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BOUNDS FOR ZEROS OF THE CHARLIER POLYNOMIALS ∗

ILIA KRASIKOV†

Abstract. We use the method of positive quadratic forms and discrete analogues of the Laguerre
inequality recently obtained by the author, to give bounds on the zeros of the Charlier polynomials,
which are uniform in all parameters involved.

1. Introduction. The Charlier polynomials are a family of classical discrete
orthogonal polynomials, which can be defined either by the recurrence (see e.g. [14,
18]),

aC
(a)
k+1(x) = (k + a − x)C

(a)
k (x) − kC

(a)
k−1(x), C

(a)
−1 (x) = 0, C

(a)
0 (x) = 1, (1)

or, for a 6= 0, by the generating function

ez
(

1 − z

a

)x

=

∞
∑

k=0

C
(a)
k (x)

k!
zk . (2)

They are orthogonal on the set {0, 1, ...} with respect to the weight e−aax/x! for a > 0,
and also satisfy the following difference equation

aC
(a)
k (x + 1) = (a − k + x)C

(a)
k (x) − xC

(a)
k (x − 1). (3)

The uniform asymptotic behaviour of the Charlier polynomials for all values of x
was only recently found by T.M. Dunster [2]. Earlier B. Rui and R. Wong provided
asymptotic results for restricted values of x, [17]. Today tackling problems concern-
ing asymptotics of discrete orthogonal polynomials is a very difficult and technically
involved business. One of the approaches is based on the steepest descend method
applied to a generating function and contains many ad hoc arguments. This pro-
gram was realized (yet under certain restrictions on the corresponding parameters)
for Krawtchouk, Meixner and in part for Charlier polynomials, see [1, 2, 3, 8, 9].
Methods based on different ideas for bounding zeros of orthogonal polynomials can
be found in [5, 6, 12, 13]. In particular, applying Theorem 2 in [5] with an = 1

4 , one

finds that the largest zero xk of C
(a)
k (x) satisfies

xk < k + a − 1

2
+

√

4ak +
1

4
. (4)

It is also known that the jth smallest zero converges to j − 1, for a fixed a, [6]. The
aim of this paper is to establish sharper explicit bounds, uniform in k and a, on the

extreme zeros of C
(a)
k (x), provided a > 0. We shall use the approach developed in

[4, 10] and the difference analogues of Laguerre inequality found in [11]. Namely, we
prove the following results.

Theorem 1. Let x1 and xk be the least and the largest zeros of the Charlier

polynomial C
(a)
k (x). Then x1 and xk are confined between the only two real roots of

the following equation in x, y = x − a − k,
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F (x) = (y2 − 4ak + 2a)3 − 2y4 − 2ay3 + (12ak − 3a2 − 6a + 1)y2+

2a(6ak − 3a + 1)y − a2(12k2 − 16ak − 12k + 8a − 1) = 0 , (5)

provided k ≥ 3 and a ≥ (
√

k + 1)2. Moreover, for a ≥ k ≥ 2, xk still does not exceed
the largest root of (5).

To state the next two theorems it will be convenient to set β =
√

a
k , the substi-

tution which also will be used in the sequel.

Theorem 2. For 5
4 < a < k, k ≥ 3, xk does not exceed the largest root in x of

the following equation

Φ(x) = (1 + β)(1 + β + β2)y4 − ((1 + 2β + 2β2)k − 2(1 + β)(1 + β + β2))y3−

((1 + 4β + 9β2 + 8β3 + 2β4 − 2β5)k − (1 + β)(1 + β + β2))y2−

β2k(1 − 2β2 − 2β3)y + β3(1 + β)4k2 = 0 , (6)

where y = k(1 + β)2 − x.

The explicit bounds corresponding to (5) and (6) are given by

Theorem 3. For a ≥ (
√

k + 1)2, k ≥ 3,

x1 > k(β − 1)2 + 2−4/3k1/3β1/3(β − 1)2/3 +
β

2
. (7)

For a ≥ k,

xk < k(β + 1)2 − 2−4/3k1/3β1/3(β + 1)2/3 − β

2
. (8)

For 5
4 < a < k

xk < k(β + 1)2 − β(1 + β)4/3k2/3

(k(1 + 2β + 2β2)2 − 2(1 + 2β + 2β2 + β3))
1/3

. (9)

For completeness we shall present the following two claims, the first giving very
simple unconditional (and weaker) bounds for all a > 0, and the second providing
some information about the location of the least zero for a ≤ (

√
k + 1)2.

Theorem 4. For a ≥ k, the zeros of Charlier polynomial C
(a)
k (x) are confined in

the interval
(

(
√

k −
√

a )2 + 1, (
√

k +
√

a )2
)

,

whenever for 0 < a < k they are in the interval
(

0, (
√

k +
√

a )2
)

.
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It is easy to compare the results of Theorems 3 and 4 since (
√

k±√
a )2 = k(β±1)2.

Notice also that (4) gives slightly better bound for the largest zero than Theorem 4
as

k + a − 1

2
+

√

4ak +
1

4
= (

√
k +

√
a )2 − 1

2
+ O(

1√
ak

).

Theorem 5. For k ≥ 2,
x1 < 1 if a ≤ k,
x1 < 2 if a ≤ k +

√
k,

x1 < 3 if a ≤ k + δ
√

k,
x1 < 4, if a ≤ (

√
k + 1)2,

where δ is the positive zero of δ3 − 3δ − 2√
k

= 0, δ =
√

3 + O( 1√
k
).

The paper is organized as follows. In Section 2 we present the inequalities being
our main tool in the sequel and shortly describe our approach. In Section 3 we prove
Theorems 4 and 5. In fact, the proof of Theorem 4 contains the main idea of the
method. It can also serve as a good illustration for the rest of the results without
tiresome calculations which are necessary for establishing (5) and (6). The next three
sections are devoted to proving Theorems 1,2 and 3. Application of the Laguerre type
inequalities reduces the problem to investigation of graphs of certain polynomials in 3
variables x, k and a. This requires a substantial amount of symbolic calculations and
we used Mathematica to perform them. In particularly we need to calculate a great
deal of resultants of polynomials. The resultant in x of polynomials f(x) = anxn + ...,
and g(x) = bkxk + ..., an, bk 6= 0, is defined by

Resultx(f, g) = ak
nbn

k

n
∏

i=1

k
∏

j=1

(xi − yj),

where x1, x2, ..., and y1, y2, .., are the zeros of f and g respectively. Since all we have
to know about resultants is whether they vanish in a certain region, we will ignore
their sign and omit multiplicative numerical constants.

2. Inequalities. We denote by RP the set of all hyperbolic polynomials (that
is real polynomials with only real zeros). Let x1 ≤ x2 ≤ ... ≤ xk, be the zeros of
f = f(x)∈RP , the mesh M(f) of f is defined by

M(f) = min
1≤i≤k−1

(xi+1 − xi).

First of all we need the following simple observation (see [11] for a proof).

Theorem 6. Let p(x) be a discrete orthogonal polynomial corresponding to an
orthogonality measure supported on a subset of integers. Suppose that p(x) satisfies

p(x + 1) = b(x)p(x) − c(x)p(x − 1) (10)

and has all its zeros in the open interval I. Then M(p) > 1 provided c(x) > 0 for
x∈ I. If in addition b(x) > 0 on I, then M(p) ≥ 2.

It is well known and readily follows from the orthogonality that all the zeros of the
Charlier polynomials are positive, provided a > 0. Thus, applying the above Theorem
to (3) we get
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Corollary 1. M(C
(a)
k (x)) > 1 for a > 0 and M(C

(a)
k (x)) ≥ 2 for a ≥ k.

Our main tools are the following inequalities established in [11], which are the
discrete analogue of the generalization of the Laguerre inequality given by Jensen [7]
and rediscovered by Patrick [15], [16].

Theorem 7. Let p = p(x) be a hyperbolic polynomial, then

(i) for M(p) ≥
√

4 − 6
m+2 ,

Vm(p) =
m

∑

j=−m

(−1)j p(x − j)p(x + j)

(m − j)!(m + j)!
≥ 0, m = 1, 2, ... (11)

In particular

V1(p) = p2(x) − p(x − 1)p(x + 1) ≥ 0, (12)

for M(p) ≥
√

2 , and

12V2(p) = 3p2(x) − 4p(x − 1)p(x + 1) + p(x − 2)p(x + 2) ≥ 0, (13)

for M(p) ≥
√

5/2 .
(ii) If M(p) ≥ 1 then for any µ(x) ≥ 0,

Uµ(p) = p2(x) − p(x − 1)p(x + 1) +
1

4
(p(x + 1) − µ(x)p(x) + p(x − 1))

2 ≥ 0. (14)

As (11) does not contain any additional parameters and leads to easier calcula-
tions, we split our investigation into two cases. For a ≥ k we shall apply (12) and
(13), and use (14) for 0 < a < k.
We will need two more technical statements.

Corollary 2. Each branch of the function tak(x) =
C

(a)
k

(x+1)

C
(a)
k

(x)
is a decreasing

function in x, (i.e. d
dx tak(x) < 0), and tak(0) = 1 − k

a , and limx→∞ tak(x) = 1.

Proof. Let x1 < ... < xk, be the zeros of C
(a)
k (x). By the previous corollary the

zeros of C
(a)
k (x) and C

(a)
k (x + 1) interlace. Hence, all the coefficients ai in the partial

fraction decomposition tak(x) =
∑k

i=1
ai

x−xi

are positive. This implies the first claim.
The second one follows from (2) and the last is obvious.
Inequality (14) being applied directly to an orthogonal polynomial p(x) yields rel-
atively weak bounds. To obtain a sharper result we perturb the zeros of p(x) by
considering instead p(x) − γp(x − 1), for an appropriate constant γ. As easily can be
checked, if M(p) ≥ 1, this new polynomial has only real zeros for any γ ≥ 0. Moreover,
a quick inspection of the intersection of the straight line y = 1

γ with the graph of the

functions p(x−1)
p(x) yields

Lemma 1. Let p(x) be a hyperbolic polynomial with M(p) > 1. Then the mesh of
the hyperbolic polynomial q(x) = p(x) − γp(x − 1) satisfies M(q) > 1, for any γ ≥ 0.

Let us now explain how the inequalities of Theorem 7 can be used for bounding
zeros of discrete orthogonal polynomials. Let p(x) be such a polynomial with zeros
x1 < ... < xk. First of all notice that by (10) one can express p(x + j) as a linear
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combination of p(x + 1) and p(x) with coefficients depending on x. Choosing either
(11) or (14), depending on the mesh, and putting t = t(x) = p(x + 1)/p(x), one
obtains a nonnegative expression

W (x) = A(x)t2 + B(x)t + C(x) ≥ 0. (15)

By Corollary 2 the graph of t(x) consists of decreasing, cotangent-shaped branches
in the middle and two hyperbolic branches at the ends. Suppose for simplicity that
A,B and C are continuous functions, changing relatively slowly in comparison with
the rapidly oscillating p(x). Since in the oscillatory region [x1, xn], t(x) attains all real
values from −∞ to ∞, one should have here A(x) > 0, by (15). Moreover, consider

the minimum of W viewed as a quadratic in t. It is equal to 4AC−B2

2A and attains for

t = t̄(x) = − B
2A . If t̄ intersects all the branches of t, then at such an intersection point

one has 4AC−B2

2A ≥ 0. Thus, the discriminant of (15) in t is negative on the interval
confining the roots of the polynomial. Therefore, the solution of the last inequality
provides bounds on the extreme zeros of p(x). In fact, as the coefficients of W depend
on parameters, such as k and a in the case of Charlier polynomials, to justify these

arguments one needs rather involved investigation of the inequality 4AC−B2

2A ≥ 0. Of
course, if one is looking for asymptotics rather than explicit bounds, the calculation
can be substantially simplified.
Yet, it seems difficult to formulate a general theorem capturing those arguments.
In fact, even a continuous function (and t̄(x) is not necessary continuous) may not
intersect the first and the last hyperbolic branches of t(x). For instance, this happens
if one applies (14) to the discrete Chebyshev polynomials. Therefore, in general the
zeros of 4AC − B2 = 0, may not embrace the extreme roots of the polynomial.
Fortunately, in our case this yields only some weak restrictions (as a > 5

4 in Theorem
2) on the parameters.

3. First order bounds. In this section we prove Theorems 4 and 5. It will be

convenient to use the following substitutions: v = C
(a)
k (x), u = C

(a)
k (x + 1).

Proof of Theorem 4.
We will consider two cases a ≥ k and 0 < a < k.
Case 1. a ≥ k
Consider V1 = V1(v) and set t = t(x) = u/v. As all the zeros x1 < ... < xk, of C

(a)
k (x)

are positive we assume x > 0. By (12) and Corollary 1 V1 ≥ 0, and on excluding

C
(a)
k (x − 1) by (3) we get

xV1

v2
= at2 − (a + x − k)t + x ≥ 0.

The minimum of this expression in t is attained for t̄(x) = a+x−k
2a and is equal to

r(x) = −x2 + 2kx + 2ax − k2 + 2ak − a2.

Comparing the graphs of the functions t(x) and t̄(x) we see that they are intersected

for some xM > xk. Moreover, by C
(a)
k (0) = 1 > a−k

2a > 0, the functions are intersected
also at some xm, 0 < xm < x1 − 1. Therefore r(xm) ≥ 0, and r(xM ) ≥ 0. Since
r(x) ≥ 0 for (

√
a −

√
k)2 ≤ x ≤ (

√
a +

√
k)2, this yields

1 + (
√

a −
√

k)2 ≤ x1 < xk ≤ (
√

a +
√

k)2.
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Case 2. 0 < a ≤ k
Put s =

√
k +

√
a, q =

√
k −√

a, and choose µ = 2s
s−q + s−q

2s in (14). Similarly to the
previous case we have

4x2

v2
Uµ = (x + a)2t2 − 2t((a + x)2 + µx2 − aµx − ak − kx)+

(x + a − k)2 − x(2aµ − 2kµ − 4x + 2µx − µ2x).

The minimum value of this expression in t is

r(x) =
4x2(s2 − x)(8sx(3s2 + q2) + (s − q)2(s3 + 7qs2 − q2s + q3))

s2(s − q)(x + a)2
,

and attains at

t̄(x) = 1 +
µx2 − aµx − kx − ak

(a + x)2
.

Since limx→∞ t̄(x) = 7
2 + q(3s+q)

2s(s−q) > 1, whenever limx→∞ t(x) = 1, the graphs of t and

t̄(x) intersects for some xM > xk. Thus, r(xM ) ≥ 0, what implies xk < s2.
Proof of Theorem 5.

It is enough to check that C
(a)
k (x) changes sign on each of the corresponding intervals.

We have C
(a)
k (0) = 1, and C

(a)
k (1) = 1 − k

a , giving the first claim. Assuming k ≤ a <

k+
√

k, we get C
(a)
k (2) = (a−k)2−k

a2 < 0, proving the second. The third claim is similar.

To prove the last it is enough to show that C
(a)
k (4) < 0, for k +

√
k ≤ a ≤ (

√
k + 1)2.

For 2 ≤ k ≤ 8 the claim can be checked directly. Assuming k ≥ 9 we have

C
(a)
k (4) =

(a − k)4 − 6k(a − k)2 + k(11k − 8a − 6)

a4
.

Now, (
√

k + 1)2 ≤ k + 7
3

√
k, for k ≥ 9, and it is enough to show that C

(a)
k (4) < 0, for

k +
√

k ≤ a ≤ k + 7
3

√
k. Putting a = k + ǫ

√
k, 1 ≤ ǫ ≤ 7

3 , we obtain

C
(a)
k (4) = k2(ǫ4 − 6ǫ2 + 3) − k(8ǫ

√
k + 6) < k2(ǫ4 − 6ǫ2 + 3) < 0.

This completes the proof.

4. Second Order Bounds, a ≥ k. The aim of this section is to prove Theorem
1. In view of Theorem 4 we may assume x > 1. On using the substitution x = a+k+y,
we get

F (t, x) =
ax(x − 1)

v2
V2(v) = aA(x)t2 + B(x)t + C(x) ≥ 0,

where

A(x) = −y2 − 4a + 4ak + 1,

B(x) = y3 + 2ay2 − (4ak − 3a + 1)y − a(8ak − 8a + 2k + 3),
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C(x) = −y3 − (k + a)y2 + (4ak − 3a + k + 1)y + 2a(2k2 + 2ak − 2a + 1).

Since V2 ≥ 0, at x = x1, xk, it follows A(x1), A(xk) ≥ 0. This gives c1 < x1 < xk < c2,
where

c1 = k + a −
√

4a(k − 1) + 1, c2 = k + a +
√

4a(k − 1a + 1.

The minimum of F (t, x) in t is attained at t = t̄(x) = − B(x)
2aA(x) , F (̄t, x) =

4aA(x)C(x)−B2(x)
4aA(x) . We shall show that the roots of C

(a)
k (x) lay between the only two

real roots of the equation A(x)C(x) − B2(x) = 0. The last one is precisely (5). We
need the following technical lemmas.

Lemma 2. t̄(x) is a continuous function increasing on (c1, c2), from −∞ to ∞,

provided k ≥ 2 and a > k(k+1)
k−1 .

Proof. Calculating the resultant of A(x) and B(x) in x, we obtain

Resultx(A(x), B(x)) = a2(k2 − ak + k + a) 6= 0.

Thus, A(x) and B(x) have no common zeros for x∈ [c1, c2]. Hence it is enough to

prove d
dx t̄(x) = D(x)

2aA2(x) > 0, where

D(x) = y4 − (8ak − 9a + 2)y2 + 2a(2k + 1)y + (4ak − 3a + 1)(4ak − 4a + 1).

The discriminant of D(x) in x, that is Resultx(D(x),D′(x)), is

Disx(D(x)) = −64a2(k2−ak+k+a)((4k−3)(32k−33)2a3+12(265k2−471k+225)a2+

48(16k − 15)a + 64).

The last factor is positive for k ≥ 2, and thus the number of real roots of D(x) does not

depend on a and k for k ≥ 2 and a > k(k+1)
k−1 , since the discriminant does not vanish in

this region. Taking k = 2, a = 7 we get D(x) = x4−36x3 +435x2−1928x+2844 > 0,
implying d

dx t̄(x) > 0.

Lemma 3. For a ≥ k ≥ 2, t̄(x) is a continuous function on (a + k, c2) and
lim

x→c
(−)
2

t̄(x) = ∞.

Proof. The continuity clearly follows from c1 < a + k. We also have

A(c2 − ǫ) = ǫ(2
√

4a(k − 1) + 1 − ǫ) > 0

B(c2) = −a(1 + 2k +
√

4a(k − 1) + 1) < 0,

hence t̄(c2 − ǫ) > 0, for sufficiently small ǫ > 0, hence lim
x→c

(−)
2

t̄(x) = ∞.

Lemma 4. The function ∆(x) = 4aA(x)C(x)−B2(x) has precisely two real zeros
xm, xM , provided k ≥ 3, a ≥ (

√
k +1)2. Moreover, c1 < xm < xM < c2 and ∆(x) > 0

for xm < x < xM .
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Proof. The discriminant of ∆(x) in x is

Disx(∆) = a8(k2 − k)3((a + 3)(108a3 − 81a2 + 36a − 4)2 −
3(7776a7 + 31104a6 − 2106a5 + 27522a4 − 24759a3 + 5970a2 − 436a − 8)k +

3(31104a6 + 69984a5 + 58626a4 − 34101a3 + 3360a2 + 388a − 8))k2 −
2a(69984a4 + 93312a3 − 14661a2 − 7830a + 388)k3 +

54a2(1728a2 + 1080a − 145)k4 − 23328a3k5 − 23328a3k5).

It is easy to show that this expression does not vanish for k ≥ 2, a ≥ (
√

k + 1)2.
Choosing k = 4, a = 9 we obtain ∆(x) = 285156 − 288924x + 109813x2 − 19422x3 +
1651x4 − 66x5 + x6, having two real roots.

It is left to show that the roots of ∆ are in (c1, c2). Noticing that (
√

k +1)2 > k(k+1)
(k−1) ,

for k ≥ 3, we have Resultx(∆, A(x)) = a4(k2 − ak + k + a)2 > 0. Therefore, it is
enough to check the claim for any suitable a and k, say, k = 4, a = 9. We omit the
details.

Lemma 5. For a ≥ k ≥ 2, the function ∆(x) has the only zero xM in the interval

(a + k, c2).

Proof. By the previous lemma it suffices to show ∆(c1) ≤ 0, ∆(c2) < 0, and
∆(a + k) > 0. Calculations yield

∆(a + k ±
√

4a(k − 1) + 1)

= −2a2
(

2k(k + a + 1) − 2a + 1 ± (2k + 1)
√

4a(k − 1) + 1
)

.

Thus ∆(c2) < 0, and by

∆(c1)∆(c2) = 16a4(k2 − ak + k + a)2 ≥ 0,

it follows ∆(c1) ≤ 0. Similarly,

∆(a + k) = a2(64ak3 − 96ak2 + 12k2 + 32ak − 12k − 1) > 0.

Proof of Theorem 1. Recall that equation (5) is merely ∆(x) = 0. Assume first

that k ≥ 3 and a ≥ (
√

k + 1)2 > k(k+1)
k−1 . By Lemma 2 the function t̄(x) intersects

all the branches of t(x), consequently all the zeros of C
(a)
k (x) are confined between

the points P and Q - the first and the last intersection respectively. As F (t, x) ≥ 0
one should have F (̄t, P ) ≥ 0, F (̄t, Q) ≥ 0, or, by the positivity of A(x) on (c1, c2),
∆(P ) > 0, ∆(Q) > 0. Now the result follows by Lemma 4. Finally, under the weaker
condition a ≥ k ≥ 3, we can assume xM > a + k, otherwise there is nothing to prove.
Then the function t̄(x) still intersects the rightmost branch of t(x) by Lemma 3. Now
the result follows by Lemma 5.

5. Second Order Bounds, a < k. The aim of this section is to establish
Theorem 2. We will use the substitutions α =

√
a, κ =

√
k. Choose in (14)

p(x) = u(x) − γu(x − 1), γ = 1 +
κ

α
, µ = γ +

1

γ
.
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Notice that the optimal choice of γ and µ is not known. Numerical experiments show
that the answer is not too sensitive to the value of µ. Our choice was motivated rather
by attempts to simplify the calculations.
Consider Uµ(p), by Theorem 6, Lemma 1, and (14) we get

4x2(x − 1)2α6γ2

v2
Uµ(p) = α4(α + κ)2A(x)t2 + 2α2(α + κ)B(x)t + C(x) ≥ 0 (16)

where

A(x) = y4 − 2(κ2 + ακ − 1)y3 + (κ4 − 2ακ3 − 7α2κ2 − 2κ2 − 8α3κ + 2α2 + 1)y2+

2α(2κ(α + κ)4 − 5κ3 − 8ακ2 − 5α2κ + κ + 2α3 + α)y+

α(κ − α)(4(κ + α)4 − 5α2 − 7ακ − 4κ2);

and B(x), C(x) are certain polynomials too complicated to be given here. As before,

we will consider t̄(x) = − B(x)
α2(α+κ)A(x) , yielding the extremal value A(x)C(x)−B2(x)

A(x) of

(16), where

A(x)C(x) − B2(x) = −4ακ2(y + 1 − (α + κ)2)2(y − (α + κ)2)2Φ(x) , (17)

and Φ(x) is given by (6). We shall show that the zeros of C
(a)
k (x) lie between the

zeros of the equation A(x)C(x) − B2(x) = 0, or, equivalently Φ(x) = 0.

Lemma 6. Let 5
4 < a < k, k ≥ 3, then A(x) has precisely two real zeros, the

smallest is in the interval
(

(α + κ)2, (α + κ + 1)2
)

.

Calculation yields

Disx(A(x)) = α3(κ − α)2(κ + α)4R(α, κ),

where R(α, κ) is a certain polynomial of degree 11 in α and 13 in κ. In turn,

Disα(R(α, κ)) = κ28(1 − 2κ + 2κ2)2(1 + 2κ + 2κ2)2S(κ)T 3(κ),

where S and T are polynomials of degree 24 and 40 in κ respectively, positive for
κ ≥ 1. Thus, the number of real zeros of R(α, κ) does not depend on κ in our region.
Choosing κ = α we get

R(α, α) = α5(1 − 4α2)2(5 − 4α2)(1 − 8α2)2 6= 0

for
√

5
4 < α ≤ κ. Hence to find the number of real zeros of A(x) we can substitute any

α and κ such that
√

5
4 < α < κ. Now R(2, 3) = 4804+13728y−480y2−28y3+y4 = 0,

has precisely two real roots.
Finally, we shall show that the least zero of A(x) lies between (α+κ)2 and (α+κ+1)2.
We have

A((α + κ)2) = α(κ − α)
(

4(α + κ)4 − 4(α + κ)2 + α(α − κ)
)

> 0.

by α + κ > 2
√

5
4 . On the other hand

A((α+κ+1)2) = (α+κ)2(4(1−2α)κ4−4(6α2+2α−5)κ3−(24α3+32α2−40α−33)κ2−
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(8α4 + 40α3 − 12α2 − 58α − 20)κ − 4α4 − 8α3 + 25α2 + 20α + 4) .

It is easy to check that the last factor decreases in α. Substitution α =
√

5
4 , shows

that the above expression is negative.

Lemma 7. Let xm be the least zero of A(x). Then for k > a ≥ 5
4 , t̄(x) is a

continuous function for x < xm, and lim
x→x

(−)
m

t̄(x) = ∞.

Proof. It is enough to show that B(x) < 0 for (α + κ)2 < x < (α + κ + 1)2.
Calculations yield

Resultx(A(x), B(x)) = α6κ18(κ − α)2(κ + α)8M(α, κ)N(α, κ),

where

M(α, κ) = β2(1−β)2(1+β)4k2−2(β−β3)((1+β)(2β2+β+1)k+8β4+12β3+9β2+2β+1

N(α, κ) = 8β2(1 + β)4(2β6 + 2β5 − β3 + β2 + 2β + 1)k2−

(1+β)2(16β10 +16β9 +8β8 +28β7 +73β6 +76β5 +45β4 +23β3 +19β2 +12β +4)k+

(2β2 + 2β + 1)(4β6 + 4β5 + β4 + 4β3 + 12β2 + 11β + 1),

and β = α
κ . The discriminant of M(α, κ), which is a quadratic in k, is −16(1 −

β2)2(β + β2)4 < 0, hence M(α, κ) > 0.
Solving now in k the inequality N(α, κ) < 0, we obtain that

k <
L(β) − K(β)

√

4β4 − 4β3 + β2 + 4β + 4

16β2(1 + β)2(2β6 + 2β5 − β3 + β2 + 2β + 1)
,

where

L(β) = 16β10 + 16β9 + 8β8 + 28β7 + 73β6 + 76β5 + 45β4 + 23β3 + 19β2 + 12β + 4,

K(β) = 8β8 + 12β7 + 10β6 + 15β5 + 24β4 + 17β3 + β2 − 5β − 2.

Thus, if N(α, κ) < 0 then

a = β2k <
L(β) − K(β)

√

4β4 − 4β3 + β2 + 4β + 4

16(1 + β)2(2β6 + 2β5 − β3 + β2 + 2β + 1)
.

The maximum of the last expression is 1
2 and attains for β = 0. Thus in our region

Resultx(A(x), B(x)) does not vanish. Therefore, one can check the claim, say, for
k = 3, a = 2.

Now, we change the variable x into y = k(1 + β)2 − x, to transform the equation
Φ(x) = 0 into the equation Φ∗(y) = 0. (in fact (6)).

Lemma 8. For 0 < a < k, k ≥ 3, equation Φ∗(y) = 0 has two positive zeros, the
least lies in the interval (0, k − 1), whenever the largest is greater than k − 1.
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Proof. It is easy to check that for k > 2, and 0 < β < 1, the following sign pattern
(+,−,−,±,+) holds for the coefficients of Φ∗(x). Thus, according to the Descartes
rule of signs there are at most two positive zeros. Obviously Φ∗(0) > 0, and also, with
a little more effort,

Φ∗(k − 1) = −bk2((4β3 + 7β2 + 6β + 2)k2 − (2β4 + 10β3 + 14β2 + 11β + 4)k+

(β2 + 3β + 3)(1 + β + β2 − β3 − β4)) < 0.

Moreover,

Φ∗
(

(1 + 2β + 2β2)2k

1 + 2β + 2β2 + β3

)

> 0,

since its expansion has only positive terms. Now the result follows by comparing the
signs of Φ∗(x) at those 3 points.

Proof of Theorem 2. The proof is similar to that of Theorem 1 and readily follows
from the above lemmas. We omit the details.

6. Proof of Theorem 3. To prove (7) it is enough to show that F (x) > 0 in (5),
for x given by the right hand side of (5) (7). We put k = n6, a = δ6n6, r = (1+δ3)1/3.
Thus δ ≥ 1. The substitution into F (x) yields a quadratic in r. It can be checked by
the substitution n := n + 1, δ := δ + 1, that the leading coefficient contains only
nonnegative terms and therefore is positive. The discriminant of this quadratic is a
polynomial in k and is negative for k ≥ 2. This can be checked by the substitution
k := k + 2, δ := δ + 1, in the same way. The proof of (8) is similar.

To demonstrate (9) we notice that in fact the term

y∗ =
β(1 + β)4/3k2/3

(k(1 + 2β + 2β2)2 − 2(1 + 2β + 2β2 + β3))
1/3

,

is just the real solution in y of the equation

(

k(1 + 2β + 2β2)2 − 2(1 + 2β + 2β2 + β3)
)

y3 − β3(1 + β)4k2 = 0,

which is obtained from equation (6) by omitting the terms corresponding to y, y2 and
y4. Hence one has to show that the left hand side of (2) is positive for y = y∗. It can
be routinely done using easy to check inequality (4

5 )2/3βk1/3 ≤ y∗ ≤ 31/3βk1/3, for

k ≥ 3, and the assumption α >
√

5
4 . We omit the details.
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