5nl/2—AK, (Jog, n)—1/2 Xn‘,BmAKl—”z (logz m)t/2 x (m logs m)—1272%,.
m=

It follows from (2. 3. 10) that
3 (nloge m)~\2E [Z5] < oo,
which implies
n:i]s(n logy, n)—12Z2 < oo a.s.
Thus, in the same manner as (3. 1. 13) we get
mia Bmn m—10(Z%,)=0((n—1logs n)!/2) a.s.,
which, together with (3. 1. 13), yields
(3.1.14) m‘és Bmn m~18m=0((n~Lloga )2  as.
In view of (3. 1. 4), (3. 1. 8), (3.1.10), (3. 1. 11) and (3. 1. 14), it suffices, in order to prove the
theorem, to show the following:
(3.1.15) lin:  sup {'n=1 a.s.,
(3.1.16) lim inf {'»=—1 a.s.

and {C,, » = 3} has its set of a.s. limit points confined to [—1, 1], where
Cn=0"1(2A a;(n)—1)V2 (2n—1 log, n)~1/2 f}s Bmn m—1 vm for n = 3.
m=

Let Un=n"1r,'v» for all n =n,. Since {v»} is a martingale difference, {Ux} is also a

martingale difference.
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Let
(3.1.17) SZ=E[( X Un?l= 3 m—27;2E[0%] for all n = n,.
m=n, m=un,
Since Xm—0m—0 a.s. as m—> oo, it follows from (3. 7) that
(3.1.18) lim E[ 03| F m—1]= lim E[V5,(Xm)| Xm]=0*  as,

where (Z m is the o-field generated by X, ..., Xm+1. On the other hand, by (3.5) and
the Holder inequality we get

E[ 3| . F m—1] < R¥@+1» < max {1, R}< forall m =1,
which implies
sup B v% | F m-1] = max{l, R}.
Hence by the bounded convergence theorem and (3. 1. 18) we have
(3.1.19) Li_IEOE[ v2]=a2
From (3. 1. 3) and Lemma 2. 1 we get
(31200 3 m 7t~ QAw—DMnr3)  asn—co,
Which, together Wioth 3.1.3),(3.1.6) and (3. 1. 7), implies
(3.1.21) 31 mfzPoce  asm—oo.
It follows from (3. 01 17), (3. 1. 19), (3. 1. 20), (3. 1. 21) and the Toeplitz lemma that
(3.1.22) sh~0* 31 m~rat~ ?QAe—D (rd) as noo,
Set 0

e =(2s% log, s% )12 U Un  for n=
m

=ny

By Theorem 1 of HEvDE and ScorT [5] it will hold that
(3.1.23) lim sup ¢, =1 as,

(3.1.24) liminfl, =—1 as.
N —>o0

and {C,,:, n=mn,} has its set of a.s. limit points confined to [ —1, 1] if the following condi-

tions are fulfilled:

(3.1.25) ) st E[ULI(|Un|<<dsn)]< oo  for some & >0,

(3.1.26) Z“j SGYE[|UnlI(|{Un|=€sn)] < 0 foralle >0
and
(3.1.27) s,2 Zn‘, Uz,—1 a.s. as#—> oo,
m=n0

where I(A) denotes the indicator function of the set A. First we shall show (3. 1. 25).
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By (3. 1. 22) it suffices to show that
(3.1.28) f‘:_. n2E[v4 1 (|va|<< dn2)] < oo for some d > 0.

We may assume that 0 <7, <2 forall # =11in (3. 5). Let 3(0<{3<1) be fixed. From
(3. 5) and (3. 6) it is clear that

> n2E [v4 I(|vn| < 3 n1/2)]

n=n,

< 3N 32T p—(HT/D E[ |0 |2+7n]

n=n,

=R X n—0+72) < oo,

n=n,
which concludes (3. 1. 28). Next we shall show (3. 1. 26). By (3. 1. 22) it suffices to show
that

(3.1.29) }f‘. n=12E [on|I(|on| = ent’2)] < o for all e >0.
n=n,

From (3. 5) and (3. 6) it is clear that
31 n=12E [ |oa| I(|0a| = € n12) ]

n=n,
< max {1, e=+D} R 31 —0+12) < oo,
n=n

0

which concludes (3. 1. 29). Finally we shall show (3. 1. 27). It is clear that

(3.1.30) ;% 3} Uh=5;> 31 (Up—E[Uh|.F m-1])

=n° =n°
+572 31 ELU% | F meil
=n0

By (3. 1. 18), (3. 1. 21), (3. 1. 22) and the Toeplitz lemma we have

(3.1.31) s;2 3 E[U%L|.F mal—>1 as. asn— oo

m_—_no

Set vy, =vml (|om| < m'/2) for each m =ny,. By making use of the Kolmogorov strong law
of large numbers of martingale we shall obtain

(3.1.32) 572 31 m 2 (0 R—EL0n)?| F m1])—>0 as. as n—oo
if it holds that
(3.1.33) > sytn—ty 4 Var [ (v, 2] < o,
n=no

where Var [X] denotes variance of X. In order to show (3. 1. 33) it suffices, from (3. 1.
22), to show

3 #2E[(v;, 41 < o0,
n=no
which is satisfied by the fact that
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ﬁ n=2E[(v,*] <R i} n—1+2/2) < oo,

Hence the relation (3. 1. 32) holds. By the Markov inequality we have

f_‘. Pn+v),) < i n= A/ DE [ | |2+74]
n=n0 n:no

=R T n-a0 < o,
n=no
which implies P(v»+#v), i.0.)=0. Hence by (3. 1. 32) we get
(3.1.34) s;zmﬁ m=2 772 (0% —E[ 02| F mey])—>0  as. asn-—> oo.
=1'l0
As v = ()% +vi I (Jom| > ml/2), we get

(3.1.35) 532 31 m~52(0h —E [0 | F m-1])
=532 31 m 252 (vh —EL 0)2] F 1))

=532 3V m2 152 E (05 (| Vi > mt2) | F me].

Since

oo
23
n:no

n1E 2] (Joa|>n)] =R 3} n—0+7D < oo,
it follows from (3. 1. 22) that
Su2n7 22 E (05,1 (Jon| > n'2) ] < oo,

0

I

”n

which implies

S22 2E (21 (oa| > 01| F ] <o as.

0

M

n

Thus, by the Kronecker lemma we obtain

572 3V m=2rn2E (0% (Jom| > mi2)| F m_1]-0 as. asun-—> oo,

0

which, together with (3. 1. 34) and (3. 1. 35), yields
(3.1.36) s72 > (Ua—E[Us|.F mal)>0 as. asn-— .

m_—_no

15

Combining (3. 1. 30), (3. 1. 31) and (3. 1. 36) we have (3. 1. 27). It follows from (3. 3) and

the Toeplitz lemma that

n - .
S'ai(j)jl~ajlogn  asn— co.
=%

After some calculations, using the above result, (3. 1. 22) and the Taylor theorem, we

obtain

(3.1.37) logs s% ~ logs as # — oo.

By (3. 5) we get sulg E [v3] < oo, which implies that |v»|< o a.s. for all # =1. Hence
n=
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using (3. 3), (3. 1. 3) and (3. 1. 6) we have
(3.1.38) o-}2Aa; (m)—DV2@n—togs w12 '3 w1 By vm=0  as.

Combining (3. 3), 3. 1. 7), (3. 1. 22), (3. 1. 23), (3. 1. 24), (3.1.37), (3. 1. 38) and the fact that
{€, , m = mny) has its set of a.s. limit points confined to [—1, 1], we obtain (3. 1. 15), (3. 1.

16) and the fact that {{, » = 3} has its set of a.s. limit points confined to [—1,1]. This
completes the proof.

Let
3.-8) Dn = D (2n—1log, n)t'2+0 ((n~1 log, n)V/2),

where ba’s are nonnegative numbers satisfying (3. 1. 1), Dy is defined as (3.1.5) and D is
any positive number such that

(3-9 D> o(2Aa;—1)"1/2 for ¢ and @; in (3. 3) and (3. 7).

The following theorem can be proved by making use of the relations in the proof of
Theorem 3. 1.

THEOREM 3. 2. Assume the conditions (3.1) to (3. 9). Then, under all the conditions of
Lemma 2.3 except for (2. 3. 7) and (2. 3. 9), we have

3.2.1) Xu—0,—0 as. as mn— o
and, with probability one, Xn—0» > 0 only finitely many time.

Proor. By Lemma 2. 3 we obtain (3.2.1). Let Zn=Xn—0x. It follows from (3.1. 4),
(3.1.8), (3. 1. 10) and (3. 1. 14) that '

Znp1=A ;’fz_sﬁm m=19m—ADn+0((n—1log, m)V'?) as. for all n=3,
which, together with (3. 3), (3. 8), (3. 9) and (3. 1. 15), implies
P{Zx>01i.0.)

< P{lim sup (6-1(2 Aa; (n)—1)1/2) 2n—1log, ,,,)—1/2’;53 Bomn m—1 vm
= lim sup (¢6-42A ay(n)—1)¥/2)(2n~1 logz #)~/2Dx}

n—>0

=P{1 =d1(2A a,—1)2D} =0.

Thus P{Z» > 0i.0.} =0, which concludes that, with probability one, X»—8» > 0 occur
only finitely many times. This completes the proof.
We shall give an example of {b»} satisfying (3. 8) and (3. 9).

ExAMPLE.

Let

b1=b=0
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bn=D(2n—1log, n)l/2 for all » = 3,

where D is any positive number such that D> 30(24 ¢;—1)1/2/2 for ¢ and « in (3. 3) and
3.7.

We shall, now, consider two cases where ANBAR [1] and DupacC [2] treated. First
we shall consider the case of ANBAR [1] in which it holds that

Mu(x)=M(x) forallx & Randallz =1
O0n=0 for all » =1 with 0 being the unique root of M (x)=0.

Theorem 3.2 gives
CorOLLARY 3.3 Theorem 2 of ANBAR [17 holds.

Next, we shall consider the case of Dupa¢ [2] in which Y(x) is a random variable
for each x & R with Y (x) being a Borel measurable function on R, the expectation of
YY), M(x)=E [Y (x)], exists and is a Borel measurable function on R, and

Mp(x)=M(x—0n+06,) forallm =1

where 6, is the unique root of M(x)=0 and {fx} is a sequence of real numbers, so 0 is
the unique root of the equation M (x) =0,

CoROLLARY 3. 4. Suppose the following conditions :
3.41) G—O0)Mx)=0 Jor all x = R,

3.4.2) Kilx—0|=IMx)|=K,|x—0,| for all x & R and some positive constants
K and K,

3.4.3) Mx=a;(x—0)+ay(x—0)2+0((x—0,)2)
with ay >0 and a, being real numbers,
there exist finite positive constants v and o2 such that
(3.4.4) ileu})eE[l V@®)|2+7] < oo
and
B.4.5) E[VXx)]—>0%2 asx—>0;, withV(x)=Mx)—Y (),
(3.4.6) |0n—0nt1|=0 n—372(log, n)\'2),
B.47) an=An-!

where A is an arbitrary real number with 2AK, >1. Assume that {bs} is a sequence of
nonnegative numbers satisfying (3. 1. 1) and

Dy = D (2n—1log, n)12+0 ((n—1logs n)!/2)

where Dy is defined as (3.1.5) and D is any positive number with D> s(2AK,—1)~172,
Then Theorem 3. 2. holds.



18 E. Isogai

Proor. In Theorem 3.1 set a;(n)=a,, as(n)=ay, mn=2, Va(x)=V(x—0,.+80,) for all
n=1. Then all the conditions (3. 1) to (3. 8) are satisfied. From (3. 4.2) and (3. 4. 3) we
get

D>0(2AK,—1)"12 =0 (2Aa;—1)"172,

by which (3.9) is fulfilled. The relation (3. 4. 1) implies the relation (2.3.1). In Lemma
2.3 set Kni=K; and Ku;=K, for all # = 1. By the Holder inequality we get

ElMn(x)—Yn ®))2] = (EL|V(x—0n+0y)|2+7]} 2/ 4D,
Set Ln(x)={E[| V(x—0x+61)|2+7]}2/@+D in (2.3.5). Since I» < {SLL%EU V(x)|2+7]}2/@+D,

we have (2. 3. 6) from (3. 4. 4). Another conditions of Lemm 2. 3 are all satisfied. Thus,
since all the conditions of Theorem 3.2 are fulfilled, Theorem 3.2 holds. This com-
pletes the proof.
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