On a modified Robbins-Monro procedure approximating the root from below with errors in setting the x-levels

By Eiichi Isogai

(Received November 30, 1978)

1. Introduction and Summary

In the case of finding the unique root θ of the equation M(x)=0, situations may occure where even the precise setting of the x-levels of an experiment is impossible without error. Dupač and Král [3] and Watanabe [6] dealt with these situations. On the other hand, there are cases in which it is advantageous to use a process which converges to θ from below. Anbar [1] gave a modified Robbins-Monro (RM) procedure for guaranteeing that with probability one the procedure overestimates θ only finitely many times. In this paper, it is shown that assuming that the error in x-level can be made small at some rate at each step, the modified RM procedure overestimates θ only finitely many times with probability one.

This paper consists of five sections. In section 2, we shall give some assumptions, notations and a lemma. In section 3, we shall show a convergence theorem. Section 4 will give some lemmas which are used in section 5. In section 5, we shall present two theorems which show that with probability one the modified RM process overestimates θ only finitely many times and give an asymptotic normality of the process.

2. Preliminaries

Let R be the real line. Let $\{U^n(x)\}$ and $\{V^n(x)\}$ be two sequences of random variables which depend on parameter $x \in R$. Suppose that for each n, $U^n(x)$ and $V^n(x)$ are measurable functions of x. Further, suppose $E[U^n(x)] = E[V^n(x)] = 0$ for all $x \in R$ and all $n \ge 1$.

Let M(x) be a real-valued measurable function on R, let θ be the unique root of $M(x) = \alpha$ where α is an arbitrary given number.

Let us define the mdified RM procedure proposed by Anbar [1] as follows: Let X_1 be a random variable with $E[X_1^2] < \infty$ and let define X_2, X_3, \cdots by the recursive relation

(2. 1)
$$X_{n+1}=X_n-a_n[M(X_n+u_n)-v_n-\alpha+b_n]$$
 $n=1, 2, \dots$

where $\{a_n\}$ is a sequence of positive numbers satisfying

(2. 2)
$$\sum_{n=1}^{\infty} a_n = \infty, \qquad \sum_{n=1}^{\infty} a_n^2 < \infty,$$

 $\{b_n\}$ is a sequence of numbers satisfying

$$\lim_{n\to\infty}b_n=0,$$

 u_n , $n \ge 1$, are random variables whose conditional distributions, given X_1 , u_1 , \cdots , u_{n-1} , v_1 , \cdots , v_{n-1} , coincide with those of $U^n(X_n)$, and v_n , $n \ge 1$, are random variables whose conditional distributions, given X_1 , u_1 , \cdots , u_n , v_1 , \cdots , v_{n-1} , coincide with those of $V^n(X_n + u_n)$.

The following lemma given by WATANABE [5] will be needed to prove Theorem 3. 1.

LEMMA 2.1. Let $\{U_n\}_{n=1}^{\infty}$ and $\{V_n\}_{n=1}^{\infty}$ be two sequences of random variables on a probability space $(\Omega, \mathfrak{A}, P)$. Let $\{\mathfrak{A}_n\}_{n=1}^{\infty}$ be a sequence of sub- σ -algebras of \mathfrak{A} , $\mathfrak{A}_n \subset \mathfrak{A}_{n+1} \subset \mathfrak{A}$, where U_n and V_n are measurable with respect to \mathfrak{A}_n for each $n \ge 1$. Furthermore, let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive numbers satisfying

(2. 4)
$$\lim_{n\to\infty}a_n=0, \qquad \sum_{n=1}^{\infty}a_n=\infty.$$

Suppose that the following conditions are satisfied:

- $(2. 5) U_n \geqslant 0 a. s. for all n \geqslant 1,$
- $(2. 6) E[U_1] < \infty,$
- (2. 7) $E[U_{n+1}|\mathfrak{A}_n] \leq (1-a_n)U_n + V_n$ a. s. for all $n \geq 1$,
- $(2. 8) \qquad \sum_{n=1}^{\infty} E[|V_n|] < \infty.$

Then, it holds that $\lim_{n\to\infty} U_n=0$ a. s. and $\lim_{n\to\infty} E[U_n]=0$.

3. Convergence of the modified RM process

In this section, an almost surely convergence of the modified RM process is proved.

THEOREM 3. 1. Let $\{\alpha_n\}_{n=1}^{\infty}$ be a sequence of non-negative numbers and $\{\beta_n\}_{n=1}^{\infty}$ be a sequence of positive numbers. Suppose the following conditions are satisfied:

$$(3. 1) K_1 \leq (M(x) - \alpha)/(x - \theta) \leq K_2 \text{ for all } x \neq \theta,$$

where K_1 and K_2 are some positive constants;

(3. 3)
$$\sup_{-\infty < x < \infty} \operatorname{Var} [V^n(x)] \leq \beta_n \quad \text{for all } n \geq 1$$

$$(3. 4) \qquad \sum_{n=1}^{\infty} a_n \alpha_n < \infty;$$

$$(3. 5) \qquad \qquad \sum_{n=1}^{\infty} a_n^2 \beta_n < \infty;$$

$$(3. 6) \qquad \sum_{n=1}^{\infty} a_n |b_n| < \infty.$$

Then, the modified RM process X_n defined by (2.1) converges to θ with probability one as well as in mean-square.

Proof. Without loss of generality we may assume $\alpha = 0$. From (2.1) we have

$$(3. 7) X_{n+1} - \theta = (X_n - \theta) - a_n M(X_n + u_n) + a_n v_n - a_n b_n.$$

Squaring both sides of (3. 7) and taking conditional expectations on both sides given X_1 , ..., X_n , we obtain

(3. 8)
$$E[(X_{n+1}-\theta)^{2}|X_{1}, \dots, X_{n}]$$

$$=(X_{n}-\theta)^{2}+a_{n}^{2}E[M^{2}(X_{n}+u_{n})|X_{1}, \dots, X_{n}]$$

$$+a_{n}^{2}E[v_{n}^{2}|X_{1}, \dots, X_{n}]+a_{n}^{2}b_{n}^{2}-2a_{n}(X_{n}-\theta)E[M(X_{n}+u_{n})]$$

$$|X_{1}, \dots, X_{n}]-2a_{n}^{2}b_{n}E[v_{n}|X_{1}, \dots, X_{n}]$$

$$+2a_{n}(X_{n}-\theta)E[v_{n}|X_{1}, \dots, X_{n}]-2a_{n}b_{n}(X_{n}-\theta)$$

$$-2a_{n}^{2}E[M(X_{n}+u_{n})v_{n}|X_{1}, \dots, X_{n}]$$

$$+2a_{n}^{2}b_{n}E[M(X_{n}+u_{n})|X_{1}, \dots, X_{n}].$$

From the property of $V^n(x)$ and (3. 3), it is easily seen that $E[v_n|X_1, \dots, X_n] = 0$ and $E[v_n^2|X_1, \dots, X_n] \leq \beta_n$.

Let us define $Q(x, \theta)$ as follows:

$$Q(x, \theta) = M(x)/(x-\theta) \quad \text{if } x \neq \theta$$
$$= \alpha_1 \quad \text{if } x = \theta$$

where α_1 is an arbitrary fixed constant with $K_1 \le \alpha_1 \le K_2$. By (3. 1) we get

$$(3. 9) M(x) = Q(x, \theta) (x-\theta)$$

where $K_1 \leq Q(x, \theta) \leq K_2$ for all x.

Since $|M(X_n+u_n)| \leq K_2(|X_n-\theta|+|u_n|)$, it follows by (3. 2) and (3. 9) that

(3. 10)
$$E[M^{2}(X_{n}+u_{n})|X_{1}, \dots, X_{n}]$$

$$\leq 2K_{2}^{2}(X_{n}-\theta)^{2}+2K_{2}^{2}E[u_{n}^{2}|X_{1}, \dots, X_{n}]$$

$$\leq 2K_{2}^{2}(X_{n}-\theta)^{2}+2K_{2}^{2}\alpha_{n},$$

Using (3. 9), we have

$$(X_n - \theta) E[M(X_n + u_n) | X_1, \dots, X_n]$$

$$= (X_n - \theta)^2 E[Q(X_n + u_n, \theta) | X_1, \dots, X_n]$$

$$+ (X_n - \theta) E[Q(X_n + u_n, \theta) u_n | X_1, \dots, X_n].$$

The relation (3. 2) and Schwarz's inequality imply

$$|E[Q(X_n+u_n,\theta)u_n|X_1,\cdots,X_n]| \leq K_2\alpha_n^{\frac{1}{2}}.$$

Therefore, we have

$$(3.11) (X_n - \theta) E[M(X_n + u_n) | X_1, \dots, X_n]$$

$$\geqslant K_1 (X_n - \theta)^2 - K_2 \alpha_n^{\frac{1}{2}} | X_n - \theta |.$$

It follows by (3. 2) and (3. 9) that

(3. 12)
$$|E[M(X_n+u_n)|X_1, \dots, X_n]|$$

$$\leq K_2|X_n-\theta|+K_2\alpha_n^{\frac{1}{2}}.$$

By making use of $E[v_n|X_1, \dots, X_n, u_n] = 0$ and taking conditional expectations given X_1, \dots, X_n , we obtain

(3.13)
$$E[M(X_n+u_n)v_n|X_1, \dots, X_n] = 0.$$

The relations (3. 8), (3. 10), (3. 11) and (3. 12) yield that

(3. 14)
$$E[(X_{n+1}-\theta)^2|X_1, \dots, X_n]$$

$$\leq (X_n-\theta)^2 + 2K_2^2 a_n^2 (X_n-\theta)^2 + 2K_2^2 a_n^2 a_n + a_n^2 \beta_n + a_n^2 b_n^2$$

$$-2K_1 a_n (X_n-\theta)^2 + 2K_2 a_n a_n^{\frac{1}{2}} |X_n-\theta| + 2a_n |b_n (X_n-\theta)|$$

$$+ 2K_2 a_n^2 |b_n (X_n-\theta)| + 2K_2 a_n^2 |b_n| a_n^{\frac{1}{2}} .$$

By making use of the inequality $2ab \le ka^2 + k^{-1}b^2$ for any k>0, we get the following inequalities:

$$(3. 15) 2K_2 a_n \alpha_n^{\frac{1}{2}} |X_n - \theta| \leq 2^{-1} K_1 a_n (X_n - \theta)^2 + 2K_1^{-1} K_2^2 a_n \alpha_n,$$

$$2a_n |b_n (X_n - \theta)| \leq 2^{-1} K_1 a_n (X_n - \theta)^2 + 2K_1^{-1} a_n b_n^2,$$

$$2K_2 a_n^2 |b_n (X_n - \theta)| \leq K_2 a_n^2 (X_n - \theta)^2 + K_2 a_n^2 b_n^2,$$

$$2K_2 a_n^2 |b_n |\alpha_n^{\frac{1}{2}} \leq K_2 a_n^2 \alpha_n + K_2 a_n^2 b_n^2.$$

Hence, it follows from (3. 14) and (3. 15) that

(3. 16)
$$E[(X_{n+1}-\theta)^2|X_1, \dots, X_n]$$

$$\leq \{1 - (K_1 - 2K_2^2 a_n - K_2 a_n) a_n\} (X_n - \theta)^2$$

$$+ (2K_2 + 1) a_n^2 b_n^2 + (2K_2^2 + K_2) a_n^2 \alpha_n + 2K_2^2 K_1^{-1} a_n \alpha_n$$

$$+ a_n^2 \beta_n + 2K_1^{-1} a_n b_n^2 .$$

By (2. 2) and (2. 3), there exists a positive integer n_0 such that for all $n \ge n_0$

$$(3.17) 2K_2^2 a_n + K_2 a_n \leqslant 2^{-1} K_1, a_n \leqslant 1 and |b_n| \leqslant 1,$$

so that

$$(3.18) a_n^2 b_n^2 \leqslant a_n |b_n|, a_n^2 \alpha_n \leqslant a_n \alpha_n, a_n b_n^2 \leqslant a_n |b_n|$$

for all $n \ge n_0$.

Thus, by (3. 16), (3. 17) and (3. 18), we have

(3. 19)
$$E[(X_{n+1}-\theta)^{2}|X_{1}, \dots, X_{n}]$$

$$\leq (1-2^{-1}K_{1}a_{n})(X_{n}-\theta)^{2}+(2K_{2}+2K_{1}^{-1}+1)a_{n}|b_{n}|$$

$$+(2K_{2}^{2}+K_{2}+2K_{2}^{2}K_{1}^{-1})a_{n}\alpha_{n}+a_{n}^{2}\beta_{n}$$

for all $n \ge n_0$.

By (2. 2), (3. 4), (3. 5), (3. 6) and (3. 19), all conditions of Lemma 2. 1 are satisfied. Therefore, we obtain

$$\lim_{n\to\infty} (X_n - \theta)^2 = 0 \text{ a. s. which implies } \lim_{n\to\infty} X_n = \theta \text{ a. s.,}$$

and $\lim_{n\to\infty} E[(X_n-\theta)^2]=0$.

This completes the proof.

4. Auxiliary lemmas

In this section, some lemmas which are needed in later sections are presented. Throughout this section and section 5, suppose $V^n(x) = V(x)$ for all x and all $n \ge 1$ and $\beta_n = \beta$ for all $n \ge 1$. It is assumed without loss of generality that $\alpha = \theta = 0$.

LEMMA 4.1. Suppose the conditions (3.1) to (3.3) are satisfied. Further suppose the following conditions:

(4. 1)
$$a_n = An^{-1} \text{ with } 2AK_1 > 1;$$

(4. 2)
$$\alpha_n = Ln^{-d}$$
 with some $L \ge 0$ and some $d > 1$;

(4. 3)
$$b_n^2 \le C(\log_2 n)/n$$
 for some constant $C > 0$ and all $n \ge 3$,

where $\log_2 n$ means $\log(\log n)$.

Then, there exists a positive constant C_1 such that

$$E[X_n^2] \leqslant C_1(\log_2 n)/n$$
 for all $n \geqslant 3$.

PROOF. Throughout this proof, C_2 , C_3 , \cdots denote positive constants. From (2. 1) and the property of V(x), we get

(4. 4)
$$E[X_{n+1}^{2}] = E[X_{n}^{2}] + a_{n}^{2} E[M^{2}(X_{n} + u_{n})] + a_{n}^{2} E[v_{n}^{2}] + a_{n}^{2} b_{n}^{2}$$
$$-2a_{n} E[X_{n} M(X_{n} + u_{n})] - 2a_{n} b_{n} E[X_{n}]$$
$$+2a_{n}^{2} b_{n} E[M(X_{n} + u_{n})].$$

We put Q(x) = Q(x, 0), where Q(x, 0) is the same as (3.9). Inserting $\theta = 0$ into (3.10), (3.11) and (3.12) and taking expectations on both sides of each inequality, we have

(4. 5)
$$E[M^{2}(X_{n}+u_{n})] \leq 2K_{2}^{2}E[X_{n}^{2}] + 2K_{2}^{2}\alpha_{n},$$

$$E[X_{n}M(X_{n}+u_{n})] \geq K_{1}E[X_{n}^{2}] - K_{2}\alpha_{n}^{\frac{1}{2}}E[|X_{n}|],$$

$$|E[M(X_{n}+u_{n})]| \leq K_{2}E[|X_{n}|] + K_{2}\alpha_{n}^{\frac{1}{2}}.$$

The relations (4.4) and (4.5) imply

$$(4. 6) E[X_{n+1}^2]$$

$$\leq \{1 - (2K_1a_n - 2K_2^2a_n^2)\}E[X_n^2] + 2K_2a_n\alpha_n^{\frac{1}{2}}E[|X_n|]$$

$$+ 2a_n|b_n|E[|X_n|] + 2K_2a_n^2|b_n|E[|X_n|] + 2K_2^2a_n^2\alpha_n$$

$$+ \beta a_n^2 + a_n^2b_n^2 + 2K_2a_n^2|b_n|\alpha_n^{\frac{1}{2}}.$$

Choose $\varepsilon_1 > 0$ such that $2AK_1(1-\varepsilon_1) > 1$ because of $2AK_1 > 1$. Then there exists a positive integer n_1 such that

$$AK_{2}^{2}K_{1}^{-1}n^{-1} < \varepsilon_{1} \quad \text{for all } n \ge n_{1}, \quad \text{so that}$$

$$(4. 7) \qquad 2K_{1}a_{n} - 2K_{2}^{2}a_{n}^{2} > 2AK_{1}(1 - \varepsilon_{1})n^{-1} \quad \text{for all } n \ge n_{1}.$$

Choose $\varepsilon_2 > 0$ such that $2AK_1(1-\varepsilon_1-\varepsilon_2) > 1$.

Then we get

(4. 8)
$$2K_{2}a_{n}\alpha_{n}^{\frac{1}{2}}E[|X_{n}|]$$

$$\leq 2K_{1}\varepsilon_{2}a_{n}E[X_{n}^{2}] + K_{2}^{2}(2K_{1}\varepsilon_{2})^{-1}a_{n}\alpha_{n}$$

$$= 2AK_{1}\varepsilon_{2}n^{-1}E[X_{n}^{2}] + ALK_{2}^{2}(2K_{1}\varepsilon_{2})^{-1}n^{-d-1}.$$

Choose $\epsilon_3 > 0$ such that $2AK_1(1-\epsilon_1-\epsilon_2-\epsilon_3) > 1$. Then it follows by (4.3) that

(4. 9)
$$2a_{n}|b_{n}|E[|X_{n}|]$$

$$\leq 2K_{1}\varepsilon_{3}a_{n}E[X_{n}^{2}] + (2K_{1}\varepsilon_{3})^{-1}a_{n}b_{n}^{2}$$

$$\leq 2AK_{1}\varepsilon_{3}n^{-1}E[X_{n}^{2}] + AC(2K_{1}\varepsilon_{3})^{-1}(n^{-1}\log_{2}n)n^{-1}.$$

Since $2AK_1(1-\varepsilon_1-\varepsilon_2-\varepsilon_3)>1$, there exists $\varepsilon_4>0$ such that $2AK_1(1-\varepsilon_1-\varepsilon_2-\varepsilon_3-\varepsilon_4)>1$ and $2AK_1(1-\varepsilon_1-\varepsilon_2-\varepsilon_3-\varepsilon_4)\neq d$. By (4. 3) we have

$$2K_{2}a_{n}^{2}|b_{n}|E[|X_{n}|]$$

$$\leq K_{2}a_{n}^{2}E[X_{n}^{2}] + K_{2}a_{n}^{2}b_{n}^{2}$$

$$\leq A^{2}K_{2}n^{-2}E[X_{n}^{2}] + CA^{2}K_{2}n^{-2}(n^{-1}\log_{2}n).$$

Since there exists a positive integer $n_2 \ge n_1$ such that for all $n \ge n_2$ $A^2K_2n^{-1} < 2AK_1\varepsilon_4$, we obtain

$$(4. 10) 2K_2 a_n^2 |b_n| E[|X_n|]$$

$$\leq 2AK_1 \varepsilon_4 n^{-1} E[X_n^2] + CA^2 K_2 n^{-2} (n^{-1} \log_2 n) \text{for all } n \geq n_2.$$

(4. 2) and (4. 3) yield

(4.11)
$$2K_2 a_n^2 |b_n| \alpha_n^{\frac{1}{2}}.$$

$$\leq K_2 a_n^2 \alpha_n + K_2 a_n^2 b_n^2$$

$$\leq K_2 A^2 L n^{-2-d} + C A^2 K_2 n^{-2} (n^{-1} \log_2 n).$$

From (4. 6), (4. 7), (4. 8), (4. 9), (4. 10) and (4. 11), we obtain

$$\begin{split} E[X_{n+1}^2] \\ & \leq (1 - t n^{-1}) E[X_n^2] + C_2 n^{-2} + C_3 n^{-1-d} \\ & + C_4 n^{-1} (n^{-1} \log_2 n) \quad \text{for all } n \geq n_2, \quad \text{where} \\ t & \equiv 2AK_1 (1 - \varepsilon_1 - \varepsilon_2 - \varepsilon_3 - \varepsilon_4) > 1 \text{ and } t \neq d. \end{split}$$

Repeating this inequality, we have

(4. 12)
$$E[X_{n+1}^{2}]$$

$$\leq \beta_{n_{2}-1} E[X_{n_{2}}^{2}] + C_{2} \sum_{m=n_{2}}^{n} \beta_{mn} m^{-2} + C_{3} \sum_{m=n_{2}}^{n} \beta_{mn} m^{-1-d}$$

$$+ C_{4} \sum_{m=n_{2}}^{n} \beta_{mn} m^{-1} (m^{-1} \log_{2} m), \text{ where}$$

$$\beta_{mn} = \prod_{j=m+1}^{n} (1-tj^{-1}) \quad \text{if } m < n$$

$$= 1 \qquad \text{if } m = n.$$

From $E[X_1^2] < \infty$ and (4. 6), it follows by induction that $E[X_n^2] < \infty$ for all $n \ge 1$. Since $|\beta_{mn}| \le rn^{-t}m^t$ for some r > 0 and all $n \ge m$, we get

$$(4. 13) \beta_{n_2-1n} E[X_{n_2}] \leq C_5 n^{-t}.$$

After easy calculations, we have

$$(4. 14) C_2 \left| \sum_{m=n_2}^n \beta_{mn} m^{-2} \right| \le C_6 n^{-1},$$

$$C_3 \left| \sum_{m=n_2}^n \beta_{mn} m^{-1-d} \right| \le C_7 n^{-t_0},$$

$$C_4 \left| \sum_{m=n_2}^n \beta_{mn} m^{-1} (m^{-1} \log_2 m) \right| \le C_8 n^{-1} \log_2 n,$$

where $t_0 \equiv \min(t, d) > 1$.

Inserting (4. 13) and (4. 14) into (4. 12), we obtain

$$E[X_{n+1}^2] \leq C_5 n^{-t} + C_6 n^{-1} + C_7 n^{-t_0} + C_8 n^{-1} \log_2 n$$

for all $n \ge n_2$. Taking into account this inequality, t > 1 and $t_0 > 1$, Lemma 4. 1 follows. Thus the proof is completed.

LEMMA 4. 2. Let p>1/2 be a fixed number. Then under the conditions of Lemma 4. 1,

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}X_{m}^{2}\longrightarrow 0 \quad a. s. \quad as \quad n\rightarrow\infty,$$

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}|u_m|\longrightarrow 0$$
 a.s. as $n\to\infty$.

and

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}u_m^2\longrightarrow 0$$
 a.s. as $n\rightarrow\infty$.

PROOF. First, we shall prove the first assertion. It holds

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}X_{m}^{2}=n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-\frac{1}{2}}\left(X_{m}^{2}/m^{\frac{1}{2}}\right).$$

If $\sum_{n=1}^{\infty} (X_n^2/n^{\frac{1}{2}}) < \infty$ a. s., using Kronecker's lemma, we have

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n} m^{p-1}X_m^2 \longrightarrow 0$$
 a. s. as $n \to \infty$.

Hence, it suffices to prove $\sum_{n=1}^{\infty} (E[X_n^2]/n^{\frac{1}{2}}) < \infty$.

According to Lemma 4. 1,

$$\sum_{n=3}^{\infty} (E[X_n^2]/n^{\frac{1}{2}}) \leqslant C_1 \sum_{n=3}^{\infty} (\log_2 n) n^{-\frac{3}{2}} < \infty.$$

Thus the first assertion is proved.

To prove the second and the third assertions, it is sufficient to prove $\sum_{n=1}^{\infty} (E[|u_n|]/n^{\frac{1}{2}}) < \infty$ and $\sum_{n=1}^{\infty} (E[u_n^2]/n^{\frac{1}{2}}) < \infty$ respectively. Using Schwarz's inequality and (4.2,) we

get

$$\sum_{n=1}^{\infty} (E[|u_n|]/n^{\frac{1}{2}}) \leqslant L^{\frac{1}{2}} \sum_{n=1}^{\infty} n^{-(d+1)/2} < \infty$$

and

$$\sum_{n=1}^{\infty} (E[u_n^2]/n^{\frac{1}{2}}) \leqslant L \sum_{n=1}^{\infty} n^{-\frac{1}{2}} d < \infty.$$

This completes the proof.

LEMMA 4. 3. Let $\overline{\delta}(x)$ be a measurable function such that $\lim_{x\to 0} \overline{\delta}(x)/x^2=0$. Then under the conditions of Lemma 4. 2,

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}\overline{\delta}(X_m+u_m)\longrightarrow 0$$
 a. s. as $n\to\infty$.

PROOF. By Theorem 3. 1, it follows that $\lim_{m\to\infty} X_m = 0$ a. s.

Let $\varepsilon > 0$ be arbitrary. By Chebyshev's inequality and (4. 2), we get $\sum_{m=1}^{\infty} P(|u_m| > \varepsilon) < \infty$. Hence, By Borel-Cantelli lemma, we have $\lim_{m \to \infty} u_m = 0$ a.s. Thus it follows that

$$\lim_{m\to\infty}(X_m+u_m)=0\quad\text{a. s.}$$

From the property of the function $\overline{\delta}(x)$,

$$\overline{\delta}(X_m+u_m)/(X_m+u_m)^2=o(1)$$
 a.s. as $m\to\infty$.

To prove the lemma, it suffices to prove that

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}(X_m+u_m)^2\longrightarrow 0$$
 a. s. as $n\to\infty$,

for

$$n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}\overline{\delta}(X_m+u_m)$$

$$=n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}(X_m+u_m)^2\cdot O(1)$$
 a. s.

According to Lemma 4. 2,

$$0 \le n^{-p+\frac{1}{2}} \sum_{m=1}^{n} m^{p-1} (X_m + u_m)^2$$

$$\leq 2[n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}X_{m}^{2}+n^{-p+\frac{1}{2}}\sum_{m=1}^{n}m^{p-1}u_{m}^{2}]$$

$$\longrightarrow 0$$
 a. s. as $n \rightarrow \infty$,

which concludes the proof.

5. Main results

In this section, the results of the previous sections are used to show that the modified RM process, due to Anbar [1], converges to θ a. s. from below.

Assume the following:

(5. 1)
$$M(x) = \alpha + \alpha_1(x - \theta) + \delta(x, \theta) \quad \text{where}$$

$$\delta(x, \theta) = \alpha_2(x - \theta)^2 + \overline{\delta}(x - \theta),$$

$$\overline{\delta}(x) = o(x^2) \quad \text{as} \quad x \to 0,$$

 $\alpha_1 > 0$, α_2 is finite and $\overline{\delta}(x)$ is a measurable function;

(5. 2)
$$\sup_{-\infty < x < \infty} E\{ |V(x)|^{2+\eta} \} < \infty \quad \text{for some } \eta > 0;$$

(5. 3)
$$\lim_{x \to a} E\{V^2(x)\} = \sigma^2.$$

Consider the modified RM procedure defined by

$$(5. 4) X_{n+1} = X_n - A_n^{-1} \{ M(X_n + u_n) - v_n - \alpha + b_n \} \quad n \ge 1$$

where X_1 is a random variable with $E[X_1^2] < \infty$.

Let D_n , $n \ge 1$, be a sequence of real numbers satisfying

$$(5. 5) D_n \geqslant Dn^{-\frac{1}{2}} (2 \log_2 n)^{\frac{1}{2}} + o(n^{-\frac{1}{2}} (\log_2 n)^{\frac{1}{2}})$$

for all $n \ge$ some n_0 and arbitrary positive constant D where

$$D_{n} = \sum_{m=1}^{n} m^{-1} \beta_{mn} b_{m},$$

$$\beta_{mn} = \prod_{j=m+1}^{n} (1 - A\alpha_{1}j^{-1}) \quad \text{if } m < n$$

and

$$D > \sigma(2A\alpha_1-1)^{-\frac{1}{2}}$$
.

=1

THEROEM 5. 1. Let X_1, X_2, \cdots be a modified RM process given by (5. 4). If the conditions of Theorem 3. 1 together with (4. 1), (4. 2), (4. 3), (5. 1), (5. 2), (5. 3) and (5. 5) hold with $2AK_1>1$, then $\lim_{n\to\infty}X_n=\theta$ a. s., $\lim_{n\to\infty}E[(X_n-\theta)^2]=0$ and with probability one $X_n>\theta$ only finitely many times.

PROOF. Without loss of generality, we may assume that $\alpha = \theta = 0$. Throughout this proof, C_1 , C_2 , \cdots denote positive constants. By (5. 1) and (5. 4), we have

$$X_{n+1} = (1 - A\alpha_1 n^{-1}) X_n - A\alpha_1 n^{-1} u_n - An^{-1} \delta_n(X_n)$$

$$+ An^{-1} v_n - An^{-1} b_n$$

where

$$\delta_n(X_n) \equiv \delta(X_n + u_n, 0).$$

Repeating this equality, we obtain

(5. 6)
$$X_{n+1} = \beta_{0n} X_1 - A \alpha_1 \sum_{m=1}^{n} m^{-1} \beta_{mn} u_m - A \sum_{m=1}^{n} m^{-1} \beta_{mn} \delta_m(X_m) + A \sum_{m=1}^{n} m^{-1} \beta_{mn} v_m - A \sum_{m=1}^{n} m^{-1} \beta_{mn} b_m.$$

Let \mathfrak{A}_{n-1} denote a σ -algebra generated by $X_1, u_1, \dots, u_n, v_1, \dots, v_{n-1}$ for each n. Clearly $E\{v_n | \mathfrak{A}_{n-1}\} = 0$ so that v_n 's are martingale differences. By (3. 1), (5. 1) and $2AK_1 > 1$, we get

(5. 7)
$$2A\alpha_1 > 1$$
.

Since $n^{\frac{1}{2}} |\beta_{0n}| \le C_2 n^{\frac{1}{2} - A\alpha_1}$, it follows by (5. 7)

(5. 8)
$$\beta_{0n} X_1 = o(n^{-\frac{1}{2}})$$
 a. s. as $n \to \infty$.

Since $n^{\frac{1}{2}} | \sum_{m=1}^{n} m^{-1} \beta_{mn} u_m | \leq C_3 n^{-A\alpha_1 + \frac{1}{2}} \sum_{m=1}^{n} m^{A\alpha_1 - 1} | u_m |$, according to Lemma 4. 2 with $p = A\alpha_1$,

(5. 9)
$$\sum_{m=1}^{n} m^{-1} \beta_{mn} u_m = o(n^{-\frac{1}{2}}) \text{ a. s. as } n \to \infty.$$

The relation (5. 1) implies

(5. 10)
$$\sum_{m=1}^{n} m^{-1} \beta_{mn} \delta_{m}(X_{m})$$

$$= \alpha_{2} \sum_{m=1}^{n} m^{-1} \beta_{mn} (X_{m} + u_{m})^{2} + \sum_{m=1}^{n} m^{-1} \beta_{mn} \overline{\delta}(X_{m} + u_{m}).$$

By making use of the inequality $(a+b)^2 \le 2(a^2+b^2)$, we have

$$n^{\frac{1}{2}} \mid \sum_{m=1}^{n} m^{-1} \beta_{mn} (X_m + u_m)^2 \mid$$

$$\leq 2C_4\{n^{-A\alpha_1+\frac{1}{2}}\sum_{m=1}^n m^{A\alpha_1-1}X_m^2+n^{-A\alpha_1+\frac{1}{2}}\sum_{m=1}^n m^{A\alpha_1-1}u_m^2\}.$$

Taking into account Lemma 4. 2 and this inequality, we obtain

(5. 11)
$$\sum_{m=1}^{n} m^{-1} \beta_{mn} (X_m + u_m)^2 = o(n^{-\frac{1}{2}}) \text{ a. s. as } n \longrightarrow \infty$$

Since

$$n^{\frac{1}{2}} \mid \sum_{m=1}^{n} m^{-1} \beta_{mn} \overline{\delta}(X_m + u_m) \mid$$

$$\leq C_5 n^{-A\alpha_1+\frac{1}{2}} \sum_{m=1}^n m^{A\alpha_1-1} \overline{\delta}(X_m+u_m),$$

it follows, according to Lemma 4. 3, that

(5. 12)
$$\sum_{m=1}^{n} m^{-1} \beta_{mn} \overline{\delta}(X_m + u_m) = o(n^{-\frac{1}{2}}) \quad \text{a. s. as } n \longrightarrow \infty.$$

By (5. 10), (5. 11) and (5. 12), we obtain

(5.13)
$$\sum_{m=1}^{n} m^{-1} \beta_{mn} \delta_m(X_m) = o(n^{-\frac{1}{2}}) \quad \text{a. s. as } n \longrightarrow \infty.$$

From (5. 6), (5. 8), (5. 9) and (5. 13), we get

$$P\{X_{n+1}>0 \text{ i. o.}\}$$

$$=P\{A\sum_{m=1}^{n}m^{-1}\beta_{mn}v_{m}>AD_{n}+o(n^{-\frac{1}{2}}) \quad \text{i. o.}\}$$

In the same way as Heyde [4], we can show that

$$\lim_{n\to\infty} \sup \{n^{\frac{1}{2}} (2\log_2 n)^{-\frac{1}{2}} \sum_{m=1}^n m^{-1} \beta_{mn} v_m\} = \sigma (2A\alpha_1 - 1)^{-\frac{1}{2}} \quad \text{a. s.}$$

Hence,

$$P\{X_{n+1}>0 \text{ i. o.}\}$$

$$\leq P\{A \lim_{n\to\infty} \sup n^{\frac{1}{2}} (2\log_2 n)^{-\frac{1}{2}} \sum_{m=1}^n m^{-1} \beta_{mn} v_m \}$$

$$\geqslant A \lim_{n\to\infty} \sup n^{\frac{1}{2}} (2\log_2 n)^{-\frac{1}{2}} D_n$$

$$=P\{A\sigma(2A\alpha_1-1)^{-\frac{1}{2}} \geqslant AD\}$$

$$=P\{\sigma(2A\alpha_1-1)^{-\frac{1}{2}}>\sigma(2A\alpha_1-1)^{-\frac{1}{2}}\}=0.$$

Therefore, with probability one $X_n>0$ only finitely many times. Also, from Theorem 3. 1,

$$X_n \longrightarrow 0$$
 a.s. as $n \longrightarrow \infty$

and

$$E[X_n^2] \longrightarrow 0$$
 as $n \longrightarrow \infty$.

Thus, the proof is completed.

Example of $\{d_n\}$

The following example is a special one given by Anbar [1];

$$b_1 = b_2 = 0$$

$$b_n = D' n^{-\frac{1}{2}} (2\log_2 n)^{\frac{1}{2}} \qquad n \geqslant 3$$

with
$$D' > 2^{-1}\sigma (2A\alpha_1 - 1)^{\frac{1}{2}}$$
.

This sequence $\{b_n\}$ satisfies (5. 5).

The following theorem presents the asymptotic normality of the process (5.4)

THEOREM 5. 2. Under the conditions of Theorem 5. 1,

 $n^{\frac{1}{2}}(X_n-\theta+AD_n)$ converges in law to a normal variable with mean zero and variance $A^2\sigma^2(2A\alpha_1-1)^{-1}$.

PROOF. Throughout this proof, C_1 , C_2 , ... denote positive constants. We may assume $\alpha=0$. From (5. 6) we get

$$(5.14) \qquad (n+1)^{\frac{1}{2}} (X_{n+1} - \theta + AD_{n+1})$$

$$= (n+1)^{\frac{1}{2}} \beta_{0n} (X_1 - \theta) - A\alpha_1 (n+1)^{\frac{1}{2}} \sum_{m=1}^{n} m^{-1} \beta_{mn} u_m$$

$$-A(n+1)^{\frac{1}{2}} \sum_{m=1}^{n} m^{-1} \beta_{mn} \delta_m (X_m)$$

$$+A(n+1)^{\frac{1}{2}} \sum_{m=1}^{n} m^{-1} \beta_{mn} v_m - A^2 \alpha_1 (n+1)^{-\frac{1}{2}} D_n$$

$$+A(n+1)^{-\frac{1}{2}} b_{n+1} \qquad \text{a. s.}$$

It is easily seen that as $n \to \infty$

$$(n+1)^{\frac{1}{2}} \beta_{0n}(X_1 - \theta) = o(1) \quad \text{a. s.,}$$

$$(n+1)^{\frac{1}{2}} \sum_{m=1}^{n} m^{-1} \beta_{mn} u_m = o(1) \quad \text{a. s.,}$$

$$(n+1)^{\frac{1}{2}} \sum_{m=1}^{n} m^{-1} \beta_{mn} \delta_m(X_m) = o(1) \quad \text{a. s.,}$$

$$(n+1)^{-\frac{1}{2}} D_n = o(1) \quad \text{and} \quad (n+1)^{-\frac{1}{2}} b_{n+1} = o(1).$$

Thus, from (5. 14)

(5. 15)
$$(n+1)^{\frac{1}{2}} (X_{n+1} - \theta + AD_{n+1})$$

$$= o(1) + A(n+1)^{\frac{1}{2}} \sum_{m=1}^{n} m^{-1} \beta_{mn} v_m \quad \text{a. s. as } n \to \infty.$$

Choose a positive integer m_0 such that $1-A\alpha_1 m_0^{-1} > 0$.

Putting
$$\gamma_n = \prod_{j=m_0}^n (1 - A\alpha_1 j^{-1})$$
, we have

$$\beta_{mn} = \gamma_n \gamma_m^{-1}$$
 for all $n \ge m \ge m_0$.

Since from (5. 2) it holds that $|v_m| < \infty$ a. s. for all m, we get

$$n^{\frac{1}{2}} \sum_{m=1}^{m_0-1} m^{-1} |\beta_{mn}| |v_m|$$

$$\leq C_1 n^{-A\alpha_1+\frac{1}{2}} \sum_{m=1}^{m_0-1} m^{-1+A\alpha_1} |v_m| \longrightarrow 0$$
 a. s. as $n \to \infty$.

Thus,

(5. 16)
$$n^{\frac{1}{2}} \sum_{m=1}^{m_0-1} m^{-1} \beta_{mn} v_m = o(1) \quad \text{a. s. as } n \to \infty.$$

Setting $U_m = m^{-1} \gamma_m^{-1} v_m$, we have

$$\sum_{m=m_0}^n m^{-1}\beta_{mn}v_m = \gamma_n \sum_{m=m_0}^n U_m.$$

Let \mathfrak{A}_{n-1} be the same as defined in Theorem 5. 1. Then, $\{U_n, \mathfrak{A}_n; n \ge m_0\}$ is a martigale difference. Put $S_n = \sum_{m=m_0}^n U_m$. Since as in Heyde [4]

$$s_n^2 = E[S_n^2] = \sum_{m=m_0}^n m^{-2} \gamma_m^{-2} E[v_m^2]$$
$$\sim \sigma^2 \gamma_n^{-2} (2A\alpha_1 - 1)^{-1} n^{-1} \text{ as } n \to \infty$$

and

$$\gamma_n^{-2} n^{-1} \geqslant C_2 n^{2A\alpha_1 - 1} \nearrow \infty$$
 as $n \to \infty$,

we have $s_n^2 \nearrow \infty$ as $n \to \infty$. To prove this theorem, we shall use Theorem 2 in Brown [2]. Firstly, we shall check the Lindeberg condition, i. e.

(5. 17)
$$s_n^{-2} \sum_{j=m_0}^n E[U_j^2 I(|U_j| \ge \varepsilon s_n)] \longrightarrow 0 \text{ as } n \to \infty \text{ for all } \varepsilon > 0, \text{ where } I(A)$$

denotes the indicator function of a set A. Since $s_n \nearrow \infty$ as $n \to \infty$, we get

$$I(|U_j| \geqslant \varepsilon s_n) \leqslant I(|U_j| \geqslant \varepsilon s_j)$$
 for all $j \leqslant n$.

Thus, it suffices to show that

$$(5.18) s_n^{-2} \sum_{j=m_0}^n E[U_j^2 I(|U_j| \geqslant \varepsilon s_j)] \longrightarrow 0 \text{ as } n \to \infty.$$

If

$$(5.19) \qquad \sum_{n=m_0}^{\infty} s_n^{-2} E[U_n^2 I(|U_n| \geqslant \varepsilon s_n)] < \infty,$$

using Kronecker's lemma, we have (5, 18). As in [4], it follows that

$$s_n^{-2}E[U_n^2I(|U_n|\geqslant \varepsilon s_n)]$$

$$\sim \sigma^{-2}(2A\alpha_1-1)n^{-1}E[v_n^2I(|v_n|\geqslant \varepsilon'n^{\frac{1}{2}})]$$
 as $n\to\infty$

where $\varepsilon' = \varepsilon \sigma (2A\alpha_1 - 1)^{-\frac{1}{2}}$

Therefore, it suffices to prove

$$\sum_{n=m_0}^{\infty} n^{-1} E[v_n^2 I(|v_n| \geqslant \varepsilon n^{\frac{1}{2}})] < \infty \quad \text{for all } \varepsilon > 0.$$

From (5. 2), we have

$$\sum_{n=m_0}^{\infty} n^{-1} E[v_n^2 I(|v_n| \geqslant \varepsilon n^{\frac{1}{2}})]$$

$$\leq \varepsilon^{-\eta} \sum_{n=m_0}^{\infty} n^{-1-\frac{1}{2}\eta} E[|v_n|^{2+\eta}]$$

$$\leq \varepsilon^{-\eta} \sum_{n=m_0}^{\infty} n^{-1-\frac{1}{2}\eta} \sup_{-\infty < x < \infty} E[|V(x)|^{2+\eta}] < \infty.$$

Hence, (5. 17) is proved.

Secondly, we shall verify

$$(5.20) s_n^{-2} \sum_{m=m_0}^n E[U_m^2 \mid \mathfrak{A}_{m-1}] \longrightarrow 1 a. s. as n \to \infty.$$

Since

$$E[v_m^2 | \mathfrak{A}_{m-1}] \longrightarrow \sigma^2$$
 a. s. as $m \to \infty$

and

$$\sum_{m=m}^{n} m^{-2} \gamma_m^{-2} \nearrow \infty \quad \text{as } n \to \infty,$$

it follows, using Toeplitz's lemma, that

$$\left(5.21\right) \qquad \left(\sum_{m=m_0}^{n} m^{-2} \gamma_m^{-2}\right)^{-1} \left(\sum_{m=m_0}^{n} m^{-2} \gamma_m^{-2} E[v_m^2 \mid \mathfrak{A}_{m-1}]\right) \longrightarrow \sigma^2 \quad \text{a. s. as } n \to \infty.$$

Also, since $s_n^{-2} \sim \sigma^{-2} (2A\alpha_1 - 1)n \gamma_n^2$ as $n \to \infty$, we get

(5. 22)
$$s_{n}^{-2} \left(\sum_{m=m_{0}}^{n} m^{-2} \gamma_{m}^{-2} \right)$$

$$\sim \sigma^{-2} (2A\alpha_{1} - 1) n \gamma_{n}^{2} (2A\alpha_{1} - 1)^{-1} \gamma_{n}^{-2} n^{-1}$$

$$= \sigma^{-2} \quad \text{as} \quad n \to \infty.$$

Thus, from (5. 21) and (5. 22), we have

(5. 23)
$$s_n^{-2} \sum_{m=m_0}^n E[U_m^2 \mid \mathfrak{A}_{m-1}]$$

$$= s_n^{-2} \left(\sum_{m=m_0}^n m^{-2} \gamma_m^{-2} \right) \times \left(\sum_{m=m_0}^n m^{-2} \gamma_m^{-2} \right)^{-1} \left(\sum_{m=m_0}^n m^{-2} \gamma_m^{-2} E[v_m^2 \mid \mathfrak{A}_{m-1}] \right)$$

$$\longrightarrow 1 \quad \text{a.s. as } n \to \infty.$$

Hence, (5. 20) is proved.

Therefore, by Theorem 2 in [2], we obtain

$$S_n/s_n \longrightarrow N(0, 1)$$
 in law as $n \to \infty$.

Since

$$n^{\frac{1}{2}} \sum_{m=m_0}^{n} m^{-1} \beta_{mn} v_m = n^{\frac{1}{2}} \gamma_n s_n (S_n/s_n)$$

and

$$n^{\frac{1}{2}} \gamma_n s_n \sim \sigma(2A\alpha_1 - 1)^{-\frac{1}{2}}$$
 as $n \to \infty$,

we get

(5. 24)
$$n^{\frac{1}{2}} \sum_{m=m_0}^{n} m^{-1} \beta_{mn} v_m \longrightarrow N(0, \sigma^2 (2A\alpha_1 - 1)^{-1}) \quad \text{in law as } n \to \infty.$$

Therefore the relations (5. 15), (5. 16) and (5. 24) yield the conclusion of the theorem, which completes the proof.

References

- [1] Anbar, D. A modified Robbins-Monro procedure approximating the zero of a regression function from below. Ann. Statist., Vol. 5, No. 1, (1977), 229-234.
- [2] Brown, B. M. Martingale central limit theorems. Ann. Math. Stat., Vol. 42, (1971), 59-66.
- [3] DUPAČ, V. and KRAL, F. Robbins-Monro procedure with both variables subject to experimental error. Ann. Math. Stat., Vol. 43, No. 4, (1972), 1089-1095.
- [4] Heyde, C. C. On martingale limit theory and strong convergence results for stochastic approximation procedures. Stochastic Processes Appl. 2, (1974), 359-370.
- [5] WATANABE, M. On convergence of asymptotically optimal discriminant functions for pattern classification problems. Bull. Math. Stat. 16, 1-2, (1974), 23-34.
- [6] WATANABE, M. On RM stochastic approximation method with errors in setting the x-levels. Fukuoka Univ. Sci. Reports. Vol. 5, (1975), 13-19.