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1. Introduction

Consider the Galton-Watson branching process with state-dependent immigration,
where immigration is allowed in a generation iff the previous generation was empty (Pakes

(1971) [3]).

Let $A(x)=\sum_{j-0}^{\infty}a_{j}x^{j}$ and $B(x)=\sum_{j-0}^{\infty}b_{j}x^{j}$ $(|x|\leqq 1)$ be the probability generating

functions of the offspring and immigration distributions respectively. We shall assume
that

1) $0<a_{0}$, $a_{0}+a_{1}$ , $b_{0}<1$ , and

2) $\alpha=A^{\prime}(1-)<\infty$ .

Denote the size of the n-th generation by $X_{n}(n=0,1, \cdots)$ .
Now we discuss the problem of the existence and uniqueness of invariant measure of

the Markov chain $\{X_{n}\}$ , that is, a non-negative sequence $\{\mu;\}(i=0,1,$ $\cdots;\mu i>0$ for some
i) such that

$\mu;=\sum\mu;p_{ij}$ $(j=0,1, \cdots)$ ,

where $p;j$ is the one-step transition probability from state $i$ to $j$ .
The following results are given by Pakes (1971) [3].

LEMMA A. Suppose an invariant measure, $\{\mu;\}$ , of the Markov chain $\{X_{n}\}$ exists. Then

$U(x)=\sum_{i-0}^{\infty}\mu ix^{i}$ converges for $x\in[0, q$) and satisfies the functional equation

(1) $U[A(x)]=U(x)+\rho_{0}(1-B(x))$ , $\rho 0>0$

$forx\in[0, q)$ , where $q$ is the least positive solution of $x=A(x)$ , so that $q=1f\alpha\leqq 1$ and
$0<q<1$ if $\alpha>1$ .

THEOREM B. When $\alpha\leqq 1$ , the Markov chain, $\{X_{n}\}$ , possesses a unique (up to a constant
multiplier) invariant measure. And we obtain
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(2) $U(x)=1+\sum_{n-0}^{\infty}\{B(A_{n}(x))-B(A_{n}(0))\}$

as the unique solution of (1) on $(0,1)$ chosen so that $U(0)=1$ , where $A_{n+1}(x)=A(A_{n}(x))$ and
$A_{0}(x)=x$ .

In this paper we consider the existenoe and uniqueness of invariant measure of the
Markov chain $\{X_{n}\}$ in the caae that $\alpha>1$ .

2. Preparation

Considering the ordinary Galton-Watson process $\{Z_{n}\}$ generated by $A(s)$ , an invariant

measure $\{\pi t\}$ ($i=1,2,$ $\cdots$ ; $\pi;>0$ for some i) is equivalent to a solution $\pi(s)=\sum_{i-0}^{\infty}\pi;s^{j}$, con-

vergent in $[0, q$) and whose coefficients are of appropriate form, to the functional equation

(3) $\pi(A(s))=\pi(s)+1$ , $s\in[0, q$).

Such an invariant measure for the process always exists (see theorem 11. 1 in Harris
(1963) [1]), and is known to be unique (up to a constant multiplier) when $\alpha=1$ . However,
if $\alpha\neq 1$ , as shown by Kingman (1065) [2], uniqueness no longer holds in general.

From lemma $A$, it clearly suffices to demonstrate the existence and uniqueness of a
regular function, which has non-negative coefficients, and which satisfies the equation

(4) $U[A(x)]=U(x)+(1-B(x))$ $(0\leqq x<q)$ ,

in which case $j\phi=1$ .
It is easily seen that the problem of finding a solution of the right form to (4) (in

general) is equivalent to finding a solution of the same nature to

(5) $\mathfrak{P}(\frac{A(qy)}{q})=\mathfrak{P}(y)+(1-B(qy))$ , $0\leqq y<1$ ,

where we have put $\mathfrak{P}(y)=U(qy)$ .
Since in (5) $B(qy)$ generates a defective distribution if $q<1$ , and $A(qy)/q$ generates a

non-supercritical distribution ($0<A^{\prime}(q)\leqq 1;A^{\prime}(q)<1$ iff $\alpha\neq 1$), the general problem of
seeking solution to (5) is subsumed by that of investigating appropriate solutions to the
system

(6) $\mathfrak{P}(A(y))=\mathfrak{P}(y)+(1-B(y)),$ $y\in[0,1$),

where $B(y)$ and $A(y)$ satisfy our basic assumption, but with the additional restriction on
$A(y)$ that $A^{\prime}(1-)=\alpha\leqq 1$ , and allowing for the possibility that $B(y)$ may generate a defec-
tive distribution, i.e. $B(1-)\leqq 1$ .

Thus (6) as a whole corresponds to a non-supercritical process with state-dependent
immigration which may be defective.
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3. Theorem and the proof

THEOREM. Under the noted assumptions on (6), a solution, of correct form, to (6) always
exists. It is unique if $B(1-)=1$ ; and in general $non\cdot unique$ if $B(1-)<1$ and $\alpha<1$ .

Note. Although we are unable to answer at the moment the question of uniqueness if
$B(1-)<1$ and $\alpha=1$ , this problem does not actually occur in the narrower context of (5)

which is our primary concern.
Proof. The case that $B(1)=1$ follows from theorem B.
Let us note from this that even if $B(1)<1$ ,

$\mathfrak{P}_{1}(y)=1+\frac{1}{B(1)}\sum_{n-0}^{\infty}\{B(A_{n}(y))-B(A_{n}(0))\}$ , $0\leqq y<1$ ,

is convergent, sinoe in fact it generates the (unique) invariant measure for the process
with offspring $p$ . $g$ . $f$ . $A(s)$ and (proper) immigration $p$ . $g$ . $f$ . $B(s)/B(1)$ .

Hence, we obtain the fact $that\sum_{n\leftarrow 0}^{\infty}\{B(A_{n}(y))-B(A_{n}(0))\}$ is convergent for $y\in[0,1$)

and has non-negative coefficients.
It is seen without difficulty that

(7) $\mathfrak{P}(y)=1+(1-B(1))\pi(y)+\sum_{n-0}^{\infty}\{(B(A_{n}(y))-B(A_{n}(0))\}$

solves (6). Futhermore, sinoe $(1-B(1))>0$, it follows that (7) generates a non-negative
term series (terms not all zero) of the correct sort.

Now if $B(1)<1$ and if $\alpha<1$ , it follows from Kingman’s result that sometimes distinct
$\pi(y)s$ may be substituted into (7) giving distinct $\mathfrak{P}(y)s$, and henoe leading to lack of uni-
queness, in general.

The proof of the theorem is complete.

From this theorem, we concluse that when $\alpha>1$ , invariant measure of $\{X_{n}\}$ always
exists, but it is in general non-unique.
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