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Introduction

The degree of symmetry N(M) of a compact connected differentiable manifold M is
the maximum of the dimensions of the compact ccnnected Lie groups which can act almost

effectively and differentiably on M.
In this note we shall prove the following theorems.

THEOREM 1. N(SkX CPy) = N(Sk)+ N(CPp) = k—<k—?:*_1—>+n2+2n.

THEOREM 2. N(CPnx CPr) = N(CPr)+N(CPr) = "2+ 2n+ K2+ 2k.

Here S* denotes k-dimensional sphere and CP, n-dimensional complex projective space.
In the following all actions are assumed to be differentiable.

1. Statement of results

We shall write X~ Y if X and ¥ have isomorphic Q-cohomology ring, where @ denotes

the field of rational numbers.
Let X be an orientable closed (274 k) —manifold such that X 5 CP,x Sk. Assume that

N(X) = dim SU(n+1)+dim SO(k+1) and X has no 2 torsion.
‘We shall prove the following proposition in section 5. ;
ProprosiTION A Let X be as above. If kis 1 or 2, then X is diffeomorphic to CPn x-Sk and

N(X) = N(CPyr)+ N(S*).
We consider the case in which £ is greater than 2. It is easily seen that N(X) > %—

(dim X+47) dim X. Let G be a compact connected Lie group of dim G = N(X) which acts
almost effectively on X. We may assume that G= Trx G X --- X Gs, where T is r-dimen-
sional torus and G; is a simple Lie group. By a result in [3], there is a normal subgroup of
G, say G,, with the following properties
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(1)  dim Gy+dim NCH;, G /Hy > %_(dim X+7)dimG, / H,
and

. dim X—9 ..

where Hy = (HnG,)? (H: a principal isotropy subgroup of G)
and N(H;, Gy) is the normalizer of H; in G;.

We shall consider the cace in which 2»n+%<25 and prove the same result as proposi-
tion A for this case in section 6. Assume 2x+4k>>26. By the same arguments as in [5],
the possible pair (G;, Hy) is one of the followings: (Sp(!), Sp(I—1) x (Sp(1)) (21 >k/2+n),

(SUW). NSUU-D,SU ) (21——2 > %+ n), S, SUU—-1))2l—2>Fk/24+n) and
(So(D), So(I—1))(2I—3>k/2+n).

Case 1. (Gy, Hp) = (Sp(D), Sp(I—1)x Sp(1)).

It follows from the Vietoris-Begle theorem that the orbit map » : X— X/ G, induces an
isomorphism z* : Hi(X/G, : Q)—Hi (X : Q) for i<3. Hence the generator ¢ of H2(X : Q)
is in image of =*. Since dim X/G; = k+2n—4/+4<2n, we have a contradiction.

Case 2. (G, H)) =(SU(—1), N(SU(I-1), SU(D)

Since N(SU(I—1), SU()) is maximal, we have X = CP;_; X X*, where X* is the orbit
space. Let a be a generator of H2(X : Q) and p the projection X—>CP;_;. Then a=p*(b),
where b is a generator of H2(CPi—;:Q). It is not difficult to see that /=n+41. Let G=
Gy x K. From the following observation (see [3]) it follows that K acts on X* almost effec-
tively. :

Observation Let (G, M) be a smooth action with H as a principal isotropy subgroup.
Suppose K is an equivariant differentiable transformation group on M and the Gx K action
on M is almost effective, and K, is the ineffective kernel of the induced K-action on M(H)
/G. Then Ky is locally isomorphic to subgroup of N(H, G)/H.

From the fact that dim K>dim SO(Z+1) and the fact that dim X*=¢ it follows that
K=3S0(k+1) and X*=Sk. Thus we have X= CP,x S* and N(X) =dim SU(n+1)+dim
SO(k+1). Moreover we have proved that G acts transitively on X.

Case 3. (Gy, Hy) = (SU), SUU—-1)).

Subcase 1. There is no fixed point of SU(/)-action.

Put N=N(SU({—1), SU(D)). Consider the case in which X(xy#¢. By the same argu-
ments as in [1], there is continuous map f : X — CPi; such that f* : H*(CPi; : Q)—>
H*(X : Q) is injective. It follows that /=»n+1. Let Y=X(H)/SU(), where H denotes a
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principal isotropy subgroup of SU({)-action. Then Y is a (k—1)-dimensional manifold on
which K= G/G; acts with ineffective kernel N of dimension<1. It follows that dim K/N

éLk:;—Q—. Since dim K> dim SO(k+1), we have dim K/N > dim SO(k+1)—1, which

is a contradiction.
Next we consider the case in which X(yy=¢. Put P=F(SU(—-1), X). Itis known

that X = S2-1 %P and X* = P/S(see [51).

Suppose that the fibre bundle § : S'— S#-1x P—X is trivial. We may asssume
that #=2/—1. In fact, if k<{2/—1, then dim X*<2n. By the same arguments as in case
1, we can show a contradiction. Moreover we can prove that £ =2/—1. '

Suppose £>2/—1. Since H*(S2-1x P : Q)= H*(XxS! : @), we have Hi(P:Q)~Hi(X
x S1: Q) for i<C2/—1. From the assumption £>2/—1, it follows that £>2/—1>%/2+n+1
and hence £>2n+4. Hence we have Hi(Xx S! : @) =0 for 2n+1<i<k. It follows that
H2n+k=2142( P @)=0, which is a contradiction because P is an orientable closed (2n+k—2/

+2)—manifold. Put G=KxG;. Then dim SO(k+1D+dim SU(n+1)—dim SU(i;—l—

> 2n2+6n+-4, which is seen to be a contradiction by the same arguments as above. Thus
we have shown the fibre bundle ¢ is not trivial. Consider the following commutative

diagram:
St St
S2i-1% P pr > S2i-1
X f — CPi

where f is induced by pr: S2-1x P——S2-1, Let e H? (X : @) be the rational Euler class
of the bundle &, We may assume e is a generator of H2(X : Q) (Note er=+0, e*+1=0).
Then we have f*(b)=e, where b is a generator of H2(CPi; : Q). It is not difficult to see
that /=741 and hence dim G/G;=dim SO(k+1). Since dim X* =k—3, we can show a
contradiction.

Subcase 2. There is at least one fixed point.

Let U be a closed invariant tubular nbhd. of F=F(SU(), X). Itis known that X
=9(D? x P)/S! and X* = P/S1UgP/S'x [0, 1], 9P/S'=F, where P=F(SU(l—1), X—int U).
Note that U can be chosen to be invariant under K= G/G; and hence P is also invariant
under K. Then G= G;x K acts on a(D?' x P)/S! by (g, k) [v, x]1=[gv, hx], where (g, h)e
G1x K and veD?, xe P. This implies that K-action on P is almost effective and hence K
acts on dP almost effectively.

In section 2, we shall prove the following
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PRrOPOSITION 1. 9P/S!~CPypx Sk-2l, S2ntlx CPr_aiy (k=2n+1, k—21<2n+1), Sk
Q 2

X CPy_i CPp—y X S?k—21+1 or CPan+k—21 (k=2n+-2—21). Moreover dP[S! has no 2-torsion.
2 2

Since the situations for four cases are parallel, we consider only the case 9P/St~S2n+1

X CPr_gi—y (B >2n, k—2l<2n+1). Let N be the ineffective kernel of K-action on dP/S.
2z

Then N is a group of bundle automorphisms of the bundle S'——9P—9P/S:. Since the
action of N on 9P is almost effective, we have dim N<1. Since dim K=dim SO(+1)
+dim SU(n+1) — (dim SU(!), k>2x and 4/ >4n+4, we have dim K/N>dim SO(2n+2)

+dim SU(ﬁt_zzlii). By induction, it follows that dim K/N=dim SO(2n+2)+dim

SU(_":Z;’—JFL), which is clearly impossible.

Case 4. (G,, H) = (SOW), SO(—-1D)).
We may assume that 2>7/—1.

Subcase 1. There is no fixed point of SO(/)-action.

It follows from the fact H1(X : Z,) =0 that the SO(/)-action has a unique conjugacy
class (SO(/—1)) of isotropy subgroups, and hence the orbit map X—>X* is an S'-1 bundle
with Z, as structural group. It is not difficult to see that H1(X* : Z,) = 0 and hence the
fibre bundle is trivial, i,e. X~S!-1x X*.

Suppose that /—1<k Then 2=dim X*=2n+k—{—1) >2n. If h<k, then H»(X*
x S-1: @) #0 (Note that X* is an orientable closed 4#-dimensional manifold). On the other
hand H#(Skx CPn : Q) =0, because 2n<h<k. This is a contradiction. Thus we have
shown that 2>k, and hence /—1<2xn. Comparing the dimension of HI-1(S'""1x X* : Q)
and H-1(Skx CP, : Q), we can show a contradiction. Thus we have shown that /—1 =g,
In other words, G~ SO(k+1), X = Skx X* and hence H*(X* : Q) = H*(CP» : @) (as rings).
Now K=G/G, acts almost effectively on X* and dim K=dim SU(n+1).

It is known that K~ SU(n+1) and M* = CP,(see [31, [5]).

Thus we have proved that dim G=dim SO+ 1)+dim SUn+1) and X = CP,x S*.

Subcase 2. There is at least one fixed point.

Let U be an invariant closed tubular nbhd of F= F(SO(l),X). Since H'(X—int
U: Zy) =0, X-int U is an §-! bundle over X*—Fx (0, 1)~X* with Z, as structure group.
Since H1(X* : Z,) =0, this fibre bundle is triual, i,e. X-int U~ $~!x X* and hence X=2
(D!x X*).

In section 3, we shall prove the following.
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ProposiTION 2. 0X* ~ CPnx Sk—1—1 and aX* has no 2-torsion.

Since K= G/G; acts almost effectively 0. X* and dim K>dim SO+ 1)+dim SU(x+1)
—dim SO() >dim SU(n+1)+dim SO(k—/+1), the induction argument shows that dim
K=dim SU(n+1)+dim SO(k—!), which is easily seen to be a contradiction.

Thus we have proved the following.

ProrosiTioN B Let X be an orientable closed (2n+k) —manifold (k™>2) such that X~
CPpx Sk, with no 2-torsion. Assume N(X) =dim SUn+1)+dim SO(k+1). Then X is diffeo-
morphic to CPnx Sk and N(X) = dim SU(n+1)+dim SO(k+1).

Theorem 1 in the Introduction follows immeadiately from this proposition B.

Next we shall prove the following proposition modulo some lemmas.

ProrosiTioN C. Let X be an orientable closed (2n-+2k) —manifold such that X»5 CPxn

X CPe(k>n). Assume that N(X) =dim SUm+1)+dim SUk+1). Then X is diffeomor-
Dphic to CPpx CPr and N(X) = dim SUn+1)+dim SUk+1).

We shall prove propositiori C for the case #+ £ =12 in section 6.

Assume n+k=13. Consider a compact connected Lie group G with dim G=N(X)
which acts almost effectively on X. Then there exists a simple normal subgroup G; of G
such that

(D dim ‘G1+dim N(H;:G)/H > %—(Zn+2k+ 7dim G,/ Hj,
and

(i)  dim H;> %%-:E%dim G,
where H,=(HNG,)® (H =a principal isotropy subgroup of G-action. Possible pairs (G, Hy
are proved to be the followings: (SO(), (SOU—1)) (21 >n+k), (Sp(D), Sp(U—1)x Sp(1))
QI>n+E)(SUW), N(SUU—1)) (21—2>n+k) and (SU(L), SUU-1))Q@RI-2>n+k). Itis
not difficult to see that cases of (SO(}), SO(/—1)) and (Sp(!), Sp({—1)x Sp(1)) are im-
posible.

Consider the case of (SU(!), N(SU(I—1)). It is known that X~ CPi-1x X*. Let f
be the projection X — CPi-1, @y, a; generators of H2(X : @) such that H*(X : Q) = Q[ a,]
[(@""DHRX Q[ ay]/(az*t1) and b generator of H2 (CPi-1 : Q). Put f*(b) = aa;+ Ba,.

Assume that a#0 and 8#0. Then (aa;+ Baz)#t*+0 and hence b”*+*#+0. This is clear-
ly a contradiction From the assumption that 2= #, it follows that 8#0, =0 and /=k+1,
and hence X= CPrx X*. It is clear that X*ECP,,. Since K= G/G; acts on X* almost

effectively and dim K=dim SU(»#+1), X* = CP, and K~SU(n+1).

Next consider the case of (SU(!), SU(U—1)). Put N=N(SU{U-1)). If Xn)=9¢, we
can easily show a contradiction. Asssume that Xyy# ¢ and F=F(SU(l), X)=¢. Then it
is known that X = (S2-1x P)/S1, where P= F(SU(/—1), X). In section 4, it is shown
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that Pa CPn. Since K= G/G; acts on P almost effectively and dim K=dim SU(#n+1),
we have K~ SU(n+1) and P=CP». Then a principal isotropy subgroup H of G-action

contains SU (k) x N(SU(n—1)), which is proved to be a contradiction by dimensional argu-
ments.

Thus we may assume that there exists at least one fixed point. Let F be the fixed
point set, U an invariant closed tubular nbhd. of Fand P=F(SU({—1),X—int U). In
section 3, we shall prove that aP/Sla CPr—1x CPn. Now K= G/G; acts almost effectively

on 3P/S! and dim K=dim SU(n+1)+dim SU+1)—dim SU)>dim SU(n+1)+dim
SU(k—I+1). By induction K is locally isomorphic to SU (n+1) x SU(k—!+1), which is
clearly a contradiction.

In the following sections, unless it is stated to the contrary, the field Q of rational num-
bers is used as coeffiients of homology and cohomology.

2. An SU()-action on X ECPnX Sk
In this section let X be an orientable closed (2n#-+%)-manifold such that X~ CP,x Sk
Q

(>3) on which SU (l)(2l —2>n+ g-) acts with SU(/—1) as a principal isotropy subgroup

at least one fixed point and non-empty Xcny (N=N(SU({—1), SU{)). Let U be a closed
invariant tubular nbhd of the fixed point set F=F(SU (), X), and P the submanifold
F(SUU—-1), X-int U). We may assume that the restricted action of SU (/) on U has just
two types of orbits; principal arbit and fixed point. It is known that X =09[ D2/ x P]/S!,
X*= P/SWJoP/SIx [0, 1] attached along dP/S! and P/S'x {0} and P/St~F. Put Y= D%
X P.

We shall fiirst consider the case in which the fibre bundle § : Sl—3Y— X is trivial.
Then we have 0Y = S1X X ~S!x CP,x Sk. Consider the Q-cohomology exact sequence of
the pair (Y, 9Y)

.
—HA(Y, aY)——»Hh(Y)——z>Hh(aY)5—>Hh+1(Y, oY) —>
[ 2+
H#(P) I*

where p* is induced by the projection p : Y— P and f* is induced by the composition
ooy Gy (2__,p
Since f has a cross section P—»9Y —Y — P, i* injective. Hence we have the

following short exact sequernce;
i*
0—>H»(Y)—>H#O0Y)—>Hr1(Y,0Y)—>0
2

@. D Q
H#(P) Hontb—n+1(P)
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Let 4, : 9P—> P be inclusion, ¢ a generator of H1(dY) and @ generator of H2 (3Y).
Since dim P=2n+k—2/+2<2/—1 and H2w+k-21+2(P) =0, it follows from (2. 1) that 2z
+1< 2n+k—2]+2<k, and hence P~S!x CP,. Thus we have f*(¢) =ceH1(P) is non-zero.

Q

It follows that ¢; =i;*(c) #0. Suppose that i1*(f*(a)) =a;=0. Since H*(P) is generated
by c and @ =f*(a), i;* : H*(P)—> H#(3P) is zero for A =2.
Hence we have the following exact sequence:

@.2) 0—>HrOP)—>HMI(P, 0P)—> H1(P)—>0 (h=>2).

Since H3(P)+0, we have Hen+t—21-1(P) ~ H3(P, 0P)+0 and hence 2n+k—2/—1<2n
41, which implies that k—2/<2. It is not difficult to see that the cases of k—2/ and of

k—2/ =2 are impossible. When k—2/=1, it is shown that 9P~ S1x S2»+1, Since the fibre
Q .

bundle S —>3P——3P/S! is also trivial, we have 9P~ S'x dP/SL. It is clear that 3P/St
~Sn+l,

Suppose next that i;*(f*(@)) = a;%0. Let m be the largest integer such that ay= # 0.
It is not difficult to see that m =#xn. Hence we have 0P~ Slx CP,x S¥2! or S1X CPr—21-1
2

x S27+1 which implies 9P/S! ~ CPux S¥=21, or CPp—11-1X S2+1,
L

Next we shall consider the case in which the fibre bundle ¢ is not trivial. Let ecH2(H
: Q) be the rational Euler class. Since 2>>2, we have e»+#0 and ¢*+1=0. From the Gysin
sequence of &, it follows that Q-cohomelogy groups of dY are:

HO= H2n+ktl = [2n+l = [k = Q
Hi=0 otherwise
As before, we have the following exact sequence: |
0—>H"(P)—>H?(0Y)—> HW*1(Y, 0Y)—0
H 2n+l§z+1 -n(P)
If 2> 2n, then 2/—2> % +#n>2n and hence we have dim P=2n+k.—2/+2< k. Since

H2»+1(@Y) =0, dim P must be greater than or equal to 2#+1. This implies that P~S?»+1,
Q

0
From the cohomolgy exact sequence of rair (P, 9P), it follows that Hi (6P) ~ Hit1(P, oP)
~ Hon+r—21+41-i(P) for 0<{i<2n and hence we have

HO(0P) = Hk21(§P) = H2w+1(9P) = H2n+1+2l(5P) = Q
Hi(oP)=0 for i; otherwise.

Let a be a generator of H2»+1 (9P) and b a generator of H*~2! (§P). Denote a be the ele-
ment of H2»+1(P) such that i*(@) = a (i : 9P —> P inclusion) and aeHsn41(P) the dual of a.
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Then we may assume 6b = D ~la where D : H21+1(P, 9P) —> Han+1( P) is Poincare duality.
It can be shown that $Ue+0. In fact we have

<[P, dP], aUDla>= <[ PaP]1ND~1a, a>=<a, a>+ 0, and hence we have: D5(aUb)
= D3(bVi*(a)) = D(D-aUa) = <[P, 3P], D~lea>+0, which implies ¢Ub+0. These argu-
ments imply that P 5 Sk—2l x S2n+l or S2ntk—21+1(f =2pn—2/41). By similar arguments

we can show that when 2<2n, 0P~ Skx S2n—2l+1 or Sn+k—21+1(p=2n—2[+2). It follows
Q

from the following proposition that 9P/S! ~ CP,x Sk=2, CPp-21—1x S2#+1,  CPp_1x Sk
Q 2

CPk—lzx S2n=21+1, or CPan+k~21(h=2n—214-2).

PROPOSITION (2. 3) Let X be an orientable closed (m+n) -manifold such that XES"‘

X S#(m, n=2), where at least one of m and #» is odd. If a circle group S! acts on X on
freely, then the orbit space X* has the @-cohomology ring of one of the followings;

CP@;; X Sn, or CPZ,___l x Sm,

PROOF. Let ecH? (X*: Q) be the Euler class. We shall consider only the case in
which m =2m', n=2#"+1. From the Gysin sequence;

_>Hi(X)__;Hi—l(X*)ie_,HHl(X*)_,HHl(X)_,,
it follows that Hi-1(X*)~ Hi+1(X*) for i<<2m’—1, for 2n'+1<i<2#'+2m’ and for 2m’
<i<2n'. Let kbe the largest integer such that e#+ 0. Itiseasy to see that dim H?2»' (X*)
=2 and hence dim H2» (X*) =2. This implies that X*~S2»'x CP,. Q.E.D.

Now we shall prove the last part of proposition 1. Consider the case in which the
fibre bundle S! — d(D2%! x P) —> X is trivial and hence the bundle S1—S2/-1x P—X
—int Uis also trivial. Note that when the fixed point set F is empty, the argument is
varid. Then int U has no 2-torsion. Since Hi(X—int U: Z) = Hen+t—i (X, U, : Z), U has no
2-torsion.

By similar argumets, it is proved that dP/S! has no when the bundle is not trivial.

Thus we have completed the proof of Proposition 1.

3. An SO (L)-action on X~CP, x Sk
Q

In this section we shall consider an SO(!)-action on an orientable (2z+k)-mainfold

X (21 >—§—+n+3) such that Xaskx CPn(k>3) with no 2-torsion, with SO(/—1) as a pri-

ncial isotropy subgroup and non-empty fixed point set F. We have proved that X =a(D!
x X*) and X*~CP,. We shall prove that aX* ECan Sk—1if k—I[>1. We may assume
Q

that £>I—1.



Degree of symmetry of a certain product manifold 9

Casel. k=|.

From the exact sequence of the pair (X*, 0.X*), it follows that H2(0X* : Q) =~ H%(X*,
Q) +H2HI(X* 9 X* : Q) for 0=i<n.

Let aeH2(X* : Q) be a generator of H*(X*: Q) and be HI(X*, 0X* : Q) the element
such that Db is the dual of a», where D : H1(X*, . Xi)—> Hz. (X*) is Poincare duality.

Let a,=1i*(@) and boe HO(X* : @) the element such that 66y = b.

LemMma (3.1) d(boUash)#0 i<h<n

ProorF Since <[X* 9X*1N((boUak)), arr>=<[X* 0 X*1N(6byVar), a"r>
= < ([ X*, 0 X*]N6bo)Nak, an—h > =<[ X*, 0X*1nd by, a” >+ 0, we have dbyUar+0, where
[ X*, 0 X*] is the fundametal class of X*. Q.ED.

Case 2. k—[>1.

For this case, it is not difficult to show that . X*~CP,x S¥~! and with no 2-torsion.

Q
4. An SU(L)-action on X~CP, x CPx
Q

In this section, we shall consider an SU(!)-action on an orientable (2r--2k)-mainfold
XQ@l—-2>n+Fk) such tca X~ CPpx CPr((k>n) with SU(/—1) as a principal isotorpy
Q

subgroup, non-empty Xy (N=N(SU(—1), SU(I)) and non-empty fixed point set F.
It known that X=0(D%x P)/S! where P= F(SU(I—1), X-int U). Itis not difficult to
see that Hi(P: Q)~Hi(dY : Q) for i<C2/—1. Note that &> 1. Suppose the fibre bundle
S1—»3Y—> X is trivial. Then we have Y = Xx S!, and hence we have

Hnt2k=2142(9Y : Q) #0. Since 2n+2k—2142<2/—1, we have H2n+2k=2142( P : Q)+ 0, which
is a contradiction because P is a manifold with non empty boundary. Thus the fibre
bundle S1—90Y—> X is not trivial. Let ee H2(X : Q) be its Eular class. From the Gysin
sequence it follows that there exists the following exact sequence:

A1) 0—>H2HQY)—> H2(X ) —> H2+2 s 22— 5 (9 )—>0.

Let @ and B generators of H*(X : Q) i,e.‘H*CX: Q=Q[al/(artHR Q[ B]/(B**t1). We may
assume that e =Aa+ BB, where A, Bis0or 1. Suppose e=a+8. Then put ¢ = P*(a—p8)
where P :0Y— X is projection. It follows from (4. 1) that cohomology groups of 3Y are:

H*(@Y) : Q) is generated by ¢ for dimension < 2%
H?+1(Y : @) ~0 for k>i>1
H2%(Y : Q) =0 for 2k <2< 2n+2k+1.
Thus we have proved that P~ CP,. For the cases of e=a and e = B, it can be shown that

Q
P~CP,. We shall calculate cohomology ring of oP.
0 .
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Case 1. k=l

Consider the following exact sequence:

Pk i*

J
0—> H1(9P)—> H2(P, 3P)—> H2(P)—> H2(§P)—>0
2
Ho(P).

Suppose H1(dP)=0. Then we have i*(@) = 0 where « is a generater of H2(P). Thus we

have Hi(dP) = 0 for i < 2n, and hence 9P~S?n+1,
Q

Suppose H1(dP)+0. It is not difficult to see that dP~S!x CPy.
Q

Case 2. k>1.

It is not difficult to see that 9P~ S2»—2l+1x CP,. It this case we can prove that

HY©0P:Z,)=0. In fact since HI(X: Z,) =0, it follows from Z,-Gysin sequence of the
bundle S1—8Y— X that H1(dY : Z,) =0, which implies that H1(P: Z2)=0. It follows
immeadiately that H1(GP : Z,)=0.

5. The proof of Proposition A

In this section we shall prove Proposition A. Since situations of the cases of #=1 and
k =2 are almost parallel, we shall consider only the case of 2=1. Then we have N(X)

>—i—(2n+ 1) (2n+3). Assume n>6. The arguments which are completely analogous to

that of section 1 show that it is sufficient to consider an action of SU(!/) with N= N(SU
(I{—1)) as principal isotrogy subgroup (2/42>2x+3) and action of SU(!/) with SU(l—1
as principal isotrogy subgroup, non-empty Xy, and non-empty fixed point set F (2/+42)
>2n+3). For the first action, it is not dificult to show that X = CP,x S! and N(X)=dim
SU(n+1)+1. For the second action, dimensional considerations show a contradiction.
Consider the cases in which #<5. Let G=T7xX G1X G1X --- X Gs(I¥ : r-dim torus, G: : simple)
be a compact connected Lie group with dim G= N(X) which acts on X almost effectively

Casel. n=5

Since N(X)=36>3 dim X, there exists a simple normal subgroup, say G;, of G such
that dim G;+dim N(H,, G)/H:>3 dim G;/H;. All pairs (G;, H;) except (SU(6),
N(SU(5), SU(6))) are proved to be impossible. For the case of (SU(6), N(SU(5), SU(6))
it is not difficult to show that G= SU (6)x SO(2) and X = CPgx Sl

Case2 n=4

Case3 n=3
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We shall omit the proof since the proof is similar to case 1,

Cased n=2

Since 9 < N(X) < 15, Gi is one of G,(exceptional Lie group of rank 2)
S0(6), SO(B), SUL), SU(3), or SU(2). If some G: is G,, dim H; >14—5>9 which is im-
possible. The same argument shows that no G; is SO(6). Suppose some G; is SU(4).
Then dim H;>10, and hence H;~Sp(2), which implies that X=SU(4)/Sp(2). Thisisa
contradiction because =i (SU(4)/Sp(2)) =0 for 0< { <2. If some Gi;is SO(5), then dim
H;>5, which implies that H;~S0O(4). For this case by Vietoris-Begle theorem we can
show a contradiction. If some G: is SU(3) then dim H;>3, H;~ Sp(2) or N(SU(2),
SU(3)). In this case it is shown that X =S5 or CP,x S! and N(X) =9. Thus we have
shown that to complete our arguments it is sufficient to consider only following cases:
G=TxSU(2), T3x SU@2)x SU(2), and SU(2)xSU(2). For the first and second cases,
we can easily deduce a contradiction. Consider the case in which G=SU(2)x SU(2)

x SU(2) actson X. Then dim H>4. Let pi : G—>SU(2) be the projection onto the i-th
factor. Put G= G;X G3X Gas.

Casea dim H=4

In this case X=G/H.

Subcase 1 dim p3(H)=0. Then Gg/p3(H) 5 S8,

Since dim HN(G1x Gy) =4, G1x Go/ Hn(G1x G2) ~S? or pt. This contradicts to the

structure of cohomology ring of X because X is a fibre space over Gs/ps(H) with GiX G,
/HA(G1 X Gyp) as fibre. ‘

Subcase 2 dim ps(H) = 1.

We have dim Hn(G;X G,) =3 and hence X* = X/G;Xx G, is a 2-dimensional manifold.
Put H,= Hn(G1x G;). Suppose there is a 4-dimensional isotropy subgroup K. Since p,
(K)~K|KnG; and dim KnG;=0 or 3, we have K=G;X K, or K1 X G;. Suppose K=G; X K.
Since H; < K, we have p, (H, < ps (K)=K, and hence dim p,(Hy)=0o0r 1. If dim p,(HY)
=0, then H;nG;=G which contradicts to the almost effectivity. It is clearly impossible that
dim p,(Hy)=1. Similary we can show that K+ K;x G,. Thus we have shown that there
is no 4-dimensional isotropy subgroup. Hence possible isotropy subgroup of G;x Gy-action
are principal isotropy subgroup, exceptional isotropy subgroup and G;Xx G,. Therefore
the Vietoris Begle mapping theorem shows that the orbit map = : X—— X* induces
isomorphisms =* : Hi(X*)—> Hi(X) for i<2, which leads a contradiction.

Subcase 3 dim ps(H)=3.
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Since dim Hy=1, X=G;x Gy/H;. Put X=G;x G,/T. Then we have H*(X : Q)
= H*(X : Q). From the Gysin sequence of T—>G;x G,—> X, it follows a contradiction.

Caseb dim H=5,

It is not difficult to show that this is impossible.

Case5 n=1

It is easy to show that N(X) =4.

6. Low dimensional cases

In this section we shall consider an orientable closed manifold X of dimension m <25
such that Xa CPyx Sk (k>3) or CPnx CPr (k>n) and HY(X : Z,) =0. Assume N(X)z

dim SU(n+1)+dim SO(n+1) or dim SU(n+1)+dim SU (k+1). Since the situations of
two cases are almost parallel, we shall consider only the case of X ~ CP,x Sk.

Q
It is easy to see that N(X) =3 dim X if 13 <dim X<25 or dim X=12 and £ =5.
Let C=T7x Gyx --- X Gs be a compact connected Lie group of dim G=N(X) which
acts almost effectively on X. There exists a simple factor, say G;, with the following pro-
perties:

(6. 1) dim G1+dim N(Hl, Gl)/H123 dim Gl/Hl
(6. 2) dim H; 2% dim G,

and
(6. 3) dim H,>dim Gy—25,

where H; denotes the identity component of a principal isotropy subgroup of Gj-action.
i, e. Hy=(HnG,)° (H=a principal isotropy subgroup of G-action).

By dimensional considerations, it is shown that G; is not Es, E7, Eg or G,. If Gi=F,, H
must be Spin (9). Since dim X/G;=2n+4+k—16, the Vietoris Begle theorem shows a con-
tradiction when £2<{16. When %2 >16, we have N(X) >4 dim X and hence (6. 1) is re-
placed by

(6. 1) dim Gy+dim N(H,, Gy)/H1>4 dim Gy/H,

This inequality does not hold for (Fy, Spiz (9)). Thus we have shown that G; must be
classical.

Case1l G;=SU)
If >9, then dim G;/H; <25 g%—(l—- 1)2, and hence we have (G, Hy) = (SU(D), SUU
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—1)) or (SU(D, N(SU(I—1), SU(I))). Considering subgroups of low dimensional SU(J),
we can also show that possible pair (G,, H,) is as above.
Case 2 G;=S0(L) Note that / >5)

In this case, we can also prove that possible pair (G;, Hy) is (SO(!), SO(I—1)) but
one exception of (SO(7), G,). Consider the exceptional case. It is sufficient to consider
only the case of CPy;x S5 or CP3x S8. Since G, is maximal in SO(7), possible orbits are
rational cohomology 7-sphere. Hence the orbit map = : X——> X/SO(7) induces isomorp-
hisims #* : Hi(X/SO(7) : @) — Hi(X : Q) for i<6. Then the generator a of H2(X : Q) is
in the image of =*. Since dim X*=6, or 5, we have a4=0 or ¢3=0, which is a contradiction.

Case3 G;=SpL) (I>3)

It is not difficult to see that this case is impossible. The same arguments as in section
2, 3, and 4 show that X=CP,x S* and N(X)=dim SUn+1)+dim SO(k+1). The details
are omitted since they are tedioas.

There remains the following cases: CP,;x S, dimX=11, 10, 9, 8 and 7.

Case CP,x St

We have 78 > N(X) >34>2.8x12. There exists a simple normal subgroup G, of G
with properties

(6. 4 dim G,+dim N(Hy, Gy)/H,>2.8 dim Gy/H;
6.5) dim H; >_‘9£ dim G,

and
(6. 6) dim H; =>dim G;—12.
It is easy to show that G; is not exceptional.
Subcase 1 G;=SUQ).

Since dim G; <78, we have /< 8. It follows from (6. 6) that H; ~ SU(I—1), or N(SU
(I-1), SU(?)). Moreover from (6. 4) and the tfact that 2/—1 <12 it follows that possible
pair (Gy, Hy) is (SU(5), N(SU(4), SU(5))) or (SU(6), N(SU(5), SU(6))). Thenitis
easy to see that X=CP,x St and N(X) =dim SU(5)+dim SO (5).

Subcase 2 G;=S,(L), or G; =S0(L)

It is not difficult to see that this case is impossible. We shall omit the other cases
since they are not difficult but tedious.
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