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THE PRESSURE GRADIENT SYSTEM*

YUXI ZHENGT AND ZACHARY ROBINSONY

Abstract. The pressure gradient system is a sub-system of the compressible Euler system. It
can be obtained either through a flux splitting or an asymptotic expansion. In both derivations, the
velocity field is treated as a small remnant of the original velocity of the Euler system. As such, the
boundary conditions for the velocity do not necessarily follow the original ones and careful consid-
eration is needed for the validity, integrity, and completeness of the model. We provide numerical
simulations as well as basic characteristic analysis and physical considerations for the Riemann prob-
lems of the model to find out appropriate internal conditions at the origin. The study reveals subtle
structures of the velocity: Both components exhibit discontinuities at the origin at traditional levels
of numerical resolutions around 400 x 400 cells on the unit square, but they vanish at the origin with
possible square root type singularity when we increase the resolutions. Comparing to the roll-up of
shear waves or vortex-sheets of the Euler system, these singularities are mild and occur only along
rays from the origin. The numerics is done at higher resolutions than traditionally possible via the
automated clawpack that contains adaptive mesh refinement (AMR) and message passing interface
(MPI), for which we provide the Riemann solvers in both the normal and transversal directions,
where the Roe’s approximation has the elegant 1/2 average in the model’s original variables.
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1. Introduction. The Euler system for compressible ideal gases is an elegant
system that reflect the simple physical laws of conservation of mass, momentum, and
energy. In one space dimension, the initial value problem has been shown to be
well-posed, albeit for data with small total variations. In higher space dimensions,
the initial value problem and the simpler Riemann problems are open. Physical
experiments and numerical simulations have been done since more than a century ago
on various kinds of situations, including the well-known oblique shock reflection on a
wedge [6, 11, 8, 9]. Many types of structures are revealed which indicate that higher
dimensional problems are very complicated, and simplified models are appreciated.
One way to build a model is via the observation that there are two causes for the
motion of an ideal gas: One is inertia; i.e., a gas particle is moving because it has
been moving, while the other is the gradient of pressure; i.e., a gas particle moves
because there is a pressure inequality. Ignoring the simultaneity of the two motions,
we can study the two motions individually as simplified models. The pressure gradient
system is obtained this way that catches the motion caused by the pressure gradient.
Miraculously, the same system can be obtained by considering the Euler system in
the limit as the adiabatic gas constant approaches infinity, which is a nonphysical
process, but it links the model with the Euler system quantitatively, see Sect. 2.

The pressure gradient system has been studied theoretically since 1995. The main
attention has been on its pressure equation which decouples from the velocity. From
our experience, however, it seems clear that the velocity affects the pressure field
through subtle boundary coupling, including conditions at the origin and shock waves
as free boundaries. We set out in this paper to investigate in detail the link between
the velocity field and the pressure variable. We find through numerical simulations
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that the velocity field plays a major role in shock formation, albeit no formation of
roll-up of slip lines. Indeed, the velocity must be reduced to zero at the origin — the
numerics shows, which is a condition that has not been emphasized.

Our numerical procedure is based on the platform of clawpack, which offers
a framework for which we only need to provide the Riemann solvers in the one-
dimensional normal direction and a transversal direction. The Riemann solvers are
based on Roe average, which has the elegant middle point property for the pressure
gradient system (see Sect. 4). The clawpack-compatible code of the Riemann solvers
are available on our web site at http://www.math.psu.edu/yzheng/pge. The inter-
ested user will find that it is as user friendly as the clawpack. The clawpack is available
free-of-charge on its web site.

We point out that there are quite a few numerical simulations on the solutions
to Riemann problems for the Euler system, see [17, 14, 20, 13, 10], the earlier four of
which by now have shown their ages due to rapid advances of computer technology
and theoretical demand of details. We comment that the scheme of Schule-Rinne
et. al. [20], based on Roe’s average, is automated in the clawpack, which is easy to use
for exploring the Euler system. Our emphasis here is to extend the clawpack to cover
the pressure gradient system and utilize the convenience of the package to explore
important subtle details of solutions, which are shown in the aforementioned papers
of simulations, to facilitate theoretical research.

For other models of the Euler system in two space dimensions, we refer the reader
to Brio and Hunter [3] for the unsteady transonic small disturbance equation, Canic,
Keyfitz and Kim [4] for a nonlinear wave system, or the book [30].

The organization of this paper is as follows. We give the asymptotic derivation
in Sect. 2, propose Riemann problems in Sect. 3, and provide Riemann solvers in
Sect. 4. We mention the issue of the velocity field of the system in Sect. 5. We
focus on Configuration B of two-dimensional Riemann problems in Sect. 6, where our
main numerical simulations are presented. We show a sharp image for Configuration
C in Sect. 7. We conclude in the final section with the conclusion that the pressure
gradient system is a satisfactory model, close to the Euler system, and in showing so we
have provided the numerical procedure for readers to carry out their own simulations
conveniently.

2. The system. We consider the two-dimensional compressible Euler system
pt + V- (pu) =0,
(2.1) (ra)e +V - (pu@u+pl) =0,

(pE): + V- (pEu—+pu) =0,

where p is the density, u is the velocity vector, p is the pressure, £ = |u|?/2 +
pp~1/(y—1) is the total energy density per unit mass, and v > 1 is the gas constant.
The so-called pressure gradient system takes the form

U +pz = 0,
(2.2) vet+py = 0,
Et + (Up):c + (Up)y = 0)

where E = p + (u? 4+ v?)/2. Cauchy problems for both systems are open.
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The Euler system is known to be difficult. Simplified models are desired. Let us
consider the special situation in which -y is extremely large while velocity and pressure
are small, but the density remains normal; i.e., consider the limiting case

P = pPo + €ﬁ7
(2.3) u = eu,
p = €p

where € = ﬁ in the limit v — +o0o. We typically set pgp = 1 for brevity. The
variables (p, @1, p) are what we wish to study. To leading orders of the equations we
obtain the pressure gradient system. More precisely, the equation for p becomes

(po)e + €(pr +V - (poia)) + O(e?) = 0
whose leading order is (pg): = 0. We let pg = 1. The momentum equation becomes
e(y + V- (pI)) + O(e*) =0

whose leading order equation is 6y + V - (pI) = 0. Similarly, the energy equation at
order €2 is the equation shown in the third equation of the pressure gradient system.
In the asymptotic process we note that the sound speed

¢ = 30T~

remains at order one (O(1)), thus our asymptotic system retains acoustic waves.
The pressure decouples from the velocity field to form the pressure gradient equa-

tion
(),
Py

which is indeed simpler than the Euler system, where we have omitted the tilde on p
for brevity. The pressure gradient system is the first two-dimensional system of two
or more equations to have the existence established of a global regular reflection on a
wedge, see the reference Y. Zheng [29]. Other progresses are [2, 7, 12, 15, 21, 22, 27,
28].

We finish this section with a bit of history. The splitting of the Euler system into
the flow by pressure difference and the inertia can be traced back to a paper by Li
and Cao ([18]) in 1985 and a paper by Agarwal and Halt ([1]) in 1994 for numerical
simulations. As a model for theoretical approaches, the system was studied in P.
Zhang, J. Li and T. Zhang ([24]) and Y. Zheng ([27]) in 1997-1998, see the books
of Li, Zhang, and Yang ([17]) and Zheng ([30]). The asymptotic derivation of this
section was formulated in 2003 when Y. Zheng discussed the issue with John Hunter.

3. Riemann problems. We propose Riemann problems as initial-value prob-
lems in which the initial values are independent of the spatial radius r = /22 + 32,
(z,y) € R2. Such types of data allow us to look for the so-called self-similar solutions
that depend only on the variables & = x/t, n = y/t. A natural realization of the
Riemann problems is to have four constants instead of an arbitrary function of the
polar angle 6, see Wagner [23] and Zhang and Zheng [25, 26]. Typically, however, the
four constants are further restricted so as to produce a single wave (shock, rarefaction,
or slip line) between any two neighboring quadrants, forming the so-called four-wave
Riemann problems. For the pressure gradient system, the four-wave Riemann prob-
lems are classified into 12 nontrivial configurations (A — L), see [17], on top of three
obvious cases. We study Configurations B and C in this paper, see Sections 6 and 7.
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4. Riemann solver. We consider the one-dimensional Riemann problem for the
pressure gradient system

ur +p, = 0,
(4.4) vt = 0,
E; + (up), = 0,

wherep = F— %(u2 +v?). We regard (u,v, E) =: U as the primary variables, while the
pressure p and the speed of sound ¢ = ,/p are derived variables. The one-dimensional
data are

(uavaE):(uivviaEi)a (1:172)

corresponding to the half spaces z > 0 and = < 0, respectively, for all y. The system
can be cast in the form

U +FU),=0
or
U, + A(U)U, =0
for
FU)=[p, 0, up]"

and the Jacobian matrix of F(U):

—u —v 1
AU)=F'(U) = 0 0 0
p—u? —uwv u

We find that Roe’s approximation ([19, 16] )is simple for the pressure gradient system.
That is,

PROPOSITION 1 (Roe average). For any two states Uy and Uz with nonnegative
energy By > 0, Ey > 0 and nonnegative pressure py > 0, pa > 0, we have

F(Uy) — F(Uy) = F'(U)(Uy — Uy)

where U = (Uy 4+ Us)/2 and p = (p1 + p2)/2, and p; = Ej — $(u3 +v3),j = 1,2.

Proof. Let Aw = wy —wy for w = u,v, E,p. We look for (4, 9, E,ﬁ) that solves

Ap - =0 1 Au
(4.5) 0= 0 0 Av
usAp + p1Au p— () —ad @ Ap + GAu + vAv

From the first row, we find

Ap = —uAu — 0Av + Ap + uAu + vAwv.
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Since Au and Awv are independent and arbitrary, we must have
w=1u, U=0.

From the third row of the matrix equation and using 4 = @, v = v, we find

us Ap + p1 Au = pAu + alAp.
Using @ = u, we obtain

Ap(ug — ) + Au(py — p) =0,
which is

ApAu/2 + Au(py — p) = 0.

Canceling Au from the equation we obtain

pP=p.
The proof is complete. O

We comment that the value p via the function relation p = F — %(u2 +v2) at U
is greater than the value p = (p1 + p2)/2. We use the average p = (p1 + p2)/2 rather
than the function evaluation of p through the formula p = F — %(u2 +92) at U. Note
that the fluxes for this system and the one-dimensional Burgers’ are either quadratic
or cubic functions of their variables.

PROPOSITION 2 (Riemann solver). The Roe average F'(U) has three eigenvalues
A1 = —/Ds A2 = 0, A3 = /D with three corresponding right eigenvectors

rs =

-

[\v)

\

S = O
]

+
Sie~

and splitting formula
AU = E?:lﬂérl

where

61:—AEJrAu(UJC\/I’_))JFUAU7 B2 =Av, pz=Au—p.
2Vp

Proof. Tt is straightforward computation, which we omit. The proof is complete. O

The solution to the Riemann problem is therefore approximated by

U(&) =Ur + Zx,<¢ Bere

where the summation is over all ¢ for which A\, < €.
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From here on, a numerical procedure based on Godunov scheme and the Roe
approximation for obtaining an approximate solution has been automated in CLAW-
PACK. Briefly, it develops the expansion formulas for the differences

(4 6) E?:lwffl/g = Uz — Uifl = AUi_l/g
' A AUi_yjo + AYAU;_1p = F(U;) — F(Ui-)

with
AAU; 1y = ()\1)1'71/21/\7141_1/2, ATAU; )y = ()‘3)1'71/2W?_1/2a

and the the first order Godunov scheme has the form

At
urtt =ur — Az [AYAU; 10 + A7 AU41 2] -

For higher-order schemes, the iteration formulas are

Ui”Jrl =U" - % [A""AUi,l/g + A_AUI'J’,:[/Q} — %(Fi+1/2 — Fi,l/g)
where E—,l /2 is a limited flux depending on the signs of the eigenvalues.

In two space dimensions, we provide the Riemann solver subroutine rpn2pge.f and
the transversal part rpt2pge.f. The normal part rpn2pge is simply the one-dimensional
version, but incorporates both the x-direction and the y-directions. The transversal
part is a two-dimensional phenomena, which does not appear in one space dimension.

The dimensional splittings, including Strang splitting, adaptive mesh refinements,
and message passing interface are automated in CLAWPACK for direct applications
on the pressure gradient system.

5. The issue of velocity. There is concern about how to impose boundary con-
ditions on the velocity (u,v) for the pressure gradient system, both physical boundary
conditions and internal boundary conditions and particularly the values of (u,v) at
the spatial origin. Take, for examples, the Riemann data with two lines of symmetry,
such as Configurations B and C, see below, it is an issue as to how to impose velocity
conditions at the origin. Once a decoupled pressure p is solved from the second-order
equation for p, one can integrate the momentum equations to find (u,v) all the way
to the origin, which seem to give possibly nonvanishing values of (u,v) at the origin.
For the Euler system, there is no question as to requiring the velocity to vanish at the
origin. However, the velocity for the pressure gradient system is a high-order term
of the Euler system and it is not clear whether we should impose similar conditions
on it. The boundary behavior of the velocity is one of the main points of this paper.
We use numerics to show that velocity at the origin for the pressure gradient system
does vanish — albeit very slowly — for Configurations B and C. For the Euler system,
numerics indicates that the velocity also vanishes and it manages to do so by allowing
the density function to develop local extrema near the origin.

6. Configuration B. In Configuration B, the four states {(p;, ui,v;)} for i-th
quadrants (i = 1,2,3,4) are such that a single rarefaction wave of the plus family is
produced between states 1 and 2 across the positive y-axis, a single rarefaction wave
of the minus family is produced between states 2 and 3 across the negative z-axis, a
single rarefaction wave of the plus family is produced between states 3 and 4 across
the negative y-axis, and a single rarefaction wave of the minus family is produced
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Pressure contours and sonic curve at time 0.3

Fic. 1. Contour lines of pressure at ca = 0.42,c1 = 1.0. For theoretical interests, we have
plotted the pseudo-Mach number contour at 1.0, which is the double-lobe closed curve.

between states 4 and 1, see p.193 of [17]. This is the case which we also call bi-
symmetric four rarefaction wave interaction. The only free parameter in this case is
the pressure in quadrant two: ps € [0, 1], since we normalize the state in quadrant
one so that p; = 1 and require the lines of symmetry to pass through the origin. We
choose data cy(= /pz) from (0, 1] and use the data

p1:17 u1:1*027 U1 = U1,

2 .

(6 7) P2 = C3, U2 = —Uq, V2 = U1,
b3 =p1, U3 = —Ul, U3 = —Ui;
P4 = P2, U4q = Uy, Vg = —U7.

In the clawpack, there are a data file to enter ¢y, another file to specify the Riemann
data (6.7), and a third data file to specify the domain size, final time of computation,
number of cells to use and various levels of scheme parameters such as orders of
accuracy, etc. We typically choose the computational box to be [—0.5,0.5] x [—0.5,0.5]
and final time ¢ up to 0.3. Number of cells along either the coordinate axes is 1600
or fewer, and the slope limiter is minmod. Our number of contour lines used in the
matlab display ranges from 60 to 360, depending on the purposes of illustrations. No
artificial removal of contours is performed.

We have experimented with various values of co. For any cy greater than 0.42,
the numerical results are quite similar. For ¢y below 0.42, the scheme does not seem
to work well, which may be because the solutions are quite close to vacuum, a typical
problem for Roe solvers. We use co = 0.42 for the presentation in this paper. In
Figures 1, 2, and 3, we show the contour plots of the pressure, velocity components u
and v, respectively.

We find seemingly that there are slip lines (discontinuous shear waves) at the
origin. One slip line is in the horizontal direction in the component of u, while the
other is in the vertical direction in the component of v, see Figures 4 - 6. The slip
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Velocity u at time 0.3000

Fic. 2. Contour lines of u-component of velocity at cag = 0.42,¢; = 1.0.

Velocity v at time 0.30

Fic. 3. Contour lines of v-component of velocity at ca = 0.42,¢1 = 1.0.

lines are compatible with the pressure gradient system since the two equations
—&ue —nuy +pg =0,  —&ue —nuy +py =0

are both satisfied at the origin as Vp = 0 at the origin. However, if p is not a constant
in the region, then it is unclear how the slip lines satisfy the equations.
For comparison, we show that the density in Figure 7 for the Euler with co = 0.5
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Central pressure at time 0.30

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

Fic. 4. Central contour lines of pressure at ca = 0.42,c¢1 = 1.0. More contours are used than
Figure 1 for details. The two crosses are numerical errors.

Central velocity v at time 0.30

Fia. 5. Central contour lines of v at ca = 0.42,¢; = 1.0.

and the corresponding velocity u in Figure 8. We observe that u is continuous at the
origin.

In Figure 9 (a chart), we illustrate the strength of the slip line in v as we refine the
grid points. In Figure 10 ( an illustration), we explain how we take the measurements
for Figure 9.

From the convergence study in Figure 9, we believe that the slip strength tends
to zero eventually. To support that idea, we plot the (negative) velocity v against the
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More central velocity v at time 0.30

Fia. 6. Core portion of contour lines of v at ca = 0.42,¢1 = 1.0.

q(1) at time 1.0000
0.25

0.2

-0.05

-0.15

-0.25
-0.25 -02 -015 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Fic. 7. Core portion of contour lines of density of Fuler at ca = 0.5,¢1 = 1.0.

positive z axis (‘at y = 0) in Figure 11, where we also include the best fit of the data
in the form of a power function. The best fit power function is

v =0.952948

whose derivative blows up at the origin.

Upon close examination we find that the distances in Figure 9 are comparable to
individual numerical cell sizes. Thus, we by-pass the plot tools of Matlab and read
the numerical data directly to plot v vs.  along the line y = 0 in Figures 12,13,14
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xvelocity at time  1.0000

05

Fic. 8. Core portion of contours of u-component of Euler at co = 0.5,c1 = 1.0.

Table: Strength of slip in v with regards to refinement of grids for PGE.

200x200 cells | 400x400 cells | 800x800 cells | 1600x1600 cells
Av (at y=0) | 0.106904 0.079604 0.060277 0.042552
AX 0.005400 0.003000 0.001400 0.000880
Av [ Ax 19.80 26.53 43.06 48.36
Av (aty=L) | 0.068724 0.039802 0.026371 0.016066
y length: 2L | 0.0250 0.0220 0.0150 0.0106

Fic. 9. Strength of shear in v-component of velocity of the pressure gradient system at co =
0.42,¢1 = 1.0.

for cell numbers 4002, 8002, and 16002, at various zoom levels. Ignoring the peaks of
v at the origin, we see a trend of v that tends to be a C'' smooth function.

In conclusion, we believe that the velocity is at least a continuous function at the
origin, it is at worst a power function of the radius with a positive power less than
one.

7. Configuration C. In Configuration C, the four states {(p;, u;,v;)} for i-th
quadrants (i = 1,2,3,4) are such that a single shock of the minus family is produced
between states 1 and 2 across the positive y-axis, a single shock of the plus family
is produced between states 2 and 3 across the negative z-axis, a single shock of the
minus family is produced between states 3 and 4 across the negative y-axis, and a
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Fic. 10. Notation in measurement of slip properties.

Absolute Value of v vs. Distance Along x-axis
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Fic. 11. Power function fit of the velocity v along the positive x axis for numerical simulations
with cells 2002,4002,8002 and 16002. The values of v and = are half of the data Av, Ax from Figure
9.
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Velocity v vs x along y=0 for 40¢%, 8007, 16007 cells
T T T

X: -0.0025 X: ~0.00125 X:-0.0006195
Y:0.05 ¥:0.0391 ¥:0.02954

FIG. 12. Core portion of velocity v along the x azis for numerical simulations with cells 4002
(dotted curve), 800% (solid curve), and 1600%. (Horizontally zoomed in.)

Velocity v vs x along y=0 for 400%, 8007, 16007 cells
T T T T T

-0.02-
-0.04 -

-0.06 -

I I I
-0.08 -0.06 -0.04

F1G. 13. Central portion of velocity v along the x axis for numerical simulations with cells 400?
(dotted curve), 800% (solid curve), and 1600%. (Zoomed in equally in = and y.

single shock of the plus family is produced between states 4 and 1, see p.195 of [17].
This is the case which we also call bi-symmetric four shock wave interaction. The
only free parameter is the pressure in quadrant two: ps € [0, 1], since we normalize
the state in quadrant one so that p; = 1 and require the lines of symmetry to pass
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Velocity v vs x along y=0 for 40¢%, 8007, 16007 cells
06 T T T

X: -0.0025
¥:005

I I I I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

FiG. 14. Velocity v along the x azxis for numerical simulations with cells 400% (dotted curve),
8002 (solid curve), and 16002.

Pressure at time 0.30

05

04

0.3

0.2

0.1

-0.1

-0.2

-0.3

-04

Fic. 15. Contour lines of pressure for Configuration C at co = 0.85,¢1 = 1.0.

through the origin. We choose data co = /p3 from (0, 1] and use the data

pr=1, w=—-(1-c)/2(01+c3), v1=u;
(7.8) P2 = C%; U = —U, Vg = U1;

b3 =p1, U3 = —Ul, U3 = —U1;

P4 = P2, U4q = U1, Vg = —U1.

We typically choose the computational box to be [—0.5,0.5] x [—0.5,0.5] and time ¢
up to 0.3.

We note from [24] and [17] that there are subcases in Configuration C. One is for
p2/p1 € (%, 1) when the state 5 produced by the shocks Sy, and S is hyperbolic;
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one is for pa/p1 € (4v/2 — 5,2) when the state 5 produced by the shocks S;, and
S;% is elliptic, and the third is for pa/p1 < 4y/2 — 5 when state 5 does not exist.
We show in Figure 15 the pressure contour lines for the choice of ¢ = 0.85 so that
p2 = c2 = 0.85% € (2/3,1). The velocity field here seems to be smoother than in
Configuration B, thus we believe that the velocity field is continuous at the origin.

8. Conclusion. We introduce with details the model pressure gradient system.
The behavior of velocity at the origin is addressed. We provide Roe type Riemann
solvers rpn2pge.f and rpt2pge.f in numerics to show that the velocity field of the
system vanishes at the origin. The numerics indicate that the pressure gradient system
behaves well in its velocity field with a profile no worse than v = 0.952048, Its
closeness to the Euler system is satisfactory.

We use clawpack, see http : //www.amath.washington.edu/"claw/. With claw-
pack, one can do experiments on other Configurations A and D-L. The Rie-
mann solvers rpn2pge.f and rpt2pge.f are available on our web page http://www.
math.psu.edu/yzheng/pge.
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