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OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR
SELF-ADJOINT DIFFERENTIAL EQUATIONS∗

M. HESAARAKI† AND A. MORADIFAM‡

Dedicated to Professor Joel Smoller on the occasion of his 70th birthday

Abstract. Our concern is to solve the oscillation problem for the nonlinear self-adjoint equation
(a(t)x′)′ + b(t)g(x) = 0, where g(x) satisfies the Signum condition xg(x) > 0 if x 6= 0, but is not
imposed such monotonicity as superlinear or sublinear. The problem has not been solved for the
critical cases:

lim inf
|x|→0

g(x)

x
<

1

4
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x
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g(x)

x
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4
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x
,

which are more difficult, by now. We concentrate our attention on this point and give some answers.
Sufficient conditions are given for all nontrivial solutions to be oscillatory.
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1. Introduction. In this paper, we are concerned to obtain some oscillation
criteria for the nonlinear self-adjoint differential equation

(1.1) (a(t)x′)′ + b(t)g(x) = 0,

where a(t) and b(t) are positive, continuous, and locally of bounded variation on some
half-line [α,∞), and g(x) is continuous on R and

(1.2) xg(x) > 0, for x 6= 0.

We assume that uniqueness is guaranteed for the solutions of (1.1) to the initial value
problem. In [21, Appendix] the authors have proved that all solutions of (1.1) are
continuable in the future time. Hence, it is worth while to discuss whether solutions
of (1.1) are oscillatory or not.

A nontrivial solution x(t) of (1.1) is said to be oscillatory if there exists a sequence
tk tending to infinity such that x(tk) = 0. Otherwise, the solution is said to be
nonoscillatory. For brevity, Eq.(1.1) is called oscillatory (respectively nonoscillatory)
in case all nontrivial solutions are oscillatory(respectively nonoscillatory).
Equation (1.1) naturally includes the nonlinear equation

(1.3) x′′ + c(t)g(x) = 0, t > 0,

as a special case.
Over the past few decades, a grate deal of efforts has been made on the oscillation

and nonoscillation of solutions of (1.1)(or (1.3)). Those results can be found in [1-
25] and the references cited therein. For example, there are many studies on the
oscillation for the Emden-Fowler differential equation

(1.4) x′′ + a(t)|x|γsgnx = 0,
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where γ > 0, is a constant. This equation is called superlinear if γ > 1 and sublinear
if 0 < γ < 1(see [5-18, 23, 24]).

Hille [11] extended a classical result of Kneser [12] and stated the following theo-
rem on the oscillation of the linear differential equation:

(1.5) x′′ + a(t)x = 0.

Theorem A. Let

ω∗ = lim inf
t→∞

t2a(t) and ω∗ = lim sup
t→∞

t2a(t).

Then Equation (1.5) is oscillatory if ω∗ > 1/4, nonoscillatory if ω∗ < 1/4, and no
conclusion can be drawn if either ω∗ or ω∗ equals 1/4.

In [21], Sugie et al. discussed the oscillation and nonoscillation problems for (1.1)
and gave some nonoscillation theorems which are classified into two cases:

(1.6)

∫ ∞

α

1

a(τ)
dτ = ∞

and

(1.7)

∫ ∞

α

1

a(τ)
dτ < ∞.

In order to state their theorems, in addition to (1.2) we must make the following
assumption on g(x):

(1.8)

∫ x

0

g(τ)dτ ≤ 1

2
x2 for x ∈ R.

Consider the following three sequences of functions for positive large values of x:

l1(x) = 2logx and ln+1(x) = log(ln(x)),

L1(x) = 1 and Ln+1(x) = Ln(x)ln(x),

Sn(x) =

n
∑

k=1

1

Lk(x)
2 ,

for n ∈ N . Their oscillation theorems are stated in the following.

Theorem B. Let (1.2), (1.6), and (1.8) hold. Suppose that a(t) and b(t) satisfy

(1.9) a(t)b(t)

(
∫ t

α

1

a(τ)
dτ

)2

≤ 1,

for t sufficiently large, and there exists an n ∈ N such that

(1.10)
g(x)

x
≤ 1

4
Sn(x2),
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for x > 0 or x < 0 and |x| sufficiently large. Then Eq. (1.1) is nonoscillatory.

Theorem C. Let (1.2), (1.7), and (1.8) hold. Suppose that a(t) and b(t) satisfy

(1.11) a(t)b(t)

(
∫ ∞

t

1

a(τ)
dτ

)2

≤ 1,

for t sufficiently large, and there exists an n ∈ N such that

(1.12)
g(x)

x
≤ 1

4
Sn(x2),

for x > 0 or x < 0 and |x| sufficiently small. Then Eq.(1.1) is nonoscillatory.

Also Sugie and Yamaoka in [23] investigated the oscillation problem for (1.1) and
gave the following theorems.

Theorem D. Let (1.2), (1.6) hold. Suppose that a(t) and b(t) satisfy

(1.13) a(t)b(t)

(
∫ t

α

1

a(τ)
dτ

)2

≥ 1,

for t sufficiently large, and there exists a λ with λ > 1/4 and n ∈ N such that

(1.14)
g(x)

x
≥ 1

4
Sn−1(x

2) +
λ

{ln(x2)}2
,

for |x| sufficiently large. Then Eq.(1.1) is oscillatory.

Theorem E. Let (1.2), (1.7) hold. Suppose that a(t) and b(t) satisfy

(1.15) a(t)b(t)

(
∫ ∞

t

1

a(τ)
dτ

)2

≥ 1,

for t sufficiently small, and there exists a λ with λ > 1/4 and n ∈ N satisfying (1.14)
for |x| sufficiently large. Then Eq. (1.1) is oscillatory.

Theorem F. Assume (1.2) and (1.6) hold. Suppose that a(t) and b(t) satisfy

(1.16) a(t)b(t)

(
∫ t

α

1

a(τ)
dτ

)2

= 1,

and let

hn(x) = {ln(x)}2

[

g(x)

x
− 1

4
Sn−1(x

2)

]

.

Then Eq.(1.1) is oscillatory if

lim inf
|x|→∞

hn(x) >
1

4
,

for some n ∈ N , and it is nonoscillatory if

lim sup
x→∞

hn(x) <
1

4
or lim sup

x→−∞
hn(x) <

1

4
,
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for some n ∈ N .

Theorem G. Assume (1.2) and (1.7) hold. Suppose that a(t) and b(t) satisfy

(1.17) a(t)b(t)

(
∫ ∞

t

1

a(τ)
dτ

)2

= 1.

Then Eq. (1.1) is oscillatory if

lim inf
|x|→0

hn(x) >
1

4
,

for some n ∈ N , and it is nonoscillatory if

lim sup
x→0+

hn(x) <
1

4
or lim sup

x→0−

hn(x) <
1

4
,

for some n ∈ N .

Notice that, all of the results presented in the above are inapplicable when

(1.18) lim inf
|x|→∞

g(x)

x
<

1

4
< lim sup

|x| →∞

g(x)

x
or lim inf

|x|→0

g(x)

x
<

1

4
< lim sup

|x| →0

g(x)

x
.

In fact the oscillation problem has not been solved for this critical case which is more
difficult, by now. In this paper we introduce some oscillation criteria for these critical
cases.

2. Reduction to canonical forms. First consider the infinite case (1.6). Here
by the following change of variable we transform our equation to a Liénard equation.
The same idea is used in [23].

s = s(t) =

∫ t

α

1

a(τ)
dτ.

Let t(s) be the inverse function of s(t) and put v(s) = x(t(s)). Then

x′(t) =
ds

dt
v̇(s) =

1

a(t)
v̇(s) and (a(t)x′(t))′ =

ds

dt
v̈(s) =

1

a(t)
v̈(s),

and v(s) satisfies the equation

v̈ + a(t(s))b(t(s))g(v) = 0.

Let c(s) = a(t(s))b(t(s)). Then condition (1.13) becomes

(2.1) t2c(t) ≥ 1

for t sufficiently large. Since a(t) is positive for t > α, the function s(t) is increasing,
and so is t(s). From (1.6) it follows that s(t) tends to infinity as t → ∞ and t(s)
tends to infinity as s → ∞. Hence, Eq.(1.1) is oscillatory if and only if the equation

(2.2) x′′ + c(t)g(x) = 0,
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is oscillatory.
Now consider the finite case (1.7). Here we consider another change of variable

for t as follows

s = s(t) =

(
∫ ∞

t

1

a(τ)
dτ

)−1

.

Since a(t) is positive, the function s(t) and its inverse function t(s) are increasing for
t > α and s > β, respectively, where

β =

(
∫ ∞

α

1

a(τ)
dτ

)−1

> 0.

Since a(t) satisfies (1.7), s(t) tends to infinity as t → ∞, and therefore, t(s) also tends
to infinity as s → ∞. Let v(s) = x(t(s)). Then we have

x′(t) =
ds

dt
v̇(s) =

s2

a(t)
v̇(s),

(a(t)x′(t))′ =
ds

dt
(s2v̈(s) + 2sv̇(s)) =

s4

a(t)

(

v̈(s) +
2

s
v̇(s)

)

.

Put c(s) = a(t(s))b(t(s))/s4. Then Equation (1.1) becomes

(2.3) x′′ +
2

t
x′ + c(t)g(x) = 0, or (t2x′)′ + t2c(t)g(x) = 0, t > β,

and it is oscillatory if and only if (2.3) is oscillatory. Moreover in this case condition
(1.15) coincides with the condition (2.1).

Let s = logt and u(s) = x(es) = x(t). Then Eqs.(2.2) and (2.3) are transformed
into the systems

(2.4) u̇ = v + u, v̇ = −e2sc(es)g(u)

and

(2.5) u̇ = v − u, v̇ = −e2sc(es)g(u),

respectively. The systems (2.4) and (2.5) are of Liénard type. Hereafter we denote s
by t again.

Now consider the systems

(2.6) u̇ = v + u, v̇ = −C(t)g(u),

and

(2.7) u̇ = v − u v̇ = −C(t)g(u),

where C(t) ≥ 1. Notice, Eqs. (2.4) and (2.5) are special cases of (2.6) and (2.7),
respectively.

We say that the system (2.6)(or (2.7)) has property (X+) in the right half plane
(resp. in the left half plane), if for every point (x0, y0) with y0 > −x0(or y0 > x0)
and x0 ≥ 0 (resp. y0 < −x0(or y0 < x0) and x0 ≤ 0), the positive semitrajectory of
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(2.6)(or 2.7) passing through (x0, y0) crosses the vertical isocline y = −x (or y = x)
(see [1,3]).

Let

(2.8) G(x) =

∫ x

0

g(η)dη.

Theorem 2.1. The system (2.6) has property (X+) in the right half plane if

(2.9) lim sup
x→+∞

(

∫ x

b

( −ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη − x
√

2G(x)

)

= +∞,

for some b > 0.

Proof. We prove the theorem by contradiction. Suppose that there exists a
solution (u(t), v(t)) of (2.6) whose graph remains in the region {(u, v) : u ≥ 0 and v >
−u} for all future time. Let (ut0 , vt0) = (u(0), v(0)). Since, the system (2.6) has no
critical points in this region, we have

u(t) → +∞ as t → +∞,

so, we may assume that u0 > 0. Now let

f(t) =

∫ u(t)

b

−ηg(η)

(2G(η))
3
2

dη +
v(t)

√

2G(u(t))
.

Then

ḟ(t) = u̇(t)
−u(t)g(u(t))

(2G(u(t)))3
2

+
2v̇(t)G(u(t)) − v(t)tu(t)g(u(t))

(2G(u(t))) 3
2

= −g(u(t))u̇(t)(u(t) + v(t)) − 2v̇(t)G(u(t))

(2G(u(t))) 3
2

= −g(u(t))u̇2(t) + 2g(u(t))C(t)G(u(t))

(2G(u(t))) 3
2

.

Since, C(t) ≥ 1, we have

ḟ(t) ≤ −u̇(t)
g(u(t))

G(u(t))
.

Thus,

d

dt

(

f(t) +

∫ u(t)

b

g(η)

G(η)
dη

)

≤ 0.

Therefore,

∫ u(t)

b

( −ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη +
v(t)

√

2G(u(t))
≤
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∫ u0

b

( −ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη +
v0

√

2G(u0)
< +∞,

for t ≥ t0. Since, v(t) > −u(t) and u(t) → +∞ as t → +∞, thus,

lim sup
x→+∞

(

∫ x

b

( −ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη − x
√

2G(x)

)

< +∞.

This contradiction completes the proof.

The following analogous result is obtained with respect to property (X+) in
the left half plane.

Theorem 2.2. The system (2.6) has property (X+) in the left half plane if

(2.10) lim inf
x→−∞

(

∫ b

x

(

ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη +
x

√

2G(x)

)

= −∞,

for some b < 0.

Lemma 2.1. For each point C = (c,−c) with c > 0, the positive semitrajectory
of (2.6) passing through C crosses the negative y-axis.

Proof. Suppose that there exists a point C = (c,−c) with c > 0 such that the
positive semitrajectory of (2.6) passing through C = (c,−c) does not intersect the
negative y-axis. Let (x(s), y(s)) be a solution of (2.6) defined on an interval [s0,∞)
with (x(s0), y(s0)) = C. Then we have

0 < x(s) ≤ x(s0) for s ≥ s0

and

y(s) → −∞ as s → ∞.

Hence, it follows from the first equation of (2.6) that

ẋ(s) → −∞ as s → ∞,

and therefore, there exists an s1 > s0 such that

ẋ(s) ≤ −1 for s ≥ s1.

Integration of the above leads to

−x(s1) < x(s) − x(s1) ≤ s1 − s → −∞ as s → −∞.

This is a contradiction and the proof is complete.

Similarly, turning our attention to the left half plane we have the following re-
sult.
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Lemma 2.2. For each point C = (−c, c) with c > 0, the positive semitrajectory
of (2.6) passing through C crosses the positive y-axis.

Lemma 2.3. The system (2.7) has property (X+) in the right and left half plane.

Proof. Let x0 > 0, y0 > x0, and (x(t), y(t)) be the solution of (2.7) passing
through (x0, y0). Since, ẋ(t) > 0 and ẏ(t) < 0 for x(t) > 0 and y(t) > x(t), this
orbit must intersect the line y = x, otherwise there must be a rest point in the first
quadrant, which is impossible. Similarly, we can conclude that the system (2.7) has
property (X+) in the left half plane.

Suppose that the system (2.7) has a solution u(t) starting at (c, c) and does not
intersect the negative y-axis, we can show that u(t) tends to zero as t → ∞, (see
[23, Lemma 5.1] for the proof). From u̇ = v + u, we conclude that v(t) → 0, when
t → ∞. Since, v̇(t) < 0, v(t) > 0, for all future time. Now we are ready to prove the
following theorem.

Theorem 2.3. Suppose that

(2.11) lim inf
x→0+

(

∫ b

x

(

ηg(η)

(2G(η))
3
2

− g(η)

G(η)

)

dη

)

= −∞, for some b > 0.

Then for each point C = (c, c) with c > 0, the positive semitrajectory of (2.7) passing
through C crosses the negative y-axis.

Proof. Suppose that there exists a point C = (c, c) with c > 0 such that the
positive semitrajectory of (2.7) passing through C = (c, c) does not intersect the
negative y-axis.
Let

f(t) =

∫ u(t)

b

ηg(η)

(2G(η))
3
2

dη +
v(t)

√

2G(u(t))
.

Then

ḟ(t) = u̇(t)
u(t)g(u(t))

(2G(u(t)))3
2

+
2v̇(t)G(u(t)) − v(t)u̇(t)g(u(t))

(2G(u(t))) 3
2

= −g(u(t))u̇(t)(v(t) − u(t)) − 2v̇(t)G(u(t))

(2G(u(t))) 3
2

= −g(u(t))u̇2(t) + 2g(u(t))C(t)G(u(t))

(2G(u(t))) 3
2

.

Since, C(t) ≥ 1, we have

ḟ(t) ≤ u̇(t)
g(u(t))

G(u(t))
.
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Thus,

d

dt

(

f(t) −
∫ u(t)

b

g(η)

G(η)
dη

)

≤ 0.

Therefore,

∫ u(t)

b

(

ηg(η)

(2G(η))
3
2

− g(η)

G(η)

)

dη +
v(t)

√

2G(u(t))
≤

∫ c

b

(

ηg(η)

(2G(η))
3
2

− g(η)

G(η)

)

dη +
c

√

2G(c)
< ∞ for t ≥ t0,

where ((u(t0), v(t0)) = (c, c). Since, u(t) → 0+ as t → +∞, and v(t) > 0 we have

lim inf
x→0+

(

∫ b

x

(

ηg(η)

(2G(η))
3
2

− g(η)

G(η)

)

dη

)

> −∞.

This contradiction completes the proof.

Turning our attention to the left half plane, similarly we have the following
result.

Theorem 2.4. Suppose that

(2.12) lim inf
x→0−

(
∫ x

b

(

ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη

)

= −∞, for some b < 0.

Then for each point C = (−c,−c) with c > 0, the positive semitrajectory of (2.7)
passing through C crosses the positive y-axis.

3. Oscillation Theorems. In this section we will present our main results and
give some examples to illustrate our results.

Theorem 3.1. Suppose that (1.6), (1.13), (2.9) and (2.10) hold, then all
nontrivial solutions of (1.1) are oscillatory.

Proof. Since (1.6), (1.13), (2.9) and (2.10) hold, the system (2.4) has property
(X+) in the right and left half plane. Thus, it follows from Lemmas 2.1 and 2.2 that
every solution of (2.4) keeps on rotating around the origin except the zero solution.
Hence, all nontrivial solutions of (2.4) are oscillatory. Thus, all nontrivial solutions
of (1.1) are oscillatory, too.

Theorem 3.2. Suppose that (1.6) and (1.13) hold and G(x) is defined by (2.8).
If

(3.1) lim inf
|x|→∞

G(x)

x2
>

1

8
,

then all nontrivial solutions of (1.1) are oscillatory.
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Proof. Suppose that (3.1) holds, then

α = lim inf
|x|→∞

(

1 − x

2
√

2G(x)

)

> 0.

Hence, for x > R with sufficiently large R > 0 we have

∫ x

R

( −ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη =

∫ x

R

g(η)

G(η)

(

1 − η

2
√

2G(η)

)

dη

≥ α

2

∫ x

R

g(η)

G(η)
dη =

α

2
(ln G(x) − ln G(R)) .

Therefore,

lim
x→+∞

∫ x

R

( −ηg(η)

(2G(η))
3
2

+
g(η)

G(η)

)

dη = +∞.

Since x√
2G(x)

is bounded, (2.9) holds. Similarly, we can conclude that (2.10)

holds, too. Then Theorem 3.1 implies that all nontrivial solutions of (1.1) must be
oscillatory.

The following analogous results are obtained with respect to the finite case
(1.7).

Theorem 3.3. Suppose that (1.7), (1.15), (2.11) and (2.12) hold, then Eq.(1.1)
is oscillatory.

Theorem 3.4. Suppose that (1.7) and (1.15) hold and G(x) is defined by (2.8).
If

(3.2) lim inf
|x|→0

G(x)

x2
>

1

8
,

then Eq.(1.1) is oscillatory.

Here we give some examples to illustrate our results. The first example is related
to Theorem 3.2.

Example 3.1. Consider the following equation

tx′′ + x′ +
mx + nx sin(x)

t(log(t))2
= 0,

where m > max{|n|, 1
4}. Let

a(t) = t, b(t) =
1

t(log(t))2
,

and

g(x) = mx + nx sin(x).
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Obviously (1.6) holds and

a(t)b(t)

(
∫ t

1

1

a(τ)
dτ

)2

= 1.

We have

G(x) =
m

2
x2 − nx cos(x) + n sin(x).

Thus,

lim inf
|x|→∞

G(x)

x2
=

m

2
>

1

8
.

Therefore, by Theorem 3.2 Eq.(1.1) is oscillatory.

Example 3.2. Consider the following equation

(

tβ+2x′
)′

+ (β + 1)2tβg(x) = 0, β > 1.

Assume g(0) = 0, and

g(x) = mx + nx sin(
1

x
), for x 6= 0,

where m > max{|n|, 1
4}. Let

a(t) = tβ+2, and b(t) = (β + 1)2tβ,

for t ≥ α = 1. It is clear that a(t) and b(t) are positive and continuously differentiable
for t ≥ 1. We have

∫ t

1

1

a(τ)
dτ <

1

β + 1
< ∞, a(t)b(t)

(
∫ ∞

t

1

a(τ)
dτ

)2

= 1,

for t ≥ 1, and

G(x) =
mx2

2
+ n

∫ x

0

ηsin(
1

η
)dη.

Also

lim
x→0

∫ x

0
ηsin( 1

η )dη

x2
= lim

u→∞

∫∞
1
u

sin(η)
η3 dη

1
u2

= lim
u→∞

−1
u2

sin(u)
u3

−2
u3

= 0.

Thus,

lim
|x|→0

G(x)

x2
=

m

2
>

1

8
.
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Therefore, by Theorem 3.4 Eq. (1.1) is oscillatory.

Example 3.3. Consider the following equation

tx′′ + x′ +
µ(x exp(−x2) + αx sin2(x))

t(log(t + 1))2
= 0.

Let

a(t) = t, and b(t) =
µ

t(log(t + 1))2
,

and

g(x) = x exp(−x2) + αx sin2(x).

We have

a(t)b(t)

(
∫ t

1

1

a(τ)
dτ

)2

= µ

(

logt

log(t + 1)

)2

ր µ

as t → ∞. Hence, if µ > 1, the condition (1.13) is satisfied for t sufficiently large.
Also

G(x) =
α

4
x2 − 1

2
exp(−x2) − 1

8
(α cos(2x) + 2αx sin(2x)).

Thus,

lim inf
|x|→∞

G(x)

x2
=

α

4
>

1

8
if α > 1/2.

Then Theorem 3.2 implies that all nontrivial solutions of (1.1) are oscillatory.
Notice that in Example 3.3

lim inf
|x|→∞

g(x)

x
= 0.

However, we have shown that Eq. (1.1) is oscillatory.

Remark 3.1. Here we should mention that all the results presented in the
previous literature are inapplicable to Examples 3.1, 3.2, and 3.3.
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