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1. Introduction and summary

In this paper, we shall make use of an algorithm which was introduced by T. Kita-
GAWA [7] as a method of statistical treatment of the controlled system and afterward was
developed by S. Kano[3], [4], [5] and [6]. In these days, this algorithm is used in many
practical applications.

The algorithm, which may be called the statistical control, is a method of constructing
the prescribed processes from the unknown original stochastic processes by an infinite itera-
tion of a certain linear transformation on the basis of observations of the unknown processes
at each stage. Moreover, in [5] S. KaANO showed that the prescribed probability distribu-
tions are successively constructed from the unknown probability distributions of the
original processes by the above algorithm.

Especially, this paper is concerned with [5] in which the unknown original stochastic
process is assumed to have a finite state space. But, in this place, we shall treat the prob-
lem of constructing some prescribed continuous probability density function from a con-
tinuous probability density function of an original stochastic process defined on Rl. In
order to solve the problem with respect to an independent original stochastic process, we
shall use an algorithm of transforming linearly the unknown continuous probability den-
sity function by using the estimate of the unknown continuous probability density function
in [10] and the prescribed continuous probability density function at each stage. Then,
we shall discuss the asymptotically statistical properties of a limit distribution constructed
by an infinite iteration of the linear transformation. Furthermore. in the case when the
unknown original stochastic process is a simple Markoff process with stationary transition
probabilities, we shall discuss the asymptotically statistical properties related to the same
algorithm of constructing the prescribed transition probability density functions from the
unknown transition probability density functions.

This paper consists of three sections. In Section 2, we shall treat the case of an in-
dependent original stochastic process and in Section 3 the case of an original Markoff
process with stationary transition probabilities.
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2. The statistical properties in the case of an independent
original stochastic process

Let an original stochastic process {X:, =0, 1, 2, ---} be an independent process with an
unknown probability density function po(x) defined on R! satisfying the conditions:

(A. D Do(x)>0 for all xeR1,

(A. 2) sup po(%) =Moo,
(A. 3) bo(x) is uniformly continuous in x.

The purpose of this section is to transform an original stochastic process with po(x) into a
process with the prescribed probability density function ¢(x) defined on R! satisfying the
conditions:

(B. D q(x)>0 for all xeR},
(B. 2) sup g(x)=M< oo,
xeRY
(B. 3) g(x) is uniformly continuous in x.

To solve this problem, we make use of the following algorithm. At the first stage,
random samples of size n, are drawn from the population expressed by the random vari-
able X, and an estimate of po(x) for each z,

A i1(0)
2. D b= s~ (ﬂo) 1_1 ( xhogno)

is calculated, where x:(0), i=1, 2, ---ny, are the »n, sample values, {hy(n), n=1, 2,---} isa
sequence of positive real numbers satisfying the conditions:

(Co 1D 12 (1)2ho(2)-+++ and lim hn)=0,
(Co 2) lim ()= oo

and Ky(x) is a real-valued function defined on R! satisfying the conditions:

(Ko D Ko(£)=0 for all zR! and S” Ko(x)dx=1,
(Ko 2) - Sup Ko(x)=Ko<oo,
(Ko 3) | K3 dr=a<o,

Ko 4 Ky(x) is uniformly continuous in x.
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Then, we transform the probability density function po(x) into p;(x)=po(x)+q(x)— g(x).
This fact means that the stochastic process {X:, {=1, 2, ---} was transformed into an in-
dependent process {Xj;, t=1, 2, ---} with the unknown probability density function p;(x).
At the second stage, again random samples of size #; are drawn from the population ex-
pressed by the random variable Xj; and an estimate of p;(x) for each x,

_ 1 0! x—xi(1)
2. 2 h= oy 2B\ Ty

is calculated, where x:(1), i=1, 2, ---, n;, are the n; sample values, {#;(n), n=1,2,---} isa
sequence of positive real numbers satisfying the conditions:

€ D 1=2m(D=m2)=: and ’Eim h(n)=0,
€ 2) lim #hy(n)= oo,

and K;(x) is a real-valued function defined on R! satisfying the conditions:

(K; 1D Ky(%)=0 for all xeR! and SlKl(x)dx;—l,
K 2) sup Ky(#)= K<,

(K: 3) | K1 dr=ai<oo

(K; 4 K;(x) is uniformly continuous in x.

Then, we transform the probability density function p;(x) into po(x)=p(x)+q(x)— p/l\(x).
This fact means that the stochastic process {Xy;, =2, 3, ---} was transformed into an in-
dependent process {Xy:, t=2, 3, ---} with the unknown probability density function p,(x).
Generally, at the m-th stage, random samples of size nm_; are drawn from the population
expressed by the random variable X»_;, m-; and an estimate of pm_;(x) for each x,

~ _ 1 nm-1 x—xi(m—1)
(2 3) Pm_l(x)— nm_lhm_1(nm—1) igl Km_l (h—m..m)

is calculated, where xi(m—1), i=1, 2, -+, #m_y, are the nm_; sample values, {sn_1(n), n=1,
2, --+} is a sequence of positive real numbers satisfying the conditions:

(Cm_ll) 1_2_hm-1(1)_2_hm_1(2)% -~ and ’}im hm_1<n>= 0,
(Cm-12) Tim nhm_y(n)= o,

and Km_;(x) is a real-valued function defined on R! satisfying the conditions:
(Km_1D Km_1(%)=0 for all xeR! and S“’ Km(%)dx=1,

(Km-12) sup Km_1(x)=Km_1< o,
Xs
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Kei®) | Koma(dr=am1<eo,

(Km-14) Km_1(x) is uniformly continuous in x.

Then, we transform pm_1(x) into pm(x) =pm_1(x)+ q(x)—gm_l (x). This fact means again
that the stochastic process {Xm_y ¢, t=m, m-+1, .--} was transformed into an independent
process {Xm,t, t=m, m+1, -} with the unknown probability density function pm(x).
Next, we mention without proof the lemma given by E. Parzen [10] in order to prove
main results in the paper.
LEMMA 1. Let K(x) be a real-valued function defined on R satisfying the following condi-
tions:

. 9 K(x)=0 for all xeR1,
(2. 5) sulg K(x)=K< o,

and f(x) be a real-valued function defined on R! satisfying the following conditions :

@ 6) sup |f(0)| <o and |__|f(x)]dx<eo,
@ D J(x) is uniformly continuous in x.

Then, it holds that

@ & mfu()= | KOy uniformly in x,
where
(2. 9 1) =55\ K(5 ) poay

and {h(n), n=1,2,---} isa sequence of positive real numbers satisfying the condition :
(2.10) 1=Z2(D=A(2)= -+ and ’!‘l_»nolo h(n)=0.

The two statistical properties related to the algorithm are stated in the following
theorems.

THEOREM 2. 1
.11 Elpma1(x)]~q(x) for sufficiently large nm,
where ~ denotes asympiotic equality.

Proor. By using Lemma 1, we can obtain

E[pm,1(2)] = E{E[ pm,1(%)|Dpm]}
=E{E[(n()—m(OD | 5ml} +4 (%)
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=E[tm— 5t Sle(—h—mx—%n—-)—>Pm(y)dy]+QCx)
~q(x) as im—> 0,

where E[ « | p»] denotes the conditional expectation given the probability density function
Dm at the m-th stage.

THEOREM 2. 2 For sufficiently large n;, [=1, 2, ---, m,

(2.12) E[(pma(x)—q(x))F] ~
= e 1 Am—~i
~ o (L Ry ( hom—iChim=i) _quD) 9
melr =1\ 1 a
+ jEIo (ﬂm—j "_o( ho(’(;o) —Po(%) )p o).

If, fori=0, 1, -+, m, ni=n,
hi(D=hr(D, 1=1,2, -,
and Ki(x)=K(x) for all xeR1, then
(2.13) lim E[Cpmoa(0)— (@)~ £ (i —2®) 4,

where am= r K2 (x)dx and a= SO: K?(x)dx.

Proor. From pm.(x)= pm(x)—!—q(x)—_/b\m(x) and Lemma 1, we have
(2.14) E[(pm1(2)— (D)1 =E (EL(m(2)—hm(%))?] 1)

=[] {5, Z (00— gy (s ) 18m]]

~E[ PP 2D [ L o 52 puday

Bm Bm

o1 hm(lnm) Ko ™) Fomas]

~E[(5 2 ) ) pu ()

Repeating this calculation of conditional expectation, (2. 14) is reduced to

(2.15) E [( @ P”;C”f) ) pm(®]

_E[{_am A+ s =Dms(D 402

+(ma()—Pma ()} ]
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— — 14 "m— _
ey E [Cmoa®)—bm-o(2].

Hence, inductively we can obtain (2.13) and the theorem is proved.
Remark. In this paper, we may consider that pm,;(x) defined on R! is non-negative
for sufficiently large nm because of

HmEL|__(om(x)— Bm(2))7dx] bm] =O0.

3. The statistical properties in the case of an original Markoff process
with stationary transition probabilities

Let an original stochastic process {X:, t=0, 1, ---} be a simple Markoff process with
transition probability density functions po(x|x’) defined on R! X R! and an initial probability
density function po(x) defined on R! satisfying the conditions:

(A D po()20 for all xRt and | peCodds=1,
(A" 2) iu}gpo(x>=M6<oo,
(A”. 3) bpo(%x) is uniformly continuous in %,
(A'. &) bo(x|x’)>0 for all x, x’eR! and ST Do(x |2’ )dx=1 for all x’eR},
(A'. 5) sup po(xl 2 )=M"¢< o,
xeRl, x/¢R
(A’. 6) bpo(x|x") is uniformly continuous in x and «'.

Here, we shall consider to transform an original Markoff process into a process with the
prescribed stationary transition probability density function g(x|#’) defined on R!X R!
satisfying the conditions:

(B. 1 (x| #)>0 for all x, #'eR! and [ q(x|#)dx =1, for all ¥'eRY,
(B'. 2) sup q(xlx’) M< o,

xeRY, x'eR )
(B'. 3) q(x|x") is uniformly continuous in x and «’.

We make use of the following algorithm in order to solve this problem. At the first stage,
:sequences of random samples of size #, are drawn from the stochastic process {X:, (=0, 1
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., 2T'—1} and an estimate of po(x|x") for each x and «/,
T x—5;(2t—1) ) & —xi(20—2)

ren) £o( )
2 ey 25 (e ) (e

x —xi(2¢t—2)
R 3 Ko s

is calculated, where xi( ), i=1, 2, -+, n,, are the n, sample values at time ¢, {h(n), n=1, 2,

G. 1) Do(x|#)=

.-} is a sequence of positive real numbers satisfying (Cp 1) and (Co 2) in Section 2 and
Ko(x) is a real-valued function defined on R! satisfying the following conditions:

Xy D Ko(x)>0 for all xeR!

and (K¢2)—(Kp4) in Section 2.

Then, we transform the transition probability density function po(x|x’) into pe(x|x")
—?o(x |2)+q(x|#)=p1(x|x"). At the second stage, sequences of random samples of size
ny are drawn from the stochastic process (X, t=2T, 2T+1, .-, 4T—1} expressed by the
transition probability density function p;(x|%’) and an estimate of p;(x|x’) for each x and x’,

A x—xi(2TH42t—1) 2 —xi(2T+2t—2)
2—1 n1k21(n1) §1 ( )Kl(

N h(ny) hy(n1)
@G. 2) pi(x|x") = o 5 ,
1 x —x:(2T+2t—
——3' K
2-1 nyhy(ny) zz—:l 1( h(n1)
is calculated, where xi(£), i=1, 2, ---, n;, are the n; sample values at time ¢, {#(n), n=1, 2,

--+} is a sequence of positive real nmmbers satisfying (C; 1) and (C; 2) in Section 2 and
Ki(x) is a real-valued function defined on R1 satisfying the following conditions:

X7 1D Ki(x)>0 for all xeR!

and (K; 2)—(K; 4) in Section 2.

Then we transform the transition probability density function p;(x|x’) into p(x|x")
- pl(xlx')+ g(x|x")=po(x|2"). Generally, at the m-th stage, sequences of random samples
of size nm_, are drawn from the stochastic process {Xm_y ¢, t=2(m—1)T, -+, 2mT—1} ex-
pressed by the transition probability density function pm_1(x|x’) and an estimate of
Pm_1(x|x") for each x and «/,

(5. 3) pma(x]x)

T 1 nm_le- (x %(2(m—1)T+2¢— 1))Km_1(x’—x;(2(m——1)T+2t—2))

_:41 mm-1P2m-1(Am-1) (=3 hm—1(Nm—1) hm—1(nm-1)
I 1 nm-1 % —x%2m—1DT+2{—2)
tz-]1 nm—1Am-1(nm-1) i-le_l( hm—1(nm—1)

is calculated, where xi(?), i=1, 2, -+, #m—1, are the nm-; sample values at time ¢, {hm—1(n),
n=1, 2, ---} is a sequence of positive real numbers satisfying (Cm-11) and (Cm-12) in Sec-
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tion 2 and Km_1(x) is a real-valued function defined on R?! satisfying the following condi-
tions:
K’'m_11) Km_1(2)>0 for all xeR!
and (Kwm_12)—(Km_14) in Section 2.
In order to prove the theorems in this section, we need the following lemmas.
LemMaA 2. At the first stage, ;)\o(xlx’)——po(xlx’) has the same limit distribution as
. 4 .

T 12 1 x—xi(2t—1) x'—xi(2t—2) po(x|2") x' —xi(2t—2)
P B R i e L e e e e S r o)

T
23 Dar2(x) >
=1

where p:(x) is the probability density function at time t.
Proor. By the law of large numbers and Lemma 1, we can obtain

L 1& 1 ' —xi(2¢—2) \_
P },},EL ?;-"1 ”0:‘2-1 ho(no) K ho(no) )

e 12 1 x—xi(2t—2)
- '2{& tZ- 170 iE-I E [ ho(no) Ko( ho(no) )]

T
=2 paro(X').
i=1

Thus, using the Cramér’s result, the lemma is completed (see P. 254 in [2]).

LEMMA 3. At the first stage, if ng is sufficiently large then we have

(3. 5) Efﬁ(xlx’)] ~po(%| 2 for all % and %R,
1 Qo ay , ,
» Ny 2 CIEDII N CIED)
(3. 6) E[(Po(xlx')—po(xlx’))z]m 7o ( ho(ng) {hoczozx,) o ¥ } o( X
0

Sor all x and x'eR1,

T oo
where Ao(x’)=t2_ lpz,«_z(x') and ag= S _mK 2(y)dy.

Proor. First we shall prove (3. 5). By the definition of j;o\ (x2]x") and Lemma 3, we
have

@7 DoCx|#)—pCx] %)
1% 1 x—xi(2t—1) ¥ —xi(2t—2)\_ po(x|2x") 2 —xi(2t—2)
=17 i-l[ ha(no) Ko( ho(no) )Ko( ho(no) 2&0("0) Ko( ho(no) ]

Ao(x")
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In order to show E[?)o(x | %) 1=~po(x|x"), it is sufficient to prove

e [_1__§ {hzo%no) Ko(x—xi(Zt—l) 0<x _xtczt_z>)_ bo(x) %) g (x —xfCZt—2>)}]~o.

o =1 ho(no) ho(no) ho(no) ho(no)
This is done, using Lemma 1, as follows:
1 X 1 x—xi(2t— 1) 2 —xi(2t—2)
G- 8) E [ 2 it Ko ) 5o (s )

iy 5oy )]

S:o ho(lno) ko(_ng )[S—oo{ ko(lno) ;:o(’i’ol) )

— bo(x| x’)}l’o(h fyz)dyl:lﬁzt-z(h)dyz

'\N'S:, ho(lno) K°( ;:;(_nﬁ; )(ﬁo(x |92)—Do(%| % ))P2e-2(¥2)dy2

oo

=S_& ho(lno) K0< Z;(—nfg )Po(xlyz)Pzt-z(yz)dyz

—Po(xlx')s_w ho(lno) K ( h(,)( ) )Pz: 2(¥2)dy;

~po(%| % Dpat(x ) —po(x| 2" Dpar () =0.

Secondly, we shall prove (3. 6). We calculate for the first time the following equations:

1 X x—xi(2t—1) x —x:(2t—2)
S B[ ,E-l{hzocno)K ieney )KL e

p(x]x’) ' —xi(2t—2)\\ 2
e G )

= Bl fidiy BT (adiey B N
201 ey K s ey B s O}
O B S} ]

= rS:,{ I2C) ( Zoc_n?) )}2{81( h0(1n0> Ko( zo—(—;; 1) ))2150(3’1 Iyz)dh}Pzt—z(yz)dyz

—2po(% ]x')s { Tl ) (Zo(—njf:) )} {Sl Tl ( TCrto) )Po(.hIyz)dh}Pzt-z(yz)dyz
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Tk Ko( XCD) )} Dat- z(yz)dyz]

s

ho(n D S K3(yddy S_w{ D) Ko ho(n ) )} Do(x|y2)b2t—2(¥2)dys
IEe
1

("o) ho-(_ny3 } Do(%|32)D2¢-2(¥2)dy2

s\ Ky )b o)

~L 1 ( e (n 5 ) Do(x| %) por_o(x)— 2( e P(z,(x ED) 2R ED)
+( ol )Po(xlx')ﬁzt 2(x')]

@

= 1ok 7o) {hog,‘;o) _Po(xlx')}ﬁo(x]x')pzt_z(x')

and

(3.10)

1 2—xi(2t—1) 2 —xi(2t—2) Po(x|%") o (¥ —%i (2t—2)\] ,
E {ht)?(”o) Ky s )Ed honey )™ ho(ned BN o) )

[
i R R ) A e )

~0 for t==F.

Hence, from (3. 9) and (3. 10), we can obtain
(3.11)  E[(ho(x|#)—polx] #))2]

E [ {,‘% Lﬁ ( hzo(lno) Ko( x—xi(Zt—l)) Ko( 2—%i(2t—2)\ _ po(x|x’ ) % — x,(2t—2)))}2]

=1 M {=1 ho(no) ho(no) ho(no) ho(no)
A¥(x)
1 & 1 x—x;(2t 1) 2 —xi(2t—2)\ po(x|x) 2 —xi(2t—2)\) 2
~7O—:Z-1El— { ho(no) ho(ng) ) ( ho(no) - ;;o(no) K ho(no) } J
Aj(x)

nohoa(on@ { hogZ@ *Po@lx?} Po(xlx’>§1p2,_2<x')

LHED)
noh(‘lz(ono) { ho(no) —j)o(xlx')} Do(x|x")
Ao(x)

Thus, the proof of the lemma was completed.
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THEOREM 3. 1

(3.12) E[pma(x|x)]~q(x|x") for sufficiently large nm.
This theorem is easily proved by Lemma 3.
THEOREM 3. 2 For sufficiently large ni, [=1,2, -+, m

(3.13)  E[(pmu(x|xD—q(x]|2))7]

aAm~j; aAm—i

~ S O Gty ey ity ~ 9GO G0

I (i ) sy W o sy — #1001,

T
where Ai(x)) =tz_llp21T+2t~2(x’)~

If, fori=0,1, 2, ---, m, ni=n,
hi(D=h(D), I=1, 2, -,
and Ki(x)=K(x) for all xeR}, then

(3.14) E[(pma(x|a')—q(x]x'))?]

(B (it o) ey Xy —ac1 o1

HI( o N ) oy ity — okl 2 )eoCel ),
where a= X:OK 2(y)dy.

Proor. By the definition of pm1(x(2'), E[(Pma(x|x’)—g(x|2'))2] is written as
(3.15) EL(pm(x| 8 )~ pm (5|21

If we take the conditional expectation of (pm(x| x’)—/fm(xl %'))?, then we can use the result
of Lemma 3. So that

(3.16) E[E{(pm(x| 5 ) — (£ #))2| pm)} ]

~BE [ nmA];anl> ( hm%;;m) )( hm‘(zzm) —pm(x| x'))ﬁm(xlx’)].

Repeating this calculation of conditional expectation, (3. 16) is reduced to

(3.17) E[(pm(x]8)— pmx[2))?]

am

nmA}n(x’ ) ( hm(nm) ‘{ hm‘é;nim) ‘;QCxlx')—(Pm-1(xlx’)

%E[

bG8 a1 )+ CmoaCal 2 = DmaCal D) |
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~ 1 am am __ ’ ,
= nmAm(x')( Fomtom) )( FomC i) g(x|x ))QCx D)

(

1 m ™
N tm Am(%) ( Izm‘(lnm) ) km‘énm) —qcxlx’)) EIED

[{ @m 14 am—1 ( am—1
nmAm(x/) \ hm(nm) { nm—1Am-1(x’>\hm—1 (ﬂm—l)) hm—]_ (nm—l)

—4 (1)) a2~ gl (Ol B pm o] )

~
—Dm_a(x|x'))? ]}-
Hence, inductively we can obtain (3. 13) and the theorem is proved.
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