On a modified Robbins-Monro procedure approximating
the root from below with errors in
setting the x-levels

By
Eiichi IsocAl

(Received November 30, 1978)

1. Introduction and Summary

In the case of finding the unique root 8 of the equation M(x)=0, situations may oc-
cure where even the precise setting of the x-levels of an experiment is impossible with-
out error. Dupal and KRAL [3] and WATANABE [6] dealt with these situations. On the
other hand, there are cases in which it is advantageous to use a process which converges
to 8 from below. ANBAR [1] gave a modified Robbins-Monro (RM) procedure for guaran-
teeing that with probability one the procedure overestimates 6 only finitely many times.
In this paper, it is shown that assuming that the error in x-level can be made small at
some rate at each step, the modified RM procedure overestimates ¢ only finitely many
times with probability one.

This paper consists of five sections. In section 2, we shall give some assumptions,
notations and a lemma. In section 3, we shall show a convergence theorem. Section 4
will give some lemmas which are used in section 5. In section 5, we shall present two
theorems which show that with probability one the modified RM process overestimates
0 only finitely many times and give an asymptotic normality of the process.

2. Preliminaries

Let R be the real line. Let {U”(x)} and {V”(x)} be two sequences of random vari-
ables which depend on parameter x=R. Suppose that for each n, U”(x) and V”*(x) are
measurable functions of x. Further, suppose E[U"(x)]=E[V"(x)]=0 for all x&R and all
n=1

Let M(x) be a real-valued measurable function on R, let @ be the unique root of M(x)
=a where ¢ is an arbitrary given number.

Let us define the mdified RM procedure proposed by ANBAR [1] as follows: Let X; be
a random variable with E[X,2]< o and let define X,, X3, --- by the recursive relation

(2. 1) Xn+1=.Xn—an[M(Xn+un)—vn“a+bn] n=1, 2, senees
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where {ax} is a sequence of positive numbers satisfying
(2° 2) i an= 0, fj a72t<°°:
st n=1

{bx} is a sequence of numbers satisfying

n—»o0

un, n=>1, are random variables whose conditional distributions, given X, #%;, «-:, #n—y,
vy, -+, ¥n—1, coincide with those of U"(X»), and vx, #>1, are random variables whose
conditional distributions, given X, %, ‘-, #s, vy, :-+, ¥u—1, coincide with those of V" (Xa-}
Un).

The following lemma given by WATANABE [5] will be needed to prove Theorem 3. 1.

LEMMA 2.1. Let {Un)y=y and {Vn}n-y be two sequences of random variables on a prob-
ability space (2,0, P). Let {Nn}n—, be a sequence of sub-a-algebras of W, UnC Un+.C A, where
Un and Va are measurable with respect to Wn for each n=>1. Furthermore, let {an}n- be a

sequence of positive numbers satisfying

(2. 4) lim an=0, idu'—"—oo.

n—»oc0 Nn=1

Suppose that the following conditions are satisfied :

(2. 5) Un=0 a.s. forall n>1,

(2. 6) ELU}< o,

Q. V)] E[Un+1mxn]<(1—an)Un+Vn a.s. forall n=1,
2. 8 ”21E[|V,,|]<oo.

Then, it holds that im Un=0 a.s. and lim E[UA]=0.

n—oco

3. Convergence of the modified RM process

In this section, an almost surely convergence of the modified RM process is proved.

THEOREM 3. 1. Let {an}n~; be a sequence of non-negative numbers and {Bn}e-, be a
sequence of positive numbers. Suppose the following conditions are satisfied :

3 1 K <(M(x)—a)/(x—0)< K, for all x#0,
where K, and K, are some positive constants ;

3. 2 sup Var [U*(x)]<an for all n>1;
ool x< o0
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3. 3) _ws<uxp<°°Var [V*(®)1<Bn  forall n=1
(3. 4) ni:llanan<°°;

3. 5) 3 akbn<oo;

(3. 6) ”ﬁlan |bn| < oo

Then, the modified RM process Xn defined by (2. 1) converges to 0 with probability one as
well as in mean-square.

Proor. Without loss of generality we may assume a=0. From (2.1) we have
(3 7) Xn+1—0= (Xn —0)—an(Xn+un)+anUn—anbn.

Squaring both sides of (3. 7) and taking conditional expectations on both sides given X,
.-, Xn, We obtain

3. 8 El(Xni1—002| X, -+, Xn]
=(Xn—0)2+aZ EIM2(Xn-tun)| Xy, -+, Xnl
+a2E[v%| Xy, -+, Xn]+a2b%—2an(Xn—0) ELM (Xn+tn)
| X3, -+, Xn]—2a5bnE[vn| Xy, -+, Xul
+2an (Xn—0)E[vn| Xy, -+, Xn]—2anbn(Xn—0)
—2a3EIM(Xn+un)on| Xy, -+, Xnl
+2a2ba ELM (Xn+un) | Xy, -+, Xnl.

From the property of V”(x) and (3. 3), it is easily seen that E[v»| Xy, -+, X»1=0 and E[v3
IXD B -X”] < an-
Let us define Q(x, 6) as follows:

Qx, O)=Mx)/(x—06) if x+0
=ay if x=0

where @, is an arbitrary fixed constant with Ki<o;<K,. By (3. 1) we get
3. 9 M(x)=Q(x, 6) (x—6)

where K;<Q(x, ) <K, for all x.
Since |M(Xn+4un)| < Ky(|Xn—0|+ |un]), it follows by (3. 2) and (3. 9) that

(3.10) E[M2(Xn+un) | Xy, -+, Xn)
<2K2(Xn—0)2+2K2E[uz| X, -++, Xnl
< 2K22 (Xn - 0)2 + 2K22 Qn,
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Using (3. 9), we have
(Xn—0) EIM (Xn+un) | X, -+, Xul
= (Xn—0)2E[Q(Xn+un, 0) | X, -+, Xn]
+ (Xn—0)E[Q(Xn+un, O)un| X, ---, Xnl.
The relation (3. 2) and Schwarz’s inequality imply
| ELQ(Xn-+thn, 0)ten| Xy, -+, Xn] | < Kottu® .
Therefore, we have

(3 11) (Xn‘—a)E[M(Xn“‘I'un) IXI’ seey Xn]

>K1(Xn——0)2—K2an§IXn—0|.
It follows by (3. 2) and (3. 9) that
(3.12) |ELIM(Xn+un) | X3, -+, Xn]|

<Kp| Xn—0|+Kpan? .

By making use of E[vx|Xj, ---, Xn, u»]1=0 and taking conditional expectations given X;,
---, X»n, we obtain

(3.13) E[M(Xn+un)va| Xy, -+, Xn]=0.
The relations (3. 8), (3. 10), (3. 11) and (3. 12) yield that
(3. 14 E[(Xn4+1—0)2| Xy, -+, Xn]
S (Xn—0)2+2K,2a2 (Xn—0)2+2K,2a%0n+aZBn-+ab2
—2K; an(Xn—0)2+2K;n 0¥ | Xn—0| +28n | bs (Xn—0) |
+ 2K, a%|bn(Xn—0) | +2K203 | bnaa? -
By making use of the inequality 2eb<ka?4-k—1b2 for any k>0, we get the following
inequalities:
(3.15) 2K, anetnt | Xn—0) <2 1K an(Xn—0)2-+ 2K, 1K 2 anan,
2an | bn(Xn—0) | <27 1Kian (Xn—0)2+2K, 1an b3 ,
2K3a% | bn(Xn—0) | < KzaZ (Xn—0)2+ Ky ab%

2K;02 | bn | atnt < KpaantKya2 b2,

Hence, it follows from (3. 14) and (3. 15) that
(3 16) E[(X"+1—0)2IX1) ) X”]
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< {1— (K1—2K?2an— Kzan) an} (Xn—0)2
+(2K2+ 1) a;% b;zz+(2K22+K2) a?,an—i-ZngKl“l AnQn

+aB,+2K,"1a,bs.

By (2. 2) and (2. 3), there exists a positive integer #n, such that for all > n,

(3 17) 2K220n+K2an< 2_1K1, an< 1 and | bn l < 1,
so that
(3. 18) a%b;;san | bn I ’ a,zgansanan, an b%gan l bn‘

for all n= n.
Thus, by (3. 16), (3. 17) and (3. 18), we have

(3.19) E[(Xn+1—0)%| X3, -+, Xn]
< (1—2—1K]_dn) (Xn_0)2+ (2K2+2K1'—1+ 1) an I bn |
+ (2K22+ K2+ 2K22K1_1) anCn+ (I% ﬁn

for all n= n,.

By (2. 2), (3. 4), (8. 5), (3. 6) and (3. 19), all conditions of Lemma 2. 1 are satisfied.

fore, we obtain

Lim (Xn—8)2=0 a.s. which implies }tim Xan=0 a. s,,

and '}im El(Xn—8)2]=0.

This completes the proof.

4. Auxiliary lemmas

39

There-

In this section, some lemmas which are needed in later sections are presented.
Throughout this section and section 5, suppose V*(x) =V (x) for all x and all >1 and

Bn=p for all n=1. It is assumed without loss of generality that a=60=0.

LemMA 4. 1. Suppose the conditions (3. 1) to (3. 3) are satisfied. Further suppose the

Jollowing conditions:
4. 1 an=An"1 with 2AK,>1;
4. 2 an=Ln—d with some L=0 and some d >1;
4. 3) bi< C(log, n) /n for some constant C>0 and all n>3,

where log, n means log (log #).
Then, there exists a positive constant C, such that

ETX21<C(logz n)/n  for all n=3.
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Proor. Throughout this proof, C,, C;, -+ denote positive constants. From (2. 1) and
the property of V' (x), we get
4 9 E[X 4 1=E[X}]+aZE[M?*(Xn+un)]1+a} E[v}]1+a3b5
—2anE[XnM(Xn+un)] —2anbnE[Xn]
+2aZbn E[M(Xn+un)].

We put Q(x) =Q(x, 0), where Q(x, 0) is the same as (3.9). Inserting §=0 into (3. 10),
(3. 11) and (3. 12) and taking expectations on both sides of each inequality, we have

(4. 5) E[M2(Xn+un)]<2K2E[X3]4 2K an,
E[XuM(Xn+un)12 K E[X3]— Kyen? E[| Xn|],

|ELM (Xn+un)1| SKE[| Xn|1+ Ksan? .
The relations (4. 4) and (4. 5) imply
4 6) E[X,244]

< {1— (2K, an—2K,2a2) } ELX2] +2K20nan?E[ | Xn ]
+2an | bn| E[ | Xn|1+ 2K2a2 |bn| E[| Xn|1+2Ks2 a3 an
1 BaZ+a2bi+ 2K, ab | bu|ea? .

Choose &, >0 such that 24K;(1—e&;)>1 because of 2AK;>1. Then there exists a positive
integer n; such that

AK2K " 1n—1l¢ for all n=>n;,, so that

4. 7 2K an—2K2a2 >2AK,(1—e)n—? for all n=mn,.
Choose ;>0 such that 2AK; (1—e&,—e&3)>1.
Then we get

4. 8) 2K;anan¥E[ | Xa|]

<2K,ezan E[X,Zg 1+ K2 (2K1 €)lanay
=2AK,ean1E[X%]1+ALK2 (2K 85) " 1n—d—1,
Choose &3>0 such that 2AK; (1—e&,;—e&;—e3)>1. Then it follows by (4. 3) that
(4. 9) 2anlbnlE[|an]
<2K e3an E[ X214 (2K, &3) "Lanbi
<2AK,e3n~1E[X2]+ACQK &3) 1 (n—1log, n)nL.

Since 2AK; (1—¢;,—e;—e3) >1, there exists &,>0 such that 2AK; (1—&—e;—e3—e4) >1 and
2AK; (1—&,—e;—e3—e) +=d. By (4. 3) we have
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2Kz a3 b | ET| Xn|]
<KpaiE[XZ]1+Kyabbl

< A2Kon2E[ X2+ CA2Kon—2(n"1logy n).

Since there exists a positive integer n,>#n, such that for all n=n, A2K,n"1<2AK, &4, we
obtain

<2AK e4n1E[X}%]4+ CA2K; n~2(n~! logy n) | for all %> ..
(4. 2) and (4. 3) yield

(4. 11) 2K a3 |buen? .
< K;azan+K,aZzb?
< KyA2Ln—2-d4-CA2Kyn—2(n~1log, n).

From (4. 6), (4. 7), (4. 8), (4. 9), (4. 10) and (4. 11), we obtain
E[X 4]
SA—tnVHE[XZ]+Con2+Cyn—1-d

+Cin—1(n1 log, n) for all n=>#n,;, where

t=2AK,(1—e,—ey3—e3—e,) >1 and ¢==d.

Repeating this inequality, we have

(4.12) E[X44]

”n n
< .an—lnE[anz] + CZ”:_‘(;:,1 an m—2+ C3m_2” ﬁmn m—1-d

»n

+Cs D) Bmum—Ym~1log, m), where

Bon= T (1—tj-1)  if m<n
=4l

=1 if m=mn.
From E[X,2]1< and (4. 6), it follows by induction that E[X%]< e for all n>1.
Since |Bmn| <rn—tmt for some r>0 and all n>m, we get
(4 13) .an—]_n E[anz] < C5 n—t.,

After easy calculations, we have
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(4.14) G|l 23 Bunm™2|<Cenl,
m-nz
n
Cs| 2} Bunm™1—d| < Crmnb,
m-ﬂz

Gyl mﬁ! Bmnm—1(m1log, m) | <Cgn~1log, n,
-nz

where f=min (¢, d)>1.
Inserting (4. 13) and (4. 14) into (4. 12), we obtain

ElX21<Cnt+Cn 14+Cin—to+Cgn~llog, n

for all n>n,. Taking into account this inequality, £>1 and #>1, Lemma 4. 1 follows.
Thus the proof is completed.

LEMMA 4. 2. Let p>>1/2 be a fixed number. Then under the conditions of Lemma 4. 1,

”n
n—b+t mz}lmi’—lX?,. —>0 a.s. as n—>oo,

”n
n=P+% 31 mP1l|ym| —> 0 a.s. as n—>oo.
=1
and

”n
n—P+¥ 31 mP-1y2 —>0 a.s.as n—>oco.
M

Proor. First, we shall prove the first assertion. It holds

n—P+k 31 mp-1X3, =n—i’+%mi‘,1 mb—% (X% Im?).

M=

If 21 (X2/n¥)<o a.s., using Kronecker’s lemma, we have

n
n=P+F 3 m?-1X2, —> 0 a.s.as n—>oo.
NMm==]

Hence, it suffices to prove ”E_“_,l (E[X2]/n?t)<o.
According to Lemma 4. 1,

2 BIXE/n1)<C 3} (loge mnt Loo.
Thus the first assertion is proved.

To prove the second and the third assertions, it is sufficient to prove :21 (E[|un|1/ n%)<oo

and 5_:11 (E[uZ]/n? )< o respectively. Using Schwarz’s inequality and (4. 2,) we
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get

2 Etwmilnt)< Lt Bn-wnde
and

2 Ewant)<LF a1 -ale.
This completes the proof.

LemMA 4. 3. Let 8(x) be a measurable function such that lin(}ﬁ(x) [%2=0. Then under
x—‘)
the conditions of Lemma 4. 2,

n—r+} ilm"“lf(Xm-l—um) —>0 a.s. asn—>oo.
M=

Proor. By Theorem 3. 1, it follows that rLim Xm=0 a. s.
Let e0 be arbitrary. By Chebyshev’s inequality and (4. 2), we get »21})( |um| >e)< .

Hence, By Borel-Cantelli lemma, we have lim #»=0 a.s. Thus it follows that

m—oo

Lim (Xm+um)=0 a.s.

From the property of the function 8(x),

0(Xm+um) | (Xm+um)2=0(1) a.s. as m—>co.
To prove the lemma, it suffices to prove that

n—?+% milm”—l(Xm+um)2 — 0 a.s. as n—>oo,
for

n

n—r+3 N mp_lf(Xm-l-um)

Ml

—n—p+t ”élmﬁ—1<xm+um)2-0(1) a.s.
According to Lemma 4. 2,

o<n—?+% ”‘:j, 1mi"‘l (Xm~+um)?

<2[n—2+% i mp—1X2, +y—b+% Z\—_\. mP=1 42,
=1 ni=1

—>0 a.s. as n—>oo,

which concludes the proof.
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5. Main results

In this section, the results of the previous sections are used to show that the modified
RM process, due to ANBAR [1], converges to @ a. s. from below.
Assume the following:

(G )) M(x)=a+a;(x—0)+3(x, 8) where
3(x, 8) =ay(x—0)243(x—0),
3(x)=o0(x?) as x—0,

a,>0, a, is finite and d(x) is a measurable function;

5. 2) _ Sl<1p< E{|V(x) |2t} <o for some 7>0;
5. 3) }71_{1;1 E{V2(x)}=02

Consider the modified RM procedure defined by
(5. 4) Xn+1=Xn—An—1{M(Xn+un)—vn_a‘l'bn} n=1
where X, is a random variable with E[X;2]<co.
Let Du, n>1, be a sequence of real numbers satisfying
(5. 5) Du=Dn—% (2logz n)t +o(n—% (log, n)?)

for all n>some n, and arbitrary positive constant D where

Dn=zn} m=1 Bmn bm ’

=1
”n
Bmn= TI (I—Aalj_l) if mn
j=m+l
=1 if m=n
and

D>a(2Aa;—1)"% .

THEROEM 5. 1. Let X, X,, -+ be @ modified RM process given by (5. 4). If the condi-
tions of Theorem 3. 1 together with (4. 1), (4. 2), (4. 3), (5. 1), (5. 2), (6. 3) and (5. 5) hold with
2AK;>1, then lim X,=0 a.s., lim E[(X»—80)21=0 and with probability one X, >0 only

n—roo n—>oo

finitely many times.

Proor. Without loss of generality, we may assume that a=60=0. Throughout this
proof, C,, C,, --- denote positive constants. By (5. 1) and (5. 4), we have

Xn+1=(1—Aayn~ ) Xn— Aayn1u,—An—1 0n(Xn)
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where
0, (Xn)=0(Xn+uy, 0).

Repeating this equality, we obtain

(5- 6) Xn+1=ﬁonX1—Aa1”$;|‘1m_1 ,an Mm—'A;é‘.-lm_l ,an Om (Xm)

+A§J m“l,an ?)m—AnE m_lﬂmn bom.
M= Mw=]

Let A,,—; denote a o-algebra generated by X, uy, -+, #n, vy, -*+, v,—, for each n. Clearly
E{vx|N,,—1} =0 so that v.’s are martingale differences. By (3. 1), (6. 1) and 24AK;>1, we
get

5.7 2Aa;>1.
Since n? | Bon| < Com ¥ —Aay, it follows by (5. 7)
(5. 8) BinXi=0(n—%) a.s. as #—>oo,

n n
Since nt I”;]lm‘l,@mn Um| < Cyn—Aa+} Z}ImAai‘l]uml, according to Lemma 4. 2 with p=
= M=

Aab

(5. 9 élm‘l Bmnum=o0(n—%) a.s. as n—>oo.
The relation (5. 1) implies

(5. 10) ”“Z"_‘._lm‘l ﬁmn Om (Xm)

=az’§:11m’1 Bmn (Xm‘*'um)z'l"mi—}lm—l ,an—g(Xm'i'um).

By making use of the inequality (a4 b)2<2(a2+b2%), we have

nE | 33 B ot tm?|

<2c4{n—“Aa1+% ﬁ mAal—lez_*_n“Aal'i'} é mAa—1 umZ}.
Mme=1 M=1
Taking into account Lemma 4. 2 and this inequality, we obtain
n
(5.11) ",:‘Jlm“lﬁmn (Xm+um)2=0(n—%) a.s. as n—> oo

Since

nt Iﬂfi‘,lm~1 Bmn 8 (Xm—+um) |
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<Gntatt 31 man1 T Xnt-um),
b
it follows, according to Lemma 4. 3, that
(5.12) ’ﬁ}lm‘l Bmn 8(Xm+um)=0(n"1%) a.s. as # —> oo,

By (5. 10), (5. 11) and (5. 12), we obtain

n

(5.13) 33 m1 Bomn Om(Xm) =0(n—%) a.s. asn—> oo,

Mm=]

From (5. 6), (5. 8), (5. 9) and (5. 13), we get
P{Xn+1>0 i. 0.}

=P{Amﬁ_lm—lﬁmvm>AD,,+o<n—i) i.0o.).
In the same way as HEYDE [4], we can show that
lim sup {n ¥ (2log, n)~# mﬁlm—l Brnom)=0(2Ae;—1)-%  a.s.

Hence,
P{Xn+1>0 i. 0.}

<P{Alim sup ¥ (2log, n)~4 mﬁ_lm"l Bus Om

>A limsup n?¥ (2logz n)~% Du)

n—roo

—=P{A0(24e;—1)~% > AD)
=P{c(24a,—1)~% >o(24a,—1)-% }=0.

Therefore, with probability one X» >0 only finitely many times. Also, from Theorem
3.1,

Xn—>0 a.s. as #—>
and

E[X2]— 0 as n—> o,
Thus, the proof is completed.
ExXAMPLE OF {d»}
The following example is a special one given by ANBAR [1];

b1=b2:0

ba=D'n—% (2log, n)¥ n=3
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with D’>2-1¢(24a;— 1) .

This sequence {bx} satisfies (5. 5).
The following theorem presents the asymptotic normality of the process (5. 4)

THEOREM 5. 2. Under the conditions of Theorem 5. 1,

n? (Xn—0+ AD») converges in law to a normal variable with mean zero and variance
A?02(2Aa;—1) 1,

Proor. Throughout this proof, C;, C,, --- denote positive constants. We may assume
a=0. From (5. 6) we get ’

(5.14) (n+1)¥ (X, 41— 0+AD,1))

= (n4+1)? Bon(X;—0) — Aa;(n+1) ”ﬁj,lm-lﬁmum
—A(n+1)'} ’:E_lm—l.gmnam(Xm)

+A(+D? 31 mt pom— A2as (n+1)~F Dy

+An+1)"% by a.s.

It is easily seen that as n—> o

(n+D? B (X —0)=0(1) a.s,

(n-i—l)*”élm—lﬁmnum:o(l) a.s.,

(n+1)’} élm_llgmnam(Xm)’-:O(l) a. S.,

(n+1)~% D,=0(1) and (n+1)~% byr1=0(1).
Thus, from (5. 14) |
(5.15) (n+D¥ (Xp41—0+ADysr)
=o(1)+A(n+1)’} mi_lm‘l Bmnvm a.s. as n—>oo,
Choose a positive integer m, such that 1— Aa; my—1>0.
Putting rn=jlf[m§1-—Aa1 771, we have

.an =Tn¥m 1 forall n=m> my.

Since from (5. 2) it holds that |vm|< oo a.s. for all m, we get
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mo—1
nt S m1 Bn| |om|
Mm=]

mo—1
<Cip—Aa+i o}_,“ m—1tAe;|py,|—>0 a.s. as n—>oo.
Mme=]
Thus,
é’ mo—1
(5.16) n m}_’_‘.l m1Bmnvm=0(1) a.s. as #—>oo,
Setting Um=m"17r5tvm, We have
”n n
P mBmnom=7n 2 Un.
m—mo m—mo

Let A,,—; be the same as defined in Theorem 5. 1. ‘Then, {Un, Un; n=>m,} is a martigale

difference. Put S» =m§’im Um. Since as in HEYDE [4]
="

s2

E[SH1= 3} m~*73* Elvh ]
~027y~2(2Aa;—1)"1n"1 as n—>oo
and
172012 Con2Aa—1l /1 oo as n—>oo,

we have sZ ” o as n—>oo. To prove this theorem, we shall use Theorem 2 in BrRown [2].
Firstly, we shall check the Lindeberg condition, i. e.

.17 Sp2 i} E[U%I(|Uj| =esn)]—>0 as n—> oo for all €20, where I(A)
j=m,

denotes the indicator function of a set A. Since s»” o as n—> o, we get
I(Uj| zesn) <I(|Uj| =es5) for all j<n.

Thus, it suffices to show that

(5.18) sa? 31 E[U2 I(|Uj| >e5)1—>0 as n—>co.
j=m,
If
(5.19) 23, 552 ELURI(|Un| 2 e50) 1< 00,

using Kronecker’s lemma, we have (5. 18). As in [4], it follows that
Sn2ELUZI(|Un| =es,)]

~0-2(2Aa;—1)n"1E[ v} I(]vn|>s’n‘} )] as #—>oo,
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where &’ =e0(24a;—1)—%
Therefore, it suffices to prove

f} n1E[wzl(|vn| =en 3 V1< for all ¢>0.
n—mo
From (5. 2), we have

n?_.mn—lE[v,%I(lvn! >eni )]
<e? i n=1=37 E[ | pn|2+7]

<e? Rn-1-17 sup  E[| V(%) [2+7]<co.

n=m, ~oolx o0

Hence, (5. 17) is proved.
Secondly, we shall verify

(5. 20) s;szn}mE[U%, |Um—y]—>1 a.s. as n—>oo,
’ =t

Since
E[v% | Ym—y]—> 02 a.s. as m—oo

and

”
23 m27;,% S o0 as n—>oo,
m—mo

it follows, using Toeplitz’s lemma, that
n -1y n
(5. 21) ( 23 mT2ry ) ( >3 m—27;% Elvd, l%m_l])——> 62 a.s. as n—>co,
m—mo m—mo .
Also, since sy2~0-2(24a;,—1)nr3 as n—>, we get

n
(5. 22) sedl Y m2ry?
0

M=
~02(2Aa;— D nri (2Aa;—1)~1r;2n~1
=g—2 as n—>oo.

Thus, from (5. 21) and (5. 22), we have

(5. 23) 52 3 E[UZ [Ymey]
m-mo
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= s;z(mi‘,,nom-z 7,7,2) X (mfjjmom—z Tm )_l(m?':}mom‘z Tm Elv% [Um—y] )

—1 a.s. as n—>oo,

Hence, (5. 20) is proved.

Therefore, by Theorem 2 in [2], we obtain

Sn/sn—>N(0, 1) in law as n—>oo.

Since
n
n % I mlBmnom=n % TnSn(Sn/Sn)
m-mo

and

n? tnsn~02Aa,—1)—% as n—>oo,
we get

(5. 24) n? SV 1 Brnvom —> N(O, 02(242;—1)-1)  in law as n—>oo.

0

Therefore the relations (5. 15), (5. 16) and (5. 24) yield the conclusion of the theorem,
which completes the proof.
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