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Introduction

The degree of symmetry $N(M)$ of a compact connected differentiable manifold $M$ is
the maximum of the dimensions of the compact cennected Lie groups which can act almost
effectively and differentiably on M.

In this note we shall prove the following theorems.

THEOREM 1. $N(S^{k}\times CP_{n})=N(S^{k})+N(CP_{n})=\frac{k(k+1)}{2}+n^{2}+2n$ .

THEOREM 2. $N(CP_{n}\times CP_{k})=N(CP_{n})+N(CP_{k})=n^{2}+2n+k^{2}+2h$ .
Here $S^{k}$ denotes k-dimensional sphere and $CP_{n}$ n-dimensional complex projective space.
In the following all actions are assumed to be differentiable.

1. Statement of results

We shall write $X\sim Y$ if $X$ and $Y$ have isomorphic Q-cohomology ring, where $Q$ denotes
$Q$

the field of rational numbers.
Let X be an orientable closed $(2n+k)$ -manifold such that $X\sim CP_{n}\times S^{k}$ . Assume that

$Q$

$N(X)\geqq\dim SU(n+1)+\dim SO(k+1)$ and $X$ has no 2 torsion.
We shall prove the following proposition in section 5.
PROPOSITION A Let $X$ be as above. If $k$ is 1 or 2, then $X$ is diffeomorphic to $CP_{n}\times S^{k}$ and

$N(X)=N(CP_{n})+N(S^{k})$ .
We consider the case in which $k$ is greater than 2. It is easily seen that $N(X)>\frac{1}{8}$

$(\dim X+7)\dim X$. Let $G$ be a compact connected Lie group of $\dim G=N(X)$ which acts
almost effectively on $X$ We may assume that $ G=\mathcal{I}^{v}\times G_{1}\times$ $\times G_{s}$, where $T^{\gamma}$ is $r\cdot dimen-$

sional torus and $G$; is a simple Lie group. By a result in [3], there is a normal subgroup of
$G$, say $G_{1}$ , with the following properties
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(1) $\dim G_{1}+\dim N(H_{1}, G_{1})/H_{1}>\frac{1}{8}(\dim X+7)\dim G_{1}/H_{1}$

and

(2) $\dim H_{1}>\frac{\dim X-9}{\dim X-1}\dim G_{1}$

where $H_{1}=(H_{\cap}G_{1})^{0}$ ($H$: a principal isotropy subgroup of $G$)

and N$(H_{1}, G_{1})isthenormalizerofH_{1}inG_{1}$ .
We shall consider the cace in which $2n+k\leqq 25$ and prove the same result as proposi-

tion A for this case in section 6. Assume $2n+k\geq 26$ . By the same arguments as in [5],

the possible pair $(G_{1}, H_{1})$ is one of the followings: $(Sp(l), Sp(l-1)\times(Sp(1))(2l>k/2+n)$ ,

$(SU(l). N(SU(l-1), SU(l)))(2l-2\geq\frac{k}{2}+n),$ $(SU(l), SU(l-1))(2l-2>k/2+n)$ and

(So$(l),$ $So(l-1)$ ) $(2I-3>h/2+n)$ .

Case 1. $(G_{1}, H_{1})=(Sp(l), Sp(l-1)\times Sp(1))$ .

It follows from the Vietoris-Begle theorem that the orbit map $\pi;X\rightarrow X/G_{1}$ induces an
isomorphism $\pi^{*};$ $H^{i}(X/G_{1} : Q)\rightarrow H^{i}(X;Q)$ for $i\leqq 3$ . Hence the generator $a$ of $H^{2}(X:Q)$

is in image of $\pi^{*}$ . Since $\dim X/G_{1}=k+2n-4l+4<2n$, we have a contradiction.

Case 2. $(G_{1}, H_{1})=(SU(l-1), N(SU(l-1), SU(l))$

Since $N(SU(l-1), SU(l))$ is maximal, we have $X=CPl_{-1}\times x*$ , where $X^{*}$ is the orbit
space. Let $a$ be a generator of $H^{2}(X;Q)$ and $p$ the projection $X\rightarrow CP\iota_{-1}$ . Then $a=p*(b)$ ,
where $b$ is a generator of $H^{2}(CP\iota_{-1} ; Q)$ . It is not difficult to see that $l=n+1$ . Let $G=$

$G_{1}\times K$. From the following observation (see [3]) it follows that $K$ acts on $X^{*}$ almost effec $\cdot$

tively.

Observation Let $(G, M)$ be a smooth action with $H$ as a principal isotropy subgroup.
Suppose $K$ is an equivariant differentiable transformation group on $M$ and the $G\times K$ action
on $M$ is almost effective, and $K_{0}$ is the ineffective kernel of the induced K-action on $M(H)$

$/G$. Then $K_{0}$ is locally isomorphic to subgroup of $N(H, G)/H$.
From the fact that $\dim K\geq\dim SO(k+1)$ and the fact that $\dim X^{*}=k$ it follows that

$K=SO(k+1)$ and $x*=S^{k}$ . Thus we have $X=CP_{n}\times S^{k}$ and $ N(X)=\dim SU(n+1)+\dim$

$SO(k+1)$ . Moreover we have proved that $G$ acts transitively on $X$.

Case 3. $(G_{1}, H_{1})=(SU(l), SU(l-1))$ .

Subcase 1. There is no fixed point of $SU(l)$ -action.

Put $N=N(SU(l-1), SU(l))$ . Consider the case in which $ X_{(N)}\neq\phi$ . By the same argu-
ments as in [1], there is continuous map $f:X\rightarrow CPl-1$ such that $f^{*}:$ $ H^{*}(CPl-1;Q)\rightarrow$

$H^{*}(X;Q)$ is injective. It follows that $l=n+1$ . Let $Y=X(H)/SU(l)$ , where $H$ denotes a
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principal isotropy subgroup of $SU(l)$ -action. Then $Y$ is a $(h-1)$ -dimensional manifold on
which $K=G/G_{1}$ acts with ineffective kernel $N$ of $dimension\leqq 1$ . It follows that $\dim K/N$

$\leqq\frac{k(k-1)}{2}$ . Since $\dim K\geq\dim SO(k+1)$ , we have $\dim K/N\geq\dim SO(k+1)-1$ , which

is a contradiction.
Next we consider the case in which $ X_{(N)}=\phi$ . Put $P=F(SU(l-1), X)$ . It is known

that $X=S^{2l-1}\times P$ , and $x*=P/S^{1}(aee[5])$ .
$S^{1}$

Suppose that the fibre bundle $\xi$ : $S^{1}\rightarrow S^{2l-1}\times P\rightarrow X$ is trivial. We may asssume
that $k\geqq 2l-1$ . In fact, if $k<2l-1$ , then $\dim X^{*}<2n$ . By the same arguments as in case
1, we can show a contradiction. Moreover we can prove that $k=2l-1$ .

Suppose $k>2l-1$ . Since $H^{*}(S^{2l-1}\times P;Q)\simeq H^{*}(X\times S^{1} : Q)$ , we have $H^{i}(P:Q)\simeq H^{i}(X$

$\times S^{1}$ : $Q$) for $i<2l-1$ . From the assumption $k>2l-1$ , it follows that $k>2l-1>k/2+n+1$
and hence $k>2n+4$ . Hence we have $H^{i}(X\times S^{1} : Q)=0$ for $2n+1<i<k$ . It follows that
$H^{2n+k-2l+2}(P;Q)=0$ , which is a contradiction because $P$ is an orientable closed $(2n+k-2l$

$+2)$ -manifold. Put $G=K\times G_{1}$ . Then $\dim SO(k+1)+\dim SU(n+1)-\dim SU(\frac{k-1}{2})$

$>2n^{2}+6n+4$, which is seen to be a contradiction by the same arguments as above. Thus
we have shown the fibre bundle $\xi$ is not trivial. Consider the following commutative
diagram:

$S^{2l-1}\times P\rightarrow S^{2l-1}S^{1}-S^{1}X\rightarrow CP\iota_{-1}\downarrow^{-}\downarrow\downarrow_{\underline{f}}\downarrow\underline{pr}$

where $f$ is induced by $pr:S^{2l-1}\times P\rightarrow S^{2l-1}$ . Let $e\in H^{2}(X;Q)$ be the rational Euler class
of the bundle $\xi$. We may assume $e$ is a generator of $H^{2}(X;Q)$ (Note $e^{n}\neq 0,$ $e^{n+1}=0$).
Then we have $f^{*}(b)=e$, where $b$ is a generator of $H^{2}(CP\iota_{-1} : Q)$ . It is not difficult to see
that $l=n+1$ and hence $\dim G/G_{1}\geqq\dim SO(k+1)$ . Since $\dim X^{*}=k-3$ , we can show a
contradiction.

Subcase 2. There is at least one fixed point.

Let $U$ be a closed invariant tubular nbhd. of $F=F(SU(l), X)$ . It is known that $X$

$=\partial(D^{2l}\times P)/S^{1}$ and $x*=P/S^{1}\cup\partial P/S^{1}\times[0,1],$ $\partial P/S^{1}=F$, where $P=F$($SU(l-1),$ $X$-int $U$).

Note that $U$ can be chosen to be invariant under $K=G/G_{1}$ and hence $P$ is also invariant
under $K$. Then $G=G_{1}\times K$ acts on $\partial(D^{2l}\times P)/S^{1}$ by $(g, h)[v, x]=[gv, hx]$ , where $(g, h)\epsilon$

$G_{1}\times K$ and $v\epsilon D^{2l},$ $x\epsilon P$. This implies that K-action on $P$ is almost effective and hence $K$

acts on $\partial P$ almost effectively.
In section 2, we shall prove the following
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PROPOSITION 1.
$\partial P/_{Q}S^{1}\sim CP_{n}\times S^{k-2l},$ $S^{2n+1}\times CP\frac{k-2l-1}{2}(k\geqq 2n+1, k-2l<2n+1),$

$S^{k}$

$\times CP_{n-l}CP\frac{k-1}{2}\times\wp-$ or $CP\frac{2n+k-2l}{2}(k=2n+2-21)$ . Moreover $\partial P/S^{1}$ has no 2-torsion.

Since the situations for four cases are parallel, we consider only the case $\partial P/S^{1}\sim S^{2n+1}$

$Q$

$\times CP\frac{k_{-2}l-1}{2}(k>2n, k-2l<2n+1)$ . Let $N$ be the ineffective kernel of K-action on $\partial P/S^{1}$ .
Then $N$ is a group of bundle automorphisms of the bundle $S^{1}\rightarrow\partial P\rightarrow\partial P/S^{1}$ . Since the
action of $N$ on $\partial P$ is almost effective, we have $\dim N\leqq 1$ . Since $\dim K\geqq\dim SO(k+1)$

$+\dim SU(n+1)-(\dim SU(l),$ $k>2n$ and $4l>4n+4$, we have $\dim K/N>\dim SO(2n+2)$

$+\dim SU(\frac{k-2l+1}{2})$ . By induction, it follows that $\dim K/N=\dim SO(2n+2)+\dim$

$SU(\frac{k-2l+1}{2})$, which is clearly impossible.

Case 4. $(G_{1}, H_{1})=(SO(l), SO(l-1))$ .
We may assume that $k>l-1$ .

Subcase 1. There is no fixed point of $SO(l)$ -action.

It follows from the fact $H^{1}(X:Z_{2})=0$ that the $SO(l)$ -action has a unique conjugacy
class $(SO(l-1))$ of isotropy subgroups, and hence the orbit map $X\rightarrow X^{*}$ is an $S^{l-1}$ bundle
with $Z_{2}$ as structural group. It is not difficult to see that $H^{1}(X^{*} : Z_{2})=0$ and hence the
fibre bundle is trivial, i,e. $X\approx S^{l-1}\times X^{*}$ .

Suppose that $l-1<k$ . Then $h=\dim X^{*}=2n+k-(l-1)>2n$ . If $h<k$, then $H^{h}(X^{*}$

$\times S^{l-1}$ : $Q$) $\neq 0$ (Note that $X^{*}$ is an orientable closed h-dimensional manifold). On the other
Jland $H^{h}(S^{k}\times CPn : Q)=0$, because $2n<h<k$ . This is a contradiction. Thus we have
shown that $h\geq k$, and hence $l-1\leqq 2n$ . Comparing the dimension of $H^{l-1}(S^{l-1}\times X^{*} : Q)$

and $H^{l-1}(S^{k}\times CP_{n} : Q)$ , we can show a contradiction. Thus we have shown that $l-1=k$,
In other words, $G\sim SO(k+1),$ $X=S^{k}\times X^{*}$ and hence $H^{*}(X^{*} : Q)=H^{*}(CP_{n} : Q)$ (as rings).

Now $K=G/G_{1}$ acts almost effectively on $x*$ and $\dim K\geqq\dim SU(n+1)$ .
It is known that $K\sim SU(n+1)$ and $M^{*}=CP_{n}(see[3], [5])$ .
Thus we have proved that $\dim G=\dim SO(k+1)+dimSU(n+1)$ and $X=CP_{n}\times S^{k}$ .

Subcase 2. There is at least one fixed point.

Let $U$ be an invariant closed tubular nbhd of $F=F(SO(l), X)$ . Since $H^{1}(X$–int
$U:Zi)=0$, X-int $U$ is an $S^{l-1}$ bundle over $X^{*}-F\times(O, 1)\approx X^{*}$ with $Z_{2}$ as structure group.
Since $H^{1}(X^{*} : Z_{2})=0$ , this fibre bundle is triual, i,e. X-int $U\approx S^{l-1}\times X^{*}$ and hence $ X=\partial$

$(D^{l}\times X^{*})$ .
In section 3, we shall prove the following.
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PROPOSITION 2. $\partial X*\sim CP_{n}\times S^{k-l-1}$ and $\partial X^{*}has$ no 2-torsion.
Since $K=G/G_{1}$ acts almost effectively $\partial X^{*}$ and $\dim K\geq\dim SO(k+1)+\dim SU(n+1)$

$-\dim SO(l)\geq\dim SU(n+1)+\dim SO(k-l+1)$ , the induction argument shows that $\dim$

$K=\dim SU(n+1)+\dim SO(k-l)$ , which is easily seen to be a contradiction.
Thus we have proved the following.
PROPOSITION $B$ Let $X$ be an orientable closed $(2n+k)$ -manifold $(k>2)$ such that $ x\sim$

$CP_{n}\times S^{k}$ , with no 2-torsion. Assume $N(X)\geqq dimSU(n+1)+dimSO(k+1)$ . ThenX is diffeo-
morphic to $CP_{n}\times S^{k}$ and $N(X)=dimSU(n+1)+dimSO(k+1)$ .

Theorem 1 in the Introduction follows immeadiately from this proposition B.
Next we shall prove the following proposition modulo some lemmas.
PROPOSITION C. Let $X$ be an orientable closed $(2n+2k)$ –manifold such that $X\sim CP_{n}$

$Q$

$\times CPk(k\geq n)$ . Assume that $N(X)\geqq dimSU(n+1)+dimSU(k+1)$ . Then $X$ is diffeomor-
phic to $CP_{n}\times CPk$ and $N(X)=dimSU(n+1)+dimSU(k+1)$ .

We shall prove proposition $C$ for the case $n+k\leqq 12$ in section 6.
Assume $n+k\geqq 13$ . Consider a compact connected Lie group $G$ with $\dim G=N(X)$

which acts almost effectively on $X$. Then there exists a simple normal subgroup $G_{1}$ of $G$

such that

(i) $\dim G_{1}+\dim N(H_{1} : G_{1})/H_{1}>\frac{1}{8}(2n+2k+7)\dim G_{1}/H_{1}$,

and

(ii) $\dim H_{1}>\frac{2n+2k-9}{2n+2k-1}\dim G$,

where $H_{1}=(H\cap G_{1})^{0}(H=a$ principal isotropy subgroup of G-action. Possible pairs $(G_{1}, H_{1})$

are proved to be the followings: $(SO(l), (SO(l-1))(2l>n+k),$ $(Sp(l), Sp(l-1)\times Sp(1))$

$(2l>n+k)(SU(l), N(SU(l-1))(2l-2\geq n+k)$ and $(SU(l), SU(l-1))(2l-2>n+k)$ . It is
not difficult to see that cases of $(SO(l), SO(l-1))$ and $(Sp(l), Sp(l-1)\times Sp(1))$ are im-
posible.

Consider the case of $(SU(l), N(SU(l-1))$ . It is known that $X\approx CPl-1\times X*$ . Let $f$

be the projection $X\rightarrow CP_{l-1},$ $a_{1},$ $a_{2}$ generators of $H^{2}(X : Q)$ such that $H^{*}(X : Q)=Q[a_{1}]$

$/(a_{1^{n+1}})\otimes Q[a_{2}]/(a_{2}^{k+1})$ and $b$ generator of $H^{2}(CPl-1 : Q)$ . Put $f^{*}(b)=\alpha a_{1}+\beta a_{2}$ .
Assume that $\alpha\neq 0$ and $\beta\neq 0$ . Then $(\alpha a_{1}+\beta a_{2})^{n+k}\neq 0$ and hence $b^{n+k}\neq 0$ . This is clear-

ly a contradiction From the assumption that $h\geqq n$, it follows that $\beta\neq 0,$ $\alpha=0$ and $l=k+1$ ,
and hence $X=CPk\times X^{*}$ . It is clear that $X^{*}\sim CP_{n}$ . Since $K=G/G_{1}$ acts on $x*$ almost

$Q$

effectively and $\dim K\geqq\dim SU(n+1),$ $X^{*}=CP_{n}$ and $K\sim SU(n+1)$ .
Next consider the case of $(SU(l), SU(l-1))$ . $PutN=N(SU(l-1))$ . $IfX_{(N)}=\phi$, we

can easily show a contradiction. Asssume that $ X_{(N)}\neq\phi$ and $ F=F(SU(l), X)=\phi$ . Then it
is known that $X=(S^{2l-1}\times P)/S^{1}$ , where $P=F(SU(l-1), X)$ . In section 4, it is shown
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that $P\sim CP_{n}$ . Since $K=G/G_{1}$ acts on $P$ almost effectively and $\dim K\geqq\dim SU(n+1)$ ,
$Q$

we have $K\sim SU(n+1)$ and $P=CP_{n}$ . Then a principal isotropy subgroup $H$ of G-action
contains $SU(k)\times N(SU(n-1))$ , which is proved to be a contradiction by dimensional argu-
ments.

Thus we may assume that there exists at least one fixed point. Let $F$ be the fixed
point set, $U$ an invariant closed tubular nbhd. of $F$ and $P=F$($SU(l-1),$ $X-$ int $U$). In
section 3, we shall prove that $\partial P/S^{1}\sim CP_{k-l\times}CP_{n}$ . Now $K=G/G_{1}$ acts almost effectively

$Q$

on $\partial P/S^{1}$ and $\dim K\geqq\dim SU(n+1)+\dim SU(k+1)-\dim SU(l)>\dim SU(n+1)+\dim$

$SU(k-l+1)$ . By induction $K$ is locally isomorphic to $SU(n+1)\times SU(k-l+1)$ , which is
clearly a contradiction.

In the following sections, unless it is stated to the contrary, the field $Q$ of rational num-
bers is used as coeffiients of homology and cohomology.

2. An $SU(l)$ -action on $X\sim CP_{n}\times S^{k}$

$Q$

In this section let $X$ be an orientable closed $(2n+k)$ -manifold such that $X\sim CP_{n}\times S^{k}$

$Q$

$(k\geq 3)$ on which $SU(l)(2l-2>n+\frac{k}{2})$ acts with $SU(l-1)$ as a principal isotropy subgroup

at least one fixed point and non-empty $X_{(N)}(N=N(SU(l-1), SU(l))$ . Let $U$ be a closed
invariant tubular nbhd of the fixed point set $F=F(SU(l), X)$ , and $P$ the submanifold
$F$ ($SU(I-1)$ , X-int $U$). We may assume that the restricted action of $SU(l)$ on $U$ has just
two types of orbits; principal arbit and fixed point. It is known that $X=\partial[D^{2l}\times P]/S^{1}$,
$X^{*}=P/S^{1}\cup\partial P/S^{1}\times[0,1]$ attached along $\partial P/S^{1}$ and $P/S^{1}\times\{0\}$ and $\partial P/S^{1}\approx F$. Put $Y=D^{2l}$

$\times P$.
We shall fiirst consider the case in which the fibre bundle $\xi;S^{1}\rightarrow\partial Y\rightarrow X$ is trivial.

Then we have $\partial Y=S^{1}\times X\sim S^{1}\times CP_{n}\times S^{k}$ . Consider the Q-cohomology exact sequence of
$Q$

the pair $(Y, \partial Y)$

$*i$

$\rightarrow H^{h}(Y, \partial Y)\rightarrow H^{h}(Y)\rightarrow H^{h}(\partial Y)\delta\rightarrow H^{h+1}(Y, \partial Y)\rightarrow$

$H^{h}(P)\uparrow p*/^{\nearrow}f^{*}$

where $p*is$ induced by the projection $p$ : $Y\rightarrow P$ and $f^{*}$ is induced by the composition

$J^{*}$ ; $\partial Y(\underline{i}\rightarrow Y$ $(\underline{p}\rightarrow P$

Since $f$ has a cross section $P\rightarrow^{j}\partial Y\rightarrow Y\rightarrow P,$

$i*injective$ . Hence we have the
following short exact sequence;

$i*$

$0\rightarrow H^{h}(Y)\rightarrow H^{h}(\partial Y)\rightarrow H^{h+1}(Y, \partial Y)\rightarrow 0$

(2. 1) 11 11
$H^{h}(P)$ $H_{2n+k-h+1}(P)$
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Let $i_{1}$ ; $\partial P\rightarrow P$ be inclusion, $\sim c$ a generator of $H^{1}(\partial Y)$ and $\overline{a}$ generator of $H^{2}(\partial Y)$ .
Since $\dim P=2n+k-2l+2<2l-1$ and $H^{2n+k-2l+2}(P)=0$, it follows from (2. 1) that $2n$

$+1<2n+k-2l+2<k$, and hence $P\sim S^{1}\times CP_{n}$ . Thus we have $f^{*}(c)\sim=c\epsilon H^{1}(P)$ is non-zero.
$Q$

It follows that $c_{1}=i_{1^{*}}(c)\neq 0$ . Suppose that $i_{1^{*}}(f^{*}(a))=a_{1}=0$ . Since $H^{*}(P)$ is generated
by $c$ and $a=f^{*}(a\overline{)},$ $i_{1^{*}}$ : $H^{h}(P)\rightarrow H^{h}(\partial P)$ is zero for $h\geqq 2$ .

Hence we have the following exact sequence:

(2. 2) $0\rightarrow H^{h}(\partial P)\rightarrow H^{h+1}(P, \partial P)\rightarrow H^{h+1}(P)\rightarrow 0$ $(h\geq 2)$ .
Since $H^{3}(P)\neq 0$ , we have $H_{2n+k-2l-1(P)}\approx H^{3}(P, \partial P)\neq 0$ and hence $2n+k-2l-1\leq 2n$

$+1$ , which implies that $k-2l\leqq 2$ . It is not difficult to see that the cases of $k-2l$ and of
$k-2l=2$ are impossible. When $k-2l=1$ , it is shown that $\partial P\sim S^{1}\times S^{2n+1}$ . Since the fibre

$Q$

bundle $S^{1}\rightarrow\partial P\rightarrow\partial P/S^{1}$ is also trivial, we have $\partial P\approx S^{1}\times\partial P/S^{1}$ . It is clear that $\partial P/S^{1}$

$\sim S^{2n+1}$ .
$Q$

Suppose next that $i_{1^{*}}(f^{*}(a))=a_{1}\neq 0$ . Let $m$ be the largest integer such that $a_{1^{m}}\neq 0$ .
It is not difficult to see that $m=n$ . Hence we have

$\partial P\sim S^{1}\times QCP_{n}\times S^{k-2l}$
or $S^{1}\times CP\frac{k-2l-1}{2}$

$\times S^{2n+1}$ which implies $\partial P/S^{1}\sim CP_{n}\times S^{k-2l}$ , or $CP\frac{k-1l-1}{2}\times S^{2n+1}$ .
Next we shall consider the case in which the fibre bundle $\xi$ is not trivial. Let $e\epsilon H^{2}(H$

: Q) be the rational Euler class. Since $k>2$ , we have $e^{n}\neq 0$ and $e^{n+1}=0$ . From the Gysin
sequence of $\xi$, it follows that Q-cohomelogy groups of $\partial Y$ are:

$H^{0}=H^{2n+k+1}=H^{2n+1}=H^{k}=Q$

$H^{i}=0$ otherwise

As before, we have the following exact sequence:

$0\rightarrow H^{h}(P)\rightarrow H^{h}(\partial Y)\rightarrow H^{h+1}(Y, \partial Y)\rightarrow 0$

lt
$H_{2n+k+1-h}(P)$

If $k>2n$, then $2l-2>\frac{k}{2}+n>2n$ and hence we have $\dim P=2n+k-2l+2<k$. Since

$H^{2n+1}(\partial Y)=0,$ $\dim P$ must be greater than or equal to $2n+1$ . This implies that $P\sim\wp n+1$

$Q$

$\delta$

From the cohomolgy exact sequence of rair $(P, \partial P)$ , it follows that $H^{i}(\partial P)\approx H^{i+1}(P, \partial P)$

$\approx H2n+k-2l+1-;(P)$ for $0<i<2n$ and hence we have

$H^{0}(\partial P)=H^{k-2l}(\partial P)=H^{2n+1}(\partial P)=H^{2n+1+2l}(\partial P)=Q$

$H^{i}(\partial P)=0$ for $i$ ; otherwise.

Let $a$ be a generator of $H^{2n+1}(\partial P)$ and $b$ a generator of $H^{k-2l}(\partial P)$ . Denote $\tilde{a}$ be the $ele$.
ment of $H^{2n+1}(P)$ such that $i^{*}(\overline{a})=a$ ($i;\partial P\rightarrow P$ inclusion) and $a\epsilon H_{2^{n}+1}(P)$ the dual of $\overline{a}$.
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Then we may assume $\delta b=D^{-1}\alpha$ where $D:H^{k-2l+1}(P, \partial P)\rightarrow H_{2n+1}(P)$ is Poincare duality.
It can be shown that $b^{u}a\neq 0$ . In fact we have
$<[P, \partial P],$ $a^{-}UD^{-1}\alpha>=<[P,\partial P]\cap D^{-1}\alpha,\overline{a}>=<\alpha,$ $\overline{a}>\neq 0$, and henoe we have $D\delta(aUb)$

$=D\delta(b^{u}i*\subset a))=D(D^{-1}\alpha U\overline{a})=<[P, \partial P],$ $D^{-1}\alpha\overline{a}>\neq 0$, which implies $aUb\neq 0$ . These argu-
ments imply that $\partial P\sim S^{k-2l}\times S^{2n+1}$ or $S^{2n+k-2l+1}(k=2n-2l+1)$ . By similar arguments

$Q$

we can show that when $k\leq 2n,$ $\partial P\sim S^{k}\times S^{2n-2l+1}$ or $S^{2n+k-2l+1}(k=2n-2l+2)$ . It follows
$Q$

from the following proposition that
$\partial P/_{Q}S^{1}\sim CP_{n}\times S^{k-2l}$

, $CP\frac{k-2l-1}{2}\times S^{2n+1}$ , $CP_{n-l}\times S^{k}$

$CP_{\frac{k-1}{2}}^{2}\times S^{2n-2l+1}$, or $CP2n+k-2\iota(k=2n-2l+2)$ .
PROPOSITION (2. 3) Let $X$ be an orientable closed $(m+n)$ -manifold such that $X\sim S^{m}$

$Q$

$\times S^{n}(m, n\geqq 2)$ , where at least one of $m$ and $n$ is odd. If a circle group $S^{1}$ acts on $X$ on
freely, then the orbit spaoe $x*$ has the Q-cohomology ring of one of the followings;

$CP_{\frac{m-1}{2}}\times S^{n}$, or $CP_{\frac{n-1}{2}}\times S^{m}$ .

PROOF. Let $e\epsilon H^{2}$ $(x* : Q)$ be the Euler class. We shall consider only the case in
which $m=2m^{\prime},$ $n=2n^{\prime}+1$ . From the Gysin sequence;

$u_{e}$

$\rightarrow H^{i}(X)\rightarrow H\leftarrow 1(X^{*})\rightarrow H^{i+1}(X^{*})\rightarrow H^{+1}(X)\rightarrow$ ,

it follows that $H\leftarrow 1(X^{*})\approx H^{i+1}(X^{*})$ for $i<2m^{\prime}-1$ , for $2n^{\prime}+1<i<2n^{\prime}+2m^{\prime}$ and for 2 $m^{\prime}$

$<i<2n^{\prime}$ . Let $h$ be the largest integer such that $e^{h}\neq 0$ . It is easy to see that $\dim H^{2m^{\prime}}(X^{*})$

$=2andhenoe\dim H^{2n^{\prime}}(X^{*})=2$ . $ThisimpliesthatX^{*\wp_{m^{\prime}}\times}\sim CP_{n}$ . Q.E.D.

Now we shall prove the last part of proposition 1. Consider the case in which the
fibre bundle $S^{1}\rightarrow\partial(D^{2l}\times P)\rightarrow X$ is trivial and henoe the bundle $S^{1}\rightarrow S^{2l-1}\times P\rightarrow X$

-int $U$ is also trivial. Note that when the fixed point set $F$ is empty, the argument is
varid. Then int $U$ has no 2-torsion. Since $H^{i}$($X$-int $U:Z$) $=H_{2n}+k-i(X, U, : Z),$ $U$ has no
2-torsion.

By similar argumets, it is proved that $\partial P/S^{1}$ has no when the bundle is not trivial.
Thus we have completed the proof of Proposition 1.

3. An SO (L)-action on $X\sim CP_{n}\times S^{k}$

$Q$

In this section we shall consider an $SO(I)\cdot action$ on an orientable $(2n+k)$ -mainfold

$X(2l>\frac{k}{2}+n+3)$ such that $X\sim S^{k}\times CP_{n}(k\geq 3)$ with no 2-torsion, with $SO(l-1)$ as a $pri$ .
$Q$

ncial isotropy subgroup and non-empty fixed point set $F$. We have proved that $X=\partial(D^{l}$

$\times X*)$ and $x*\sim CP_{n}$ . We shall prove that $\partial X^{*}\sim CP_{n}\times S^{k-l}$ if $k-l\geq 1$ . We may assume
$Q$ $Q$

that $k>l-1$ .
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Case 1. $k=l$ .

From the exact sequenoe of the pair $(X^{*}, \partial X^{*})$ , it follows that $H^{2\iota}(\partial X^{*} ; Q)\cong H^{2j}(X^{*}$ ,
$Q)+H^{2i+1}(X^{*}, \partial X^{*} : Q)$ for $0\leqq i\leqq n$ .

Let $a\epsilon H^{2}$ $(X^{*} : Q)$ be a generator of $H^{*}(X^{*} ; Q)$ and $b\epsilon H^{1}(X^{*}, \partial X^{*} ; Q)$ the element
$suchthatDbisthedualofa^{n},$ whereD: $H^{1}(X^{*}, \partial X_{*})\rightarrow H_{2n}(X^{*})$ is Poincare duality.

Let $a_{2}=i^{*}(a)$ and $b_{0}\epsilon H^{0}(X^{*} : Q)$ the element such that $\delta b_{0}=b$ .
LEMMA (3. 1) $\delta(b_{0}Ua_{2^{h}})\neq 0$ $i\leq h\leq n$

PROOF Sinoe $<[X*, \partial X^{*}]\cap(\delta(b_{0}Ua_{2}^{h})),$ $a^{n-h}>=<[x*, \partial X^{*}]\cap(\delta b_{0}Ua^{h}),$ $a^{n-h}>$

$=<([X^{*}, \partial X^{*}]\cap\delta b_{0})\cap a^{h},$ $a^{n-h}>=<[X^{*}, \partial X^{*}]_{\cap}\delta b_{0},$ $a^{n}>\neq 0$ , we have $\delta b_{0^{U}}a^{h}\neq 0$ , where
$[X^{*}, \partial X^{*}]$ is the fundametal class of $x*$ . Q.E.D.

Case 2. $k-l\geq 1$ .
For this case, it is not difficult to show that $\partial X^{*\sim}CP_{n}\times S^{k-l}$ and with no 2-torsion.

$Q$

4. An SU(L)-action on $x\sim CP_{n}\times CPk$

$Q$

In this section, we shall consider an $SU(l)$ -action on an orientable $(2n+2k)$ -mainfold
$X(2l-2>n+k)$ such tca $X-CP_{n}\times CP_{k}((k\geq n)$ with S $U(l-1)$ as a principal isotorpy

$Q$

subgroup, non-empty $X_{(N)}(N=N(SU(l-1), SU(l))$ and non-empty fixed point set $F$.
It known that $X=\partial(D^{2l}\times P)/S^{1}$ where $P=F$($SU(l-1)$ , X-int $U$). It is not difficult to
see that $H^{i}(P;Q)\approx H^{i}(\partial Y;Q)$ for $i<2l-1$ . Note that $k\geq l$ . Suppose the fibre bundle
$S^{1}\rightarrow\partial Y\rightarrow Xistrivia1$ . Then we have $\partial Y=X\times S^{1}$ , and henoe we have
$H^{2n+2k-2l+2}(\partial Y;Q)\neq 0$ . Sinoe $2n+2k-2l+2<2l-1,$ $wehaveH^{2n+2k-2l+2}(P;Q)\neq 0$ , which
is a contradiction because $P$ is a manifold with non empty boundary. Thus the fibre
bundle $S^{1}\rightarrow\partial Y\rightarrow X$ is not trivial. Let $e\epsilon H^{2}(X;Q)$ be its Eular class. From the Gysin
sequenoe it follows that there exists the following exact sequence:

(4. 1) $0\rightarrow H^{2i+1}(\partial Y)\rightarrow H^{2i}(X)\rightarrow H^{2i+2}\rightarrow H^{2i+2}\rightarrow(\partial Y)\rightarrow 0$ .
Leta and $\beta generatorsofH^{*}(X;Q)$ i,e. $H^{*}(X:Q)=Q[\alpha]/(\alpha^{n+1})\otimes Q[\beta]/(\beta^{k+1})$ . We may
assume that $ e=A\alpha+B\beta$, where $A,$ $B$ is $0$ or 1. Suppose $ e=\alpha+\beta$ . Then put $c=P^{*}(a-\beta)$

where $P:\partial Y\rightarrow X$ is projection. It follows from (4. 1) that cohomology groups of $\partial Y$ are:
$H^{*}(\partial Y)$ : $Q$) is generated by $c$ for $dimension\leqq 2n$

$H^{2i+1}(\partial Y;Q)\approx O$ for $k\geq i\geq 1$

$H^{2i}(\partial Y:Q)=0$ for $2k<2i<2n+2k+1$ .
Thus we have proved that $P\sim CP_{n}$ . For the cases of $ e=\alpha$ and $ e=\beta$ , it can be shown that

$Q$

$P\sim CP_{n}$ . We shall calculate cohomology ring of $\partial P$.
$Q$
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Case 1. $k=l$.

Consider the following exact sequence:

$0\rightarrow H^{1}(\partial P)\rightarrow H^{2}(P, \partial P)\rightarrow^{j*}H^{2}(P)\rightarrow^{i^{*}}H^{2}(\partial P)\rightarrow 0$

$1l$

$H_{2^{n}}(P)$ .
Suppose $H^{1}(\partial P)=0$ . Then we have $i^{*}(a)=0$ where $a$ is a generater of $H^{2}(P)$ . Thus we
have $H^{i}(\partial P)=0$ for $i\leqq 2n$, and henoe $\partial P\sim S^{2n+1}$ .

$Q$

Suppose $H^{1}(\partial P)\neq 0$ . It is not difficult to see that $\partial P\sim S^{1}\times CP_{n}$ .
$Q$

$Ca8e2$ . $k>l$.
It is not difficult to see that $\partial P\sim S^{2n-2l+1}\times CP_{n}$ . It this case we can prove that

$Q$

$H^{1}(\partial P:Z_{2})=0$ . In fact sinoe $H^{1}(X:Z_{2})=0$, it follows from $Z_{2}$-Gysin sequenoe of the
bundle $S^{1}\rightarrow\partial Y\rightarrow X$ that $H^{1}(\partial Y:Z_{2})=0$ , which implies that $H^{1}(P:Z^{2})=0$ . It follows
immeadiately that $H^{1}(\partial P:Z_{2})=0$ .

5. The proof of Proposition A

In this section we shall prove Proposition A. Sinoe situations of the cases of $k=1$ and
$k=2$ are almost parallel, we shall consider only the case of $k=1$ . Then we have $N(X)$

$>\frac{1}{4}(2n+1)(2n+3)$ . Assume $n\geq 6$ . The arguments which are completely analogous to

that of section 1 show that it is sufficient to consider an action of $SU(l)$ with $N=N(SU$
$(l-1))$ as principal isotrogy subgroup $(2l+2>2n+3)$ and action of $SU(l)$ with $SU(l-1$

as principal isotrogy subgroup, $non\cdot emptyX_{(N)}$ and non-empty fixed point set $F(2l+2)$

$>2n+3)$ . For the first action, it is not dificult to show that $X=CP_{n}\times S^{1}$ and $ N(X)=\dim$

$SU(n+1)+1$ . For the second action, dimensional considerations show a contradiction.
Consider the cases in which $n\leqq 5$ . Let $G=T^{r}\times G_{1}\times G_{1}\times\cdots\times G_{s}$($P$ : r-dim torus, $Gi$ : simple)

be a compact connected Lie group with $\dim G=N(X)$ which acts on $X$ almost effectively

Case 1. $n=5$

Sinoe $N(X)\geqq 36>3\dim X$, there exists a simple ndrmal subgroup, say $G_{1}$ , of $G$ such
that $\dim G_{1}+\dim N(H_{1}, G_{1})/H_{1}>3\dim G_{1}/H_{1}$ . All pairs $(G_{1}, H_{1})$ except $(SU(6)$ ,
$N(SU(5), SU(6)))$ are proved to be impossible. For the case of $(SU(6), N(SU(5), SU(6))$

it is not difficult to show that $G=SU(6)\times SO(2)$ and $X=CP_{6}\times S^{1}$ .

Case 2 $n=4$

Case 3 $n=3$
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We shall omit the proof sinoe the proof is similar to case 1,

Case4 $n=2$

Sinoe $9\leqq N(X)\leqq 15,$ $Gi$ is one of $G_{2}$($exceptiona1$ Lie group of rank 2)
$SO(6),$ $SO(5),$ $SU(4),$ $SU(3)$ , or $SU(2)$ . If some $G$; is $G_{2},$ $\dim H_{1}\geq 14-5\geq 9$ which is im-
possible. The same argument shows that no $G$ ; is $SO(6)$ . Suppose some $Gi$ is $SU(4)$ .
Then $\dim H_{1}\geq 10$ , and henoe $H_{1}\sim Sp(2)$ , which implies that $X=SU(4)/sp(2)$ . This is a
contradiction because $\pi;(SU(4)/sp(2))=0$ for $0\leq i\leq 2$ . If some $ G\iota$ is $SO(5)$ , then $\dim$

$H_{1}\geq 5$ , which implies that $H_{1}\sim SO(4)$ . For this case by Vietoris-Begle theorem we can
show a contradiction. If some $G$ ; is $SU(3)$ then $\dim H_{1}\geq 3,$ $H_{1}\sim Sp(2)$ or $N(SU(2)$ ,
$SU(3))$ . In this case it is shown that $X=S^{5}$ or $CP_{2}\times S^{1}$ and $N(X)=9$ . Thus we have
shown that to complete our arguments it is sufficient to consider only following cases:
$G=T^{6}\times SU(2),$ $T^{3}\times SU(2)\times SU(2)$ , and $SU(2)\times SU(2)$ . For the first and second cases,
we can easily deduoe a contradiction. Consider the case in which $G=SU(2)\times SU(2)$

$\times SU(2)$ acts on $X$. Then $\dim H\geq 4$ . Let $p$ ; : $G\rightarrow SU(2)$ be the projection onto the i-th
factor. Put $G=G_{1}\times G_{2}\times G_{3}$ .

Case a $\dim H=4$

In this case $X=G/H$.

Subcase 1 $d\ddagger m$ p3 $(H)=0$ . Then
$G_{3}/p_{3}(H)\sim S^{3}Q$

Sinoe $\dim H\cap(G_{1}\times G_{2})=4,$
$G_{1}\times G_{2}/H_{\cap}(G_{1}\times G_{2})\sim S^{2}Q$

or pt. This contradicts to the

structure of cohomology ring of $X$ because $X$ is a fibre spaoe over $G_{3}/p_{3}(H)$ with $G_{1}\times G_{2}$

$/H\cap(G_{1}\times G_{2})$ as fibre.

Subcase 2 $\dim p_{3}(H)=1$ .

We have $\dim H_{\cap}(G_{1}\times G_{2})=3$ and henoe $x*=X/G_{1}\times G_{2}$ is a 2-dimensional manifold.
Put $H_{1}=H_{\cap}(G_{1}\times G_{2})$ . Suppose there is a 4-dimensional isotropy subgroup $K$ . Sinoe $p_{2}$

$(K)\approx K/K_{\cap}G_{1}and\dim K_{\cap}G_{1}=0or3$ , we have K$=G_{1}\times K_{2}orK_{1}\times G_{2}$ . Suppose $K=G_{1}\times K_{2}$ .
Sinoe $H_{1}\leq K,$ $wehavep_{2}(H_{1}\leq p_{2}(K)=K_{2}$ and henoe $\dim p_{2}(H_{1})=0or1$ . $If\dim p_{2}(H^{1})$

$=0$ , then $H_{1\cap}G_{1}=G$ which contradicts to the almost effectivity. It is clearly impossible that
$\dim p_{2}(H_{1})=1$ . Similary we can show that $K\neq K_{1}\times G_{2}$ . Thus we have shown that there
is no 4-dimensional isotropy subgroup. Henoe possible isotropy subgroup of $G_{1}\times G_{2}\cdot action$

are principal isotropy subgroup, exceptional isotropy subgroup and $c_{1}\times G_{2}$ . Therefore
the Vietoris Begle mapping theorem shows that the orbit map $\pi$ : $X\rightarrow X^{*}$ induces
isomorphisms $\pi^{*}$ : $H^{i}(X^{*})\rightarrow H^{j}(X)$ for $i\leq 2$ , which leads a contradiction.

$Subca8e3$ $\dim p_{3}(H)=3$ .
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Sinoe $\dim H_{1}=1,$ $X=G_{1}\times G_{2}/H_{1}$ . Put $\tilde{X}=G_{1}\times G_{2}/T$. Then we have $H^{*}(\tilde{X}:Q)$

$=H^{*}(X : Q)$ . From the Gysin sequenoe of $T\rightarrow G_{1}\times G_{2}\rightarrow\tilde{X,}$ it follows a contradiction.

Case $b$ $\dim H\geqq 5$,

It is not difficult to show that this is impossible.

Case 5 $n=1$

It is easy to show that $N(X)=4$ .

6. Low dimensional cases

In this section we shall consider an orientable closed manifold $X$ of dimension $m\leq 25$

$suchthatX\sim CP_{n}\times S^{k}(k\geq 3)orCP_{n}\times CPk(k\geq n)andH^{1}(X:Z_{2})=0$ . Assume N(X) $\geq$

$Q$

$\dim SU(n+1)+\dim SO(n+1)$ or $\dim SU(n+1)+\dim SU(k+1)$ . Sinoe the situations of
two cases are almost parallel, we shall $\omega nsider$ only the case of $X\sim CP_{n}\times S^{k}$ .

$Q$

It is easy to see that $N(X)\geqq 3\dim X$ if $13\leqq\dim X\leqq 25$ or $\dim X=12$ and $k\geqq 5$ .
Let $ C=T^{\gamma}\times G_{1}\times$ $\times G_{s}$ be a compact connected Lie group of $\dim G=N(X)$ which

acts almost effectively on $X$. There exists a simple factor, say $G_{1}$, with the following pro $\cdot$

perties:

(6. 1) $\dim G_{1}+\dim N(H_{1}, G_{1})/H_{1}\geq 3\dim G_{1}/H_{1}$

(6. 2) $\dim H_{1}\geq\frac{1}{2}\dim G_{1}$

and

(6. 3) $\dim H_{1}\geq\dim G_{1}-25$ ,

where $H_{1}$ denotes the identity component of a principal isotropy subgroup of $G_{1}$-action.
$i,$ $e$ . $H_{1}=(H\cap G_{1})^{0}$ ($H=a$ principal isotropy subgroup of G-action).

By dimensional considerations, it is shown that $G_{1}$ is not $E_{8},$ $E_{7},$ $E_{6}$ or $G_{2}$ . If $G_{1}=F_{4},$ $H_{1}$

must be Spin (9). Sinoe $\dim X/G_{1}=2n+k-16$, the Vietoris Begle theorem shows a con-
tradiction when $k<16$ . When $k\geq 16$, we have $N(X)\geq 4\dim X$ and henoe (6. 1) is re-
placed by

$($6. $1)^{\prime}$ $\dim G_{1}+\dim N(H_{1}, G_{1})/H_{1}\geq 4\dim G_{1}/H_{1}$

This inequality does not hold for ($F_{4}$, Spin (9)). Thus we have shown that $G_{1}$ must be
classical.

Case 1 $G_{1}=SU(L)$

If $l\geq 9$, then $\dim G_{1}/H_{1}\leq 25\leq\frac{1}{2}(l-1)^{2}$ , and henoe we have $(G, H_{1})=(SU(l),$ $SU(l$
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$-1))$ or $(SU(1), N(SU(l-1), SU(l)))$ . Considering subgroups of low dimensional $SU(l)$ ,

we can also show that possible pair $(G_{1}, H_{1})$ is as above.

Case 2 $G_{1}=SO(L)$ Note that $l\geq 5$)

In this case, we can also prove that possible pair $(G_{1}, H_{1})$ is $(SO(1), SO(l-1))$ but
one exception of $(SO(7), G_{2})$ . Consider the exceptional case. It is sufficient to consider
only the case of $CP_{4}\times S^{5}$ or $CP_{3}\times S^{6}$ . Sinoe $G_{2}$ is maximal in $SO(7)$ , possible orbits are
rational cohomology 7-sphere. Henoe the orbit map $\pi$ : $X\rightarrow X/SO(7)$ induces $i\infty morp$ .
hisims $\pi^{*}$ : $H^{i}(X/SO(7) : Q)\rightarrow H^{i}(X;Q)$ for $i\leq 6$ . Then the generator $a$ of $H^{2}(X;Q)$ is
in the image of $\pi^{*}$ . Sinoe $\dim X^{*}=6$ , or 5, we have $a^{4}=0$ or $a^{3}=0$ , which is a contradiction.

Case 3 $G_{1}=S_{p}(L)$ $(l\geq 3)$

It is not difficult to see that this case is impossible. The same arguments as in section
2, 3, and4show that X$=CP_{n}\times S^{k}andN(X)=\dim SU(n+1)+\dim SO(k+1)$ . The details
are omitted sinoe they are tedioas.

There remains the following cases: $CP_{4}\times S^{4},$ $\dim X=11,10,9,8$ and 7.

Case $CP_{4}\times S^{4}$

We have $78\geq N(X)\geq 34>2.8\times 12$ . There exists a simple normal subgroup $G$, of $G$

with properties

(6. 4) $\dim G_{1}+\dim N(H_{1}, G_{1})/H_{1}>2.8\dim G_{1}/H_{1}$

(6. 5) $\dim H_{1}>\frac{4}{9}\dim G_{1}$

and

(6. 6) $\dim H_{1}\geqq\dim G_{1}-12$ .
It is easy to show that $G_{1}$ is not exceptional.

Subcase 1 $G_{1}=SU(1)$ .

Sinoe $\dim G_{1}\leq 78,$ $wehavel\leqq 8$ . It follows from (6. 6) $thatH_{1}\sim SU(l-1),$ $orN(SU$

$(l-1),$ $SU(l))$ . Moreover from (6. 4) and the tfact that $2l-1\leq 12$ it follows that possible
pair $(G_{1}, H_{1})$ is $(SU(5), N(SU(4), SU(5)))$ or $(SU(6), N(SU(5), SU(6)))$ . Then it is
easy to see that $X=CP_{n}\times S^{4}$ and $N(X)=\dim SU(5)+\dim SO(5)$ .

Subcase 2 $G_{1}=S_{p}(L)$ , or $G_{1}=SO(L)$

It is not difficult to see that this case is impossible. We shall omit the other cases
sinoe they are not difficult but tedious.
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