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RELATIVE POINCARÉ – HOPF BIFURCATION AND GALLOPING
INSTABILITY OF TRAVELING WAVES∗
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Abstract. For a class of reaction–convection–diffusion systems studied by Sattinger, notably
including Majda’s model of reacting flow, we rigorously characterize the transition from stability to
time-periodic “galloping” instability of traveling-wave solutions as a relative Poincaré–Hopf bifurca-
tion arising in ODE with a group invariance– in this case, translational symmetry. More generally,
we show how to construct a finite-dimensional center manifold for a second-order parabolic evolu-
tion equation inheriting an underlying group invariance of the PDE, by working with a canonical
integro-differential equation induced on the quotient space. This reduces the questions of existence
and stability of bounded solutions of the PDE to existence and stability of solutions of the reduced,
finite-dimensional ODE on the center manifold, which may then be studied by more standard, finite-
dimensional bifurcation techniques.
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1. Introduction. In the seminal paper [S], Sattinger studied stability of
standing-wave solutions

(1.1) u(x, t) = ū(x), lim
z→±∞

ū(z) = u±,

of the simple class of reaction–convection–diffusion equations

(1.2) ut = f(u, ux) + uxx, u, f ∈ R
n,

having the property (properly speaking, a condition on both wave and system) that
the constant solutions u ≡ u+, u− are time-exponentially stable with respect to
weighted norms ‖f‖Ŵ 1,∞

η
and ‖f‖Ŵ 1,∞

−η
, respectively, η ≥ 0, where

(1.3) ‖f‖Ŵ 1,∞
η

:= ‖eηxf(x)‖W 1,∞ .

We refer to this as the weighted norm property. This analysis includes also general
traveling-wave solution u(x, t) = ū(x − st), which may be reduced by the change of
coordinates x → x − st to the standing-wave case (1.1).

As discussed in [ZH, Z.1], the weighted norm property captures the phenomenon
of “convection-enhanced stability”, in which neutrally stable or even slightly unstable
modes with respect to the linearized equations about the endstates u± may be sta-
bilized by inward convection combined with the dynamics of the traveling wave. A
consequence is that the linearized operator L about the traveling wave solution has a
spectral gap with respect to norm

(1.4) ‖f‖W 1,∞
η

:= ‖eη(1+|x|2)1/2

f(x)‖W 1,∞ ,
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whereas it typically does not with respect to standard, unweighted norms.
More precisely, introduction of Sattinger’s weighted norms (1.4) has the effect of

“shifting” the essential spectrum of L away from the imaginary axis into the stable
complex half-plane ℜλ < 0, whereupon a stability analysis may be carried out by stan-
dard techniques to show that spectral stability implies exponential phase-asymptotic
orbital stability (both with respect to ‖ · ‖Ŵ 1,∞

η
), i.e., time-exponential convergence

of a perturbed traveling wave to a specific shift ū(x − δ) of the original wave. We
refer to [S] for details; see also the related analysis of Section 4, below. For this
class of solutions and equations, the introduction of weighted norms thus removes
the substantial technical difficulty presented in the original norm by accumulation
of essential spectrum at the imaginary axis. For treatments of this difficulty in the
general case, see, e.g., [SX, L.1, Z.2]; in particular, see the pointwise Green’s function
techniques introduced in [ZH, MaZ.1]. For treatments of the additional difficulty of
real, or non-definite, viscosity, see [MaZ.2, Z.4].

In this paper, we extend Sattinger’s analysis in a natural direction, studying for
the same class of equations and solutions the bifurcation of traveling waves at the
onset of instability. More precisely, indexing by ǫ a smoothly-varying one-parameter
family of standing-wave solutions

(1.5) ūǫ(x) : F(ǫ, ūǫ) ≡ 0,

of a smoothly-varying family of equations

(1.6) ut = F(ǫ, u) := f(ǫ, u, ux) + uxx

(possibly shifts of a single equation, written in coordinates x → x−s(ǫ)t moving with
traveling-wave solutions of varying speeds s(ǫ)), denote by L(ǫ, ūǫ) := ∂F/∂u|u=ūǫ

the linearized operator about the wave. As pointed out by Sattinger, L(ǫ, ūǫ) has
always the neutral, zero-eigenfunction (∂/∂x)ūǫ, corresponding to translational in-
variance of the underlying equations; assuming the weighted norm property, the wave
is (exponentially) orbitally stable if and only if there are no other neutrally stable
modes associated to eigenvalues ℜλ ≥ 0. We wish to investigate the situation that
L(ǫ, ūǫ) is spectrally stable for ǫ < 0 and spectrally unstable for ǫ > 0, with one or
more eigenvalues crossing the imaginary axis at ǫ = 0: specifically, to study associated
bifurcation from traveling-wave to more complicated types of solutions.

The case of our particular interest is that of a relative Poincaré–Hopf bifurcation,
for which a pair of complex conjugate eigenvalues

(1.7) λ = γ(ǫ) ± iτ(ǫ)

crosses the imaginary axis with positive speed at ǫ = 0, i.e.,

(1.8) γ(0) = 0, τ(0) 6= 0, (dγ/dǫ)(0) > 0;

the presence of the additional, neutral eigenvalue λ = 0 arising through translation-
invariance distinguishes this from the standard Poincaré–Hopf bifurcation.

Define the weighted Sobolev norm

(1.9) ‖f‖2
H2

η
:=

2
∑

j=0

‖(d/dx)jf(x)‖2
L2

η
,
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inner product

(1.10) 〈f, g〉H2
η

:=

2
∑

j=0

〈(d/dx)jf(x), (d/dx)jg(x)〉L2
η
,

and space

(1.11) H2
η := {f : ‖f‖H2

η
< +∞},

where

(1.12) ‖f‖L2
η

:= ‖eη(1+|x|2)1/2

f(x)‖L2 ,

(1.13) 〈f, g〉L2
η

:= 〈eη(1+|x|2)1/2

f(x), g(x)〉L2 .

We make the following assumptions, concerning the spectrum of the linearized
operator L(ǫ, ūǫ) only. Regarding the essential spectrum, we assume the weighted
norm condition

(1.14) ℜσ(eηxL(0, u0
+)e−ηx) < 0, ℜσ(e−ηxL(0, u0

−)eηx) < 0

for some η ≥ 0, where σ refers to L2 spectrum; hence, by continuity,

(1.15) ℜσ(eηxL(ǫ, uǫ
+)e−ηx) < 0, ℜσ(e−ηxL(ǫ, uǫ

−)eηx) < 0

for ǫ sufficiently small. As pointed out by Sattinger [S], conditions (1.15) are necessary
and sufficient in order that the W k,p

η essential spectrum of L(ǫ, ūǫ) lie strictly in the
stable half-plane ℜλ < 0, for any k, p. Indeed, this may be seen as a special case of a
standard result of Henry ([He], Theorem A.2, chapter 5) on spectrum of operators with
asymptotically constant coefficients, asserting that (i) the rightmost (i.e. largest real
part) envelope of the essential spectrum is the envelope of the union of the rightmost
envelopes of the limiting, constant-coefficient operators at ±∞, and (ii) to the right of
this envelope, all spectrum consists of eigenvalues of finite multiplicity. Thus, (1.14)
precisely enforces the weighted norm property discussed earlier.

Remark 1.1. One may also as in [S] allow different weights η+ and η− ≥ 0
for x ≥ 0 and x ≤ 0, without affecting any of the results of this paper. However, in
practice this is rarely necessary.

The conditions (1.14) are algebraic requirements on the spectrum of the Fourier
symbols of L(0, u0

±), which may in principle be checked by direct calculation. As
noted in [S], they hold automatically for traveling waves, or “shock profiles” of scalar
viscous conservation laws

(1.16) ut + h(u)x = uxx,

u ∈ R
1, which, however, are always stable. For systems of conservation laws (1.16),

u ∈ R
n, n > 1, they hold for nonclassical “totally compressive” shock profiles [K, ZH]

but not for standard, Lax-type profiles [ZH]. They hold frequently for traveling-wave
solutions of reaction–diffusion equations, with the trivial weight η = 0; see section
4.3. Also, they are satisfied for “strong detonation” type traveling-wave solutions
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of Majda’s model for reacting flow; see section 4.3.3. These, and reaction–diffusion
waves, are the main examples we have in mind.

Regarding the point spectrum, we assume the bifurcation conditions

(rPH) For ǫ sufficiently small, the only eigenvalues of Lǫ lying in a neighborhood
of the imaginary axis are a single translational eigenvalue zero and a crossing complex
conjugate pair as described in (1.7), (1.8).

Then, our main result is as follows.

Theorem 1.2. Let (1.6), (1.5) be a family of traveling-waves and systems as
above, satisfying the weighted norm condition (1.14) and the bifurcation conditions
(rPH), with f ∈ C4. Then, for a ≥ 0 sufficiently small and C > 0 sufficiently large,
there is a C1 function ǫ(a), ǫ(0) = 0, and a family of solutions

(1.17) ua(x, t) = ua(x − αa(t), t), αa(t) = σat + θa(t),

of (1.6) with ǫ = ǫ(a), where ua(·, t) is time-periodic, with ‖ua(·, 0) − ū0‖H2
η

= a

and ‖ua(·, t) − ū0‖H2
η
≤ Ca for all t, σa is a constant drift, and θa ∈ R is time-

periodic. Up to fixed translations in x, t, these are the only nearby solutions of this
form, as measured in H2

η . Moreover, if ℜσ(L(0, ū0)) ≤ 0, then solutions ua are time-
exponentially phase-asymptotically orbitally stable with respect to H2

η if dǫ/da > 0, in
the sense that perturbed solutions converge time-exponentially to a specific shift in x
and t of the original solution, and unstable if dǫ/da < 0. If ℜσ(L(0, ū0)) 6≤ 0, then
solutions ua are unstable for all a sufficiently small.

Up to translation, Theorem 1.2 describes the standard Poincaré–Hopf picture
of a one-parameter family of periodic orbits ua of amplitude a bifurcating from the
family of stationary solutions ūǫ, yielding for generic fixed values of ǫ a discrete set
of periodic orbits {uaj} of increasing amplitude, starting with the trivial, stationary
solution u0 = ūǫ, alternating between stability and instability. Indeed, we shall show
that it corresponds exactly to a standard Poincaré–Hopf bifurcation on the quotient
space obtained by factoring out translational invariance, with {uaj} corresponding
to nested cycles in a two-dimensional submanifold of a three-dimensional (counting ǫ
direction) center manifold.

More generally, let H denote any subspace of H2
η complementary to the span

of the translational zero-eigenfunction φ := (∂/∂x)ū0 of L(0, 0).Then, we have the
following more general result, from which Theorem 1.2 follows as a corollary using
the standard Poincaré–Hopf Theorem for 2 × 2 dynamical systems, as contained, for
example, in Theorems 11.12 and 11.16 of [HK]; see also Section 2.4, below.

Theorem 1.3. Let (1.6), (1.5) be a family of traveling-waves and systems as
above, satisfying the weighted norm condition, with f ∈ C4. Then,

(i) the map

(1.18) (v(x, t), α) → v(x + α, t) + (ū0(x + α) − ū0(x))

from H×R to H2
η is invertible for ‖v‖H2

η
sufficiently small; in (v, α) coordinates, (1.6)

takes the form

(1.19) (v, α)′ = (G(v, ǫ), h(v, ǫ))

independent of α, where G and h are appropriate integro-differential operators.
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(ii) The augmented equations

(1.20) (v, ǫ)′ = (G(v, ǫ), 0)

on H×R possess a C3 local center manifold at (v, ǫ) = (0, 0) of finite dimension equal
to that of the center subspace of operator L(0), of which one dimension corresponds
to variation in the parameter ǫ and the remaining dimensions correspond to the part
of the center subspace of L(0) associated with nonzero eigenfunctions of L(0): that is,
the translational zero-eigenfunction has been factored out.

(iii) This center manifold contains all globally bounded solutions of (1.20) for |ǫ|
sufficiently small, corresponding to solutions of (1.6) remaining sufficiently close to
the set of translates of ū0. Moreover, if ℜσ(L(0)) ≤ 0, then H2

η orbital stability of
these as solutions of the original system (1.6) is equivalent to stability as solutions
of the finite-dimensional ODE induced on the center manifold, with ǫ held fixed. If
ℜσ(L(0)) 6≤ 0, then all such solutions are unstable.

Theorem 1.3 reduces the degenerate, infinite-dimensional bifurcation problem for
PDE (1.5)–(1.6) to a standard, finite-dimensional bifurcation problem with transla-
tional invariance factored out. Besides Theorem 1.2, this also includes an H2

η version
of Sattinger’s orbital stability theorem ([S], Theorem 4.1), which corresponds to the
case that the center subspace of L(0) is just the zero-eigenspace spanned by (∂/∂x)ū0.
In this situation, the center manifold in (Y, ǫ) coordinates consists of the trivial solu-
tions Y ≡ 0, ǫ ≡ constant, which are vacously stable under perturbations with ǫ held
fixed.

Remarks 1.4. 1. Our assumption on essential spectrum are checked for var-
ious examples, notably on Majda’s model, in section 4.3. However, detection of the
relative Poincaré–Hopf bifurcation appears to be a numerical task, in general, since
the bifurcation conditions (rPH) are typically not analytically verifiable.

2. The sign of dǫ/da near a = 0 (determined by the sign of the first nonvanishing
derivative dkǫ/dak(0): generically, d2ǫ/da2(0)) is at least numerically computable, by
the method described in Section 4 of [MM], so can actually be used to determine sta-
bility. This would be a very interesting direction for future investigation, particularly
in the context of Majda’s equations discussed below.

3. The factorized description of the center manifold given in Theorem 1.3 together
with the property of exponential approach yields additional information about the
relative Poincaré–Hopf bifurcation of Theorem 1.2. Namely, we may conclude, for
nondegenerate ǫ 6= 0 in the range of ǫ(a) (i.e., for which there exists some periodic
solution), solutions originating sufficiently near a translate of ūǫ with respect to H2

η

must time-exponentially approach an (x, t)-translate of either ūǫ or else the limit-
cycle corresponding to the periodic solution of smallest nonzero amplitude for ǫ, by
properties of planar ODE. (Indeed, the proof of the exponential approach property
shows, for ūǫ unstable, that convergence to ūǫ occurs for a Hausdorff-measure zero
set of initial perturbations; see Sections 2.1 and 4.)

4. It is straightforward to carry out a similar analysis in the original W 1,∞
η

framework of Sattinger; see Remark 4.6. However, the analysis is somewhat simpler
in the Sobolev setting; compare especially the linearized estimates of Lemma 4.4 to
the detailed estimates of [S]. Of course, our H2

η bounds include also pointwise, W 1,∞

bounds, by Sobolev embedding.
5. Similar analysis yields a reduced center manifold for general semilinear second-

order elliptic PDE invariant under a bounded symmetry group, provided that the lin-
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earized operator about zero have a spectral gap: in particular, for initial–boundary-
value problems on bounded domains. An application is to bifurcation from normal
(identically zero) to superconducting states in the Ginzberg–Landau model for super-
conductivity. These equations are invariant under gauge transformations Φα gener-
ated by rotations Ψ → eiαΨ of a complex order-parameter Ψ, which invariance has the
effect of doubling the multiplicity of all eigenvalues of the linearized operator about
the zero solution; see, e.g., [BR, MW]. Working on a reduced center manifold changes
a degenerate multiplicity two bifurcation to a standard transcritical bifurcation that
is easily analyzed by standard techniques. Compare the difficulties in the general,
even-multiplicity case, as discussed in [MW].

Existence of center manifolds for parabolic PDE has been widely studied; see,
e.g., [C, He, MM, G]. In particular, relative Poincaré–Hopf bifurcation has been
investigated in [SSW, GLM.1, GLM.2] in the context of “meandering” spiral wave
solutions of reaction–diffusion equations in two spatial dimensions, x ∈ R

2, using
considerably more sophisticated techniques. The latter analyses face the additional
difficulty that the associated invariance group contains the unbounded operations of
spatial rotation on an unbounded domain. Thus, the main novelty of the present
work is its simplicity and the application to galloping phenomena: in particular,
the accomodation of accumulating essential spectrum in our treatment of detonation
waves, as we now describe.

Galloping waves. Solutions of form (1.17) correspond to small time-periodic
shifts in speed and profile, or “galloping instability”, of the base solution ū0. Galloping
instability is a well-known phenomenon in combustion theory; indeed, it is commonly
described as the principal longitudinal (i.e., one-dimensional) instability arising in
detonation waves. See, e.g., [AT, AlT, B, BL, BN, Er.1, Er.2, F.1, F.2, FD, FW, LS,
MT]. One of our main motivations in this analysis was to give a rigorous description of
this phenomenon in a simple context. In particular, as pointed out in [LLT] (see also
section 4.3.3), Sattinger’s weighted norm condition is satisfied for strong detonation-
type solutions of Majda’s model for reacting flow [M], a model widely used in the
qualitative study of detonation, and so our conclusions apply to this model. On the
other hand, it is not satisfied for the trivial weight η = 0, and so the weighted norm
construction is truly needed.

Majda’s model [M] reads

(1.21)

{

∂tũ + ∂xf(ũ) = B∂2
xũ + kqϕ(ũ)z̃,

∂tz̃ = D∂2
xz̃ − kϕ(ũ)z̃,

in which the scalar variable u is a lumped gas-dynamical variable combining aspects
of specific volume, particle velocity and temperature, and z corresponds to mass
fraction of reactant. The physical constants in (1.21) are q, comprising quantities
produced in reaction, in particular heat released, and k the rate of reaction. The
diffusion coefficients B and D are assumed to be constant and positive. We take
f ′(u) > 0, f ′′(u) > 0, and q > 0, corresponding to an exothermic reaction. The
ignition function φ is a step function, identically zero for u ≤ ui, nondecreasing, and
for instance identically 1 for u ≥ ui.

Previous work on Majda’s model notably includes the proof of nonlinear stability
of strong detonation waves by Liu and Ying [LYi] in the small heat release limit,
the proof of spectral stability of strong detonation waves by Roquejoffre and Vila
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[RV] in the small diffusion, or “ZND” limit (referring to the zero-diffusion Zeldovich–
von Neumann–Doering model), and a weaker but more general result by Lyng and
Zumbrun [LyZ.2] that transition to one-dimensional instability for arbitrary weak
or strong detonations may occur only by one or more pairs of complex-conjugate
eigenvalues crossing the imaginary axis. See [Ly, LyZ.2] for an analogous result for
the full reacting Navier–Stokes equations in the ZND limit. Thus, Theorem 1.2 indeed
supports the picture of galloping as generic longitudinal instability.

Fickett and Davis ([FD], p. 231) state that high dependence of reaction rate
on temperature is associated with galloping instability. In [M], the reaction rate
intervenes as kφ(u), where u is analogous to temperature. Hence in Theorem 1.2, the
bifurcation parameter could be the reaction rate; in the light of Liu and Ying’s result
[LYi], it could also be the heat release q; in the light of Roquejoffre and Vila’s result
[RV], it could be the diffusion D, or perhaps a parameter controlling the shape of φ
(note: the shape of φ indeed enters the analysis; see [RV]).

Remark 1.5. Though one-dimensional instabilities are well known to occur
for the full reacting Navier–Stokes equations, it is not known whether this can in
fact occur for the simpler Majda’s model. A very interesting numerical problem
would be to resolve this question by exhaustive search: note that point spectrum may
be rapidly determined numerically using shooting algorithms as described, e.g., in
[Br.1, Br.2, BrZ, BDG].

Provided that such instability can be found, with accompanying relative
Poincaré–Hopf bifurcation, a second interesting problem would be to calculate the
sign of d2ǫ/da2 at the transition point ǫ = 0. Positivity (“supercritical” case [HK])
would mean that small-amplitude galloping solutions are stable, implying bifurcation
from stable traveling wave to stable galloping wave as seen in experiment. Negativity
(“subcritical” case [HK]) would indicate that small-amplitude galloping solutions are
unstable, suggesting a more complicated, global bifurcation.

Breathers. A related phenomenon encompassed by our analysis is that of
“breathers” arising through Hopf bifurcation of traveling pulse solutions of singularly
perturbed reaction–diffusion systems, as studied numerically in, e.g., [IIM, NM, IN].
These pulse solutions, satisfing the weighted norm condition (1.14) with η = 0, fea-
ture a singularly perturbed “front” and “back” layer structure. Under the bifurcation
conditions (rPH) (verified in different cases either numerically, or via the singular
perturbation structure), they are observed numerically to bifurcate to time-periodic
“breathing” solutions in which the front and back layers oscillate back and forth. Our
results give precise and rigorous justification also to these numerical observations.

Discussion/open problems. As mentioned above, one of our main motivations
in this analysis was to understand the onset of galloping instability in detonation
waves. More generally, this paper is intended as the initiation of a larger study of
bifurcations associated with instability in detonation waves, including also transverse,
or multi-dimensional instabilities of spinning or cellular type as described, e.g., in [FD,
B], arising for detonations in cylindrical domains with finite (circular or rectangular,
respectively) cross-section. As discussed formally in [Er.2, KS] in the context of the
ZND model, these appear also to be relative Poincaré–Hopf bifurcations (with respect
to axial translation), though of a more complicated sort.

Similarly as in the study of stability of detonations or shock waves, the difficulty
(and interest) of these problems comes from the implicit presence of multiple scales,
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as discussed in [Z.1, Z.3, Z.4]. In particular, there is no spectral gap between essen-
tial spectrum and the one-dimensional translational zero-eigenvalue of the linearized
operator about the traveling wave, so that the associated bifurcation problems are
of a nonstandard, degenerate type. Indeed, even the extension of the present results
from the class of equations considered by Sattinger to the full, reacting Navier–Stokes
equations appears to involve considerable technical difficulty. In particular, since sta-
ble modes in this case are only time-algebraically decaying in any useful norm, [ZH],
we do not necessarily expect the existence of a center manifold; rather, we hope to
construct directly the periodic solutions involved in Poincaré–Hopf bifurcation at the
same time that we establish their stability by combining high-order approximate so-
lutions with detailed stability estimates of the type carried out in [Z.2, MaZ.2, Z.4]
in the context of stability of traveling waves.

In short, we propose to rigorously verify a formal viscous weakly nonlinear ap-
proximation analogous to that carried out in [Er.2, MR, BMR] in the (inviscid) ZND
setting. This appears to be a very interesting direction both for the viscous theory
in itself and for possible implications regarding the standard (inviscid) ZND approx-
imation.

Plan of the paper. We state the Center Manifold theorem (Proposition 2.1)
and the Poincaré-Hopf bifurcation theorems in R

2 and R
N (Theorems 2.4 and 2.6) in

section 2, paying special attention to stability issues. In section 3, we describe how
symmetry can be exploited to factorize a differential equation, and in effect reduce
the space dimension by one, in a finite-dimensional setting (Lemma 3.3). This leads
to Theorem 3.6 that describes a reduced center manifold, or a center manifold with
symmetry, and to Theorem 3.8 that describes a relative Poincaré-Hopf bifurcation,
or Poincaré-Hopf bifurcation with extra zero eigenvalue arising through group invari-
ance. Next in section 4, we prove Theorems 1.3 and 1.2 that are infinite-dimensional
analogues of Theorem 3.6 and 3.8. Finally, in section 4.3 we check that the assumption
of Theorem 1.2 on essential spectrum holds for various model systems.

Acknowledgement. We thank Alberto Bressan for generously sharing his un-
published notes [Bre] on the center manifold. Thanks also to Björn Sandstede for
pointing out the references [SSW, GLM.1, GLM.2].

2. The center manifold theorem and Poincaré-Hopf bifurcation in finite
dimension.

2.1. Center Manifold theory. We begin by stating a basic version of the
Center Manifold Theorem for finite-dimensional ODE, following the notes of Bressan
[Bre]. Consider a finite-dimensional, autonomous ODE

(2.1) X ′(t) = F (X(t)), X, F ∈ R
n.

Proposition 2.1 (Center Manifold Theorem [Bre]). Let F ∈ Ck+1, k ≥ 1, with
F (0) = 0, and let Σc denote the center subspace of dF (0), defined as the range of the
total eigenprojection Πc associated with all eigenvalues of real part zero. Then, for
some δ > 0, there exists a local Ck invariant center manifold C with the following
properties.

(i)There exists a Ck function φ : Σc → R
n with Πcφ(x) = x, such that C is the

image under φ of Σc ∩ B(0, δ).
(ii) C contains all globally bounded solutions contained in a sufficiently small ball

about the origin.
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(iii) The manifold C is locally invariant under the flow of (2.1), i.e., X(0) ∈ C
implies X(t) ∈ C for |t| sufficiently small.

(iv) C is tangent to Σc at the origin.
(v) (exponential approximation property) Given any solution X(t) of (2.1) such

that |X(t)| < δ as t → ∞, there exists a trajectory t → Y (t) on the center manifold
and η > 0 such that

eηt|X(t) − Y (t)| → 0 as t → +∞.

Proof. See [Bre], or Appendix A.
One can rewrite (2.1) as

(2.2) X ′ = AX + G(X),

where the right-hand side is a Taylor expansion of F , i.e., G(0), dG(0) = 0. The first
step of the proof consists in truncating the nonlinearity: let

ρ : x 7→

{

1, |x| ≤ 1,

0, |x| ≥ 2,
, Gδ(x) := ρ

( |x|

δ

)

G(x),

and consider the equation

(2.3) X ′ = AX + Gδ(X).

There exists projectors πc, πs, πu, such that

(2.4) R
n = Range πs ⊕ Range πc ⊕ Range πu,

and positive numbers ω, β, such that

(2.5) ‖etAπs‖ ≤ Cβe−βt, t ≥ 0, ‖etAπu‖ ≤ Cβeβt, t ≤ 0,

and

(2.6) ‖etAπc‖ ≤ Cωeω|t|, t ∈ R,

for some Cβ , Cη > 0. A possible choice is to let πc := Πc the projector over the center
subspace of A, to let πs and πu be the spectral projectors of A over the stable and
unstable spaces, to let β < β0, where β0 is the spectral gap of A, defined as

β0 := min{ℜλ, λ ∈ σ(A) and ℜλ 6= 0},

and to let 0 < ω < β.
The proofs of points (i) and (v) of Proposition 2.1 given by Bressan in [Bre] yield

the following more precise statement.

Proposition 2.2. For δ > 0 sufficiently small, the truncated equations (2.3)
possess a unique, global center manifold Ĉ. Moreover, given any solution X(t) of
(2.3) that grows sufficiently slowly in forward time: X ∈ S+

η for some ω < η < β,
where ω and β are as in (2.5) and (2.6),

S+
η := {t 7→ z(t) ∈ R

n, sup
t≥0

e−ηt|z(t)| < ∞},
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there exists a trajectory t → Y (t) on Ĉ, such that

(2.7) sup
t≥0

|X(t) − Y (t)| ≤ C|X(0)|,

where C depends only on Gδ, ω and η, and

(2.8) eηt|X(t) − Y (t)| → 0 as t → +∞,

Proof. See Appendix A.
Proposition 2.1 has the important implication that in studying existence of suf-

ficiently small bounded solutions (e.g., traveling or standing waves, or periodic solu-
tions) of (2.1), it suffices to consider the reduced flow along the center manifold C. The
following proposition shows that stability of these solutions also may be determined
entirely through consideration of the reduced flow.

Proposition 2.3. Under the assumptions of Proposition 2.1, if ℜσ(dF (0)) ≤ 0,
then globally bounded solutions of (2.1) confined to a sufficiently small neighborhood
of the origin are stable within the center manifold if and only if they are stable under
perturbations in R

n. If ℜσ(dF (0)) 6≤ 0, then all solutions on the center manifold
originating from a sufficiently small neighborhood of the origin are unstable.

Proof. The first follows by Proposition 2.2; see Appendix A. The second assertion
follows by routine, essentially linear estimates.

2.2. Poincaré-Hopf bifurcation. We start by stating a theorem that describes
apparition of periodic orbits and discusses their stability, in a simple 2 × 2 setting.
This paragraph is inspired, sometimes literally, by chapter 11 of [HK].

Let F be a C3 vector field in R
2, depending on the scalar parameter ǫ, such that

for all ǫ, F (ǫ, 0) = 0. Consider the differential equation in R
2 :

(2.9) X ′(t) = F (ǫ, X(t)).

Theorem 2.4 (Poincaré-Hopf bifurcation in R
2). Assume that the spectrum of

∂xF (ǫ, 0) consists of two conjugate eigenvalues λ(ǫ), λ̄(ǫ) = γ(ǫ) ± iτ(ǫ), such that

(2.10) γ(0) = 0, τ(0) 6= 0, (dγ/dǫ)(0) > 0.

Then, for any sufficiently small a > 0, there exists a unique nontrivial periodic orbit
Xa of (2.9) with initial radius a : |Xa(0)| = a, and parameter value ǫ(a). The function
a → ǫ(a) is C1, with dǫ/da(0) = 0; if dǫ/da > 0, Xa is orbitally asymptotically stable;
if dǫ/da < 0, it is unstable.

Proof. The equation is

X ′ =

(

γ(ǫ) τ(ǫ)
−τ(ǫ) γ(ǫ)

)

X + G(ǫ, X),

where G(ǫ, 0) ≡ 0, ∂xG(ǫ, 0) ≡ 0. It follows from the assumptions F ∈ C3, γ(0) =
0, τ(0) 6= 0, that γ and τ are C2 in ǫ, in a neighbourhood of 0. In polar coordinates:

r′(t) = γ(ǫ)r + R(ǫ, r, cos θ, sin θ),

θ′(t) = τ(ǫ) + Θ(ǫ, r, cos θ, sin θ),(2.11)
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where R and Θ have simple expressions in terms of G. As τ(ǫ) 6= 0, for small ǫ, the
second equation of (2.11) is locally invertible. The system thus reduces to a scalar
equation with periodic coefficients:

(2.12) r′(θ) =
γ(ǫ)

τ(ǫ)
r(θ) + R(ǫ, r(θ), θ).

Consider an orbit r of (2.12), with initial datum r(0) = a. The orbit r is 2π−periodic
if and only if a is a fixed point of the Poincaré map

(2.13) Π(ǫ, a) := e2π(γ/τ)(ǫ)a +

∫ 2π

0

e(2π−θ′)(γ/τ)(ǫ)R(ǫ, r(θ′), θ′) dθ′.

As R(ǫ, 0, θ) ≡ 0, ∂rR(ǫ, 0, θ) ≡ 0, properties inherited from the corresponding prop-
erties of G, the condition that guarantees the existence of a unique ǫ(a) such that
Π(ǫ(a), a) = a, for small a > 0, is d(γ/τ)/dǫ(0) 6= 0, by the Implicit Function Theo-
rem applied to the reduced equation 0 = g(ǫ(a), a),

g(ǫ(a), a) := Π(ǫ, a)/a − 1.

(From R(ǫ, 0, θ) ≡ 0, ∂rR(ǫ, 0, θ) ≡ 0, we obtain g(0, 0) = 0, gǫ(0, 0) =
2πd(γ/τ)/dǫ(0).) This condition holds by (2.10). Then r(ǫ(a), θ) defines a 2π−periodic
orbit of (2.12) with initial datum a, and

{(r(ǫ(a), θ) cos θ, r(ǫ(a), θ) sin θ), θ ≥ 0}

is a periodic orbit of (2.9).

Solution ra, hence Xa, is stable if
∣

∣

∣∂aΠ(ǫ, a)|ǫ=ǫ(a)

∣

∣

∣ < 1 and unstable if
∣

∣

∣
∂aΠ(ǫ, a)|ǫ=ǫ(a)

∣

∣

∣
< 1. Computing ∂aΠ(0, 0) = ∂a(ag + a)(0, 0) = 1, we see that

∂aΠ(0, 0) > −1 for a sufficiently small, and so stability is determined by the sign of
1 − ∂aΠ(ǫ, a)|ǫ=ǫ(a), or

1 − ∂a(ag + a)|ǫ=ǫ(a) = aga|ǫ=ǫ(a).

Recalling that dǫ/da = −ga/gǫ by the Implicit Function Theorem, we find that
the righthand side may be expressed as −a(dǫ/da)gǫ|ǫ=ǫ(a). Since also, gǫ(0, 0) =

2π d(γ/τ)
dǫ (0) > 0, so that gǫ > 0 for a sufficiently small, and since a > 0, we find as

claimed that, for a > 0 sufficiently small, the sign of 1 − ∂aΠ(ǫ, a)|ǫ=ǫ(a) and thus
stability is determined by the sign of dǫ/da. For an explicit expression of the stability
condition in terms of F, see [HK].

Finally, note that (2.12) is valid also for r < 0, and smooth on all r. Since the
map (a, ǫ) → â = −a + O(a2) advancing the flow by π evidently preserves periodic
orbits, we have

ǫ(a) = ǫ(â(a, ǫ(a)))

and so dǫ/da(0) = (dǫ/da)(0)(∂â/∂a)(0, 0) = −dǫ/da(0), from which we may conclude
that dǫ/da(0) = 0.

Remarks 2.5. 1. Stability of the Poincaré map corresponds to orbital stability
of the periodic orbit. Thus there is no contradiction with the stability assertion in
the above theorem and the second assertion of Proposition 2.3.
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2. If dγ
dǫ (0) < 0, then the periodic orbit is unstable if dǫ/da > 0 and orbitally

asymptotically stable if dǫ/da < 0.
3. The sign of d2ǫ/da2(0) is numerically computable; it can be expressed in terms

of derivatives of F up to order three ([HK], pp. 359-360).

The relation of stability to sign of dǫ/da yields for each fixed value of ǫ the
expected phase portrait of alternating stable and unstable solutions; see Figure 1.

u

s

a

ǫ

s

us

Fig. 1. Alternation of stable/unstable solutions.

Next we combine Proposition 2.1 and Theorem 2.2 to obtain the well-known
Poincaré-Hopf bifurcation theorem in R

n.
Let F be a C4 vector field in R

n, depending on the scalar parameter ǫ, such that
for all ǫ, F (ǫ, 0) = 0. Consider the differential equation in R

n :

(2.14) X ′(t) = F (ǫ, X(t)).

Let Ψ be the flow of F. For any given (t0, X0) ∈ R × R
n, the mapping

t ∈ It0,X0
7→ Ψ(t, X0) ∈ R

n,

solves (2.14) with the initial datum X(t0) = X0, over some open time interval It0,X0
.

Theorem 2.6 (Poincaré-Hopf bifurcation in R
n). Assume that the spectrum of

∂xF (ǫ, 0) is strictly contained in {z,ℜz 6= 0} for small ǫ, except for two conjugate
eigenvalues λ(ǫ), λ̄(ǫ) = γ(ǫ)± iτ(ǫ) that cross the imaginary axis as in (2.10). Then,
there exists a neighborhood U of the origin in a submanifold of R

n, such that for all
X0 ∈ U , there exists a unique periodic orbit of (2.14) with initial datum X0, which
stability can generically be determined through a computable condition involving F
and its derivatives up to order three. Moreover, the only periodic orbits of F in a
neighbourhood of the origin are the above.

Proof. First, extend F to a vector field in R
n+1 by letting F̃ := (0, F ), and

consider the differential equation in R
n+1, X̃ ′ := (ǫ, X)′ = F̃ (ǫ, X). By Proposition

2.1, there exists a three-dimensional center manifold C tangent to the flow Ψ̃ of F̃ in
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a neighbourhood of the origin in R
n+1. The manifold C is the graph of a Ck map φ

over a neighborhood of the origin in Σ̃C , the three-dimensional vector space spanned
by the eigenvectors associated with λ(0) and λ̄(0), and the ǫ−axis. Let Π̃C be the
projection onto Σ̃C . Define the reduced vector field F ♯ on Σ̃C by F ♯ := Π̃C F̃ (φ).
Because C is locally invariant under Ψ̃, the flow of F ♯ is

Ψ♯(t, X̃0) := Π̃CΨ̃(t, φ(X̃0)).

Indeed, one has ∂tΨ
♯(t, X̃0) = Π̃C∂tΨ̃(t, φ(X̃0)) = Π̃C F̃Ψ(t, Φ(X̃0)), and, as

Ψ(t, φ(X̃0)) ∈ C for small |t| :

Ψ(t, φ(X̃0)) = φΠ̃CΨ(t, φ(X̃0)),

hence

∂tΨ
♯(t, X̃0) = Π̃C F̃ φΠ̃CΨ(t, φ(X̃0)) = Π̃C F̃ φΨ♯(t, X̃0) = F ♯Ψ♯(t, X̃0).

We now prove that the reduced field F ♯ in Σ̃C inherits the spectral properties of
F̃ . First, note that (ǫ, 0) is an equilibrium of F̃ , hence it lies on the center mani-
fold: φ(ǫ, 0) = (ǫ, 0). Second, φΠ̃C , in restriction to C, is the identity map. Hence
dφ(X̃)Π̃C = Id, for X̃ close to the origin, where Id is the identity in TX̃C = Σ̃C . This
implies

dφ(ǫ, 0)dF ♯(ǫ, 0) = dφ(ǫ, 0)Π̃CdF̃ (φ(ǫ, 0))dφ(ǫ, 0)

= dF̃ (ǫ, 0)dφ(ǫ, 0),

hence

∂Xφ(ǫ, 0)∂XF ♯|ΣC (ǫ, 0) = ∂XF (ǫ, 0)∂Xφ(ǫ, 0),

where ΣC is the subspace of Σ̃C spanned by the eigenvectors associated with λ(0)
and λ̄(0). It follows that the spectrum of ∂xF ♯|ΣC (ǫ, 0) is contained in the spec-
trum of ∂xF̃ (ǫ, 0) and that σ(∂XF ♯|ΣC (0, 0)) = {λ(0), λ̄(0)}, and eventually that
σ(∂XF ♯|ΣC (ǫ, 0)) = {λ(ǫ), λ̄(ǫ)}, for small ǫ.

By Theorem 2.2, if XC ∈ ΣC is close enough to the origin, then for small ǫ,
X̃C = (ǫ, XC) is included in a closed orbit of F ♯. Then t → φ(Ψ♯(t, X̃C)) defines a
closed orbit of F̃ . Conversely, if X0 ∈ R

n is close enough to the origin and ǫ sufficiently
small, if X̃0 = (ǫ, X0) belongs to a closed orbit of F̃ , then necessarily X̃0 ∈ C, as C
contains all globally bounded orbits, and t → Π̃CΨ̃(t, X̃0) is the closed orbit of F ♯ in
Σ̃C with initial datum Π̃CX̃0. This gives existence and uniqueness of periodic orbits
of F, for small ǫ, in a neighbourhood of the origin in R

n.

Proposition 2.7. Under the assumptions of Proposition 2.6, if the spectrum of
∂xF (0, ǫ) is strictly contained in {z,ℜz < 0} for small ǫ, except for the two eigenvalues
λ(ǫ), λ̄(ǫ), then for small ǫ, periodic orbits confined to a sufficiently small neigborhood
of the origin on the center manifold are orbitally stable (resp. asymptotically orbitally
stable) under perturbations within the center manifold if and only if they are stable
(resp. asymptotically orbitally stable) under perturbations in R

n.

Proof. This follows from Proposition 2.3, applied to the vector field F̃ (ǫ, X) =
(F (ǫ, X), 0). Indeed, the assumption in Proposition 2.3 deals only with spectrum at
the bifurcation point (0, 0).
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Theorem 2.2 asserts that stability of closed orbits in Σ̃C is determined by a
computable condition involving derivatives of F ♯ up to order three, which can be
expressed in terms of derivatives of F up to order three. Indeed, the first terms of the
Taylor expansion of φ, whose existence is given by the Implicit Function Theorem,
can be computed in terms of derivatives of F. An explicit expression of this stability
condition in terms of F is given in [MM], section 4.

3. Ordinary differential equations with symmetries and relative
Poincaré–Hopf bifurcation. We next discuss relative bifurcations and ODE with
symmetries in a way suited for our later analysis. For a general reference, see, e.g.
[A].

3.1. General reduction process. Consider (2.1), where F ∈ Ck, and let Ψ be
the flow of F.

Assumption 3.1. Suppose that there exists an additive group {Φα}α∈R,

Φα · Φβ = Φα+β ,

of C1 transformations R
n → R

n, with α 7→ Φα ∈ C1, that leaves Ψ invariant, that is

Φα(Ψ(t, t0, X0)) = Ψ(t, t0, Φα(X0)),

for any α, t ∈ It0,X0
, and such that

(3.1)
∂Φα

∂α

∣

∣

α=0
(0) 6= 0.

Remark 3.2. As a consequence of invariance, ΦαX(t) is a solution of (2.1) if
and only if X(t) is a solution.

Let us define coordinates X = (Y, z) ∈ R
n−1 × R such that ∂Φα

∂α

∣

∣

α=0
(0) is trans-

verse to the hyperplane z = 0.

Lemma 3.3. Under Assumption 3.1, in a neighbourhood of the origin, the dy-
namics of (2.1) can be locally described in terms of a vector field in R

n−1, specifically,
(3.3)–(3.5) below.

That is, group invariance effectively reduces the dimension of the phase space by
one.

Proof. Consider the map T : R
n−1 × R → R

n, defined as

(3.2) T

(

Y
α

)

:= Φα

(

Y
0

)

.

As Φ0 = Id,

dT (0) =

(

IdRn−1 ∗
0 a

)

,

where a is the component of ∂Φα

∂α

∣

∣

α=0
(0) in the z direction, which, by Assumption

3.1, does not vanish. Thus T is a local diffeomorphism on V , a neighbourhood of the
origin in R

n.
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Consider a trajectory t → X(t) of (2.1), such that for some t0, X(t0) ∈ V . There
exist C∞ maps t 7→ Y (t) ∈ R

n−1 and t 7→ α(t) ∈ R, such that

X(t) = T

(

Y (t)
α(t)

)

= Φα(t)

(

Y (t)
0

)

.

in a neighbourhood of t0. Fix now a time t̃ close to t0 and let α(t̃) = α0. Consider

Z(t) := Φ−α0
Φα(t)

(

Y (t)
0

)

= Φα0
X(t).

The group property implies

Z(t) = T

(

Y (t)
α(t) − α0

)

,

so that

Z ′(t̃) = dT

(

Y (t̃)
0

)(

Y ′(t̃)
α′(t̃)

)

.

Besides, by Remark 3.2, Z solves (2.1), hence

Z ′(t̃) = F

(

Y (t̃)
0

)

.

For Y close enough to the origin, by continuity, dT (Y, 0) is invertible. We obtain

(

Y ′(t̃)
α′(t̃)

)

= dT

(

Y (t̃)
0

)−1

F

(

Y (t̃)
0

)

,

thus proving the lemma.

Introducing notations

∂Φα

∂α
∣

∣

α=0

(

Y
0

)

=

(

ṽ(Y )
vn(Y )

)

,

where, from Assumption 3.1, vn(Y ) 6= 0 for Y small enough, we have

dT

(

Y
0

)

=

(

IdRn−1 ṽ(Y )
0 vn(Y )

)

,

and

dT

(

Y
0

)−1

=

(

IdRn−1 − ṽ(Y )
vn(Y )

0 1
vn(Y )

)

.

Now if we let F = (F̃ , Fn), then the equation for Y is

(3.3) Y ′(t) = G(Y (t)),

with

(3.4) G(Y ) := F̃ (Y, 0) −
ṽ(Y )

vn(Y )
Fn(Y, 0).
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Besides, the shift satisfies

(3.5) α′(t) = h(Y (t)) :=
Fn(Y (t), 0)

vn(Y (t))
.

For similar, but slightly more general formulae, see [O]. The explicit, triangular form
derived here (special to the additive case) will be quite helpful in the more complicated
PDE analysis of Section 4.

Examples 3.4. 1. Linear ODE are invariant under the additive group of scaling
transformations ΦαX := eαX . In this case, the phase space reduction we describe
corresponds to projectivation, and the reduced variable Y defined in (3.2) to standard
Plücker coordinates. Consider indeed the linear equation

(3.6) X ′(t) = AX(t),

and trajectories in a neighbourhood of X0 := (0, . . . , 0, 1). The change of variable
(projectivation)

X = (x1, . . . , xn) −→
( x1

xn
, . . . ,

xn−1

xn
, 1
)

,

is a diffeomorphism in a neighborhood of X0. Consider the additive group Φα(X) :=
eαX. Then equation (3.6) is invariant under the action of Φα and ∂Φα

∂α |α=0(X0) =
−X0 6= 0. The above lemma asserts that in a neighbourhood of X0, (3.6) reduces to a
nonlinear equation in Y := ( x1

xn
, . . . , xn−1

xn
), and that the time evolution of α := −lnxn

depends on Y only. Introducing notations for the block decomposition of A :

A =

(

An−1 an−1

ln−1 an

)

,

where An−1 ∈ L(Rn−1), one can directly check that

(3.7) Y ′ = An−1Y + an−1 − Y (ln−1Y + an),

and

(3.8) α′ = ln−1Y + an.

(3.7) and (3.8) correspond to (3.4) and (3.5). See, e.g., [AGJ, GZ] for related calcu-
lations in projectivized coordinates.

2. In cylindrical coordinates X = (r, θ, z), we may express rotations in the
r-θ plane via the additive group ΦαX := (r, θ + α, z), α ∈ R. In these coordinates,
invariance of X ′ = F (X) with respect to {Φα} means that F = F (r, z) is independent
of θ, and, taking Y = (r, z), we obtain the simple reduced equations Y ′ = G(r, z),
α′ = h(r, z).

Remark 3.5. 1. Though we assumed a one-parameter group invariance, the
above calculations extend readily to multi-parameter additive groups.

2. In the case of invariance under a general, not necessarily additive Lie group,
similar but more complicated formulae apply. In particular, we still obtain reduced
dynamics (3.3) driving the evolution of α; however, the α-equation in general depends
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on α. (Think, for example, of SL(3), for which there does not exist an additive
covering group as in Example 3.4.2.)

As a simple application of the reduced flow, consider a rotationally invariant
system of ODE in the plane undergoing a Poincaré–Hopf bifurcation from a steady
solution X ≡ 0. Working in polar coordinates (r, θ) we obtain

r′ = f(r, ǫ), θ′ = g(r, ǫ),

f(·, ǫ) odd, with f(0, ǫ) = 0, ∂rf(0, ǫ) = 0, ∂ǫ∂rf(0, 0) 6= 0, and ∂rg(0, 0) = τ 6= 0. Re-
stricting attention to the reduced flow r′ = f(r, ǫ), we find that the planar, Poincaré–
Hopf bifurcation reduces to a scalar pitchfork bifurcation; indeed, the Poincaré–Hopf
bifurcation diagram of Figure 1 may be recognized as the positive half of the scalar
pitchfork bifurcation diagram.

For example, in the simple case

r′ = ǫr − βr3,

r ≡ 0 bifurcates at ǫ = 0 to a family of periodic solutions rǫ ≡ a, θ = g(a)t, with
ǫ(a) = βa2, stable if 0 > ∂rf(a, ǫ(a)) = −2βa2, or β > 0, and unstable if 0 <
∂rf(a, ǫ(a)) = −2βa2, or β < 0.

3.2. Center Manifolds with symmetry. A recurring issue for ODE with sym-
metry is the construction of center manifolds respecting the underlying symmetry.
For, the usual construction by fixed-point iteration described in Section 2.1 and Ap-
pendix A, based on linearization about a single rest point, is typically not compatible
with a group symmetry. Indeed, the usual introduction of an artificial cutoff on the
nonlinear term typically destroys the group symmetry, guaranteeing that the con-
structed center manifold does not respect the symmetry.

A simple solution is to work instead in the reduced coordinates of Section 3.1,
for which the group symmetry is in effect built in, constructing a center manifold for
the reduced flow (3.3), with α-dynamics determined through (3.5). See, for exam-
ple, the center-manifold analysis of [FreS] for linear eigenvalue ODE, carried out in
projectivized coordinates as described in Remark 3.4.1 above.

Consider (2.1), where F ∈ Ck+1 and F (0) = 0, and let Ψ be the flow of F. Assume
that Assumption 3.1 holds. Assume in addition that the map X 7→ dΦ

dα |α=0(X) is
Ck+1. We use Lemma 3.3 and the reduced equations (3.3) with a vector field G
defined in (3.4). We use global coordinates X = (Y, z) = Y ⊕ ze0, where e0 is not
orthogonal to dΦ

dα |α=0(0), and local coordinates induced by the symmetry X = T (Y, α)
in a neighborhood of the origin (T as in (3.2)). Let Σr

c denote the center subspace of
dG(0).

Then we have the following theorem:

Theorem 3.6. For some δ > 0, there exists a local Ck invariant center manifold
Cr that is embedded in a hyperplane of R

n, and such that
(i) The manifold Cr is a graph over Σr

c ∩ B(0, δ).
(ii) The manifold Cr is locally invariant by the flow of (2.1), that is: if X0 =

T (Y0, α0) is such that Y0 ∈ Cr, then for |t| sufficiently small, X(t) = T (Y (t), α(t)),
and Y (t) ∈ Cr.

(iii) If X is a globally bounded solution in a neighborgood of the origin, then its
first coordinate Y belongs to Cr.
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(iv) The center manifold is tangent to Σr
c at the origin.

(v) Given any solution X(t) of (2.1) that is eventually confined to a suitably small
neighborhood of the origin in R

n, there exists a trajectory t → Yr(t) on Cr and a fixed
asymptotic shift ∆α ∈ R, such that

(3.9) eηt|X(t) − T (Yr(t), α(Yr(t)) + ∆α)| → 0,

as t → ∞, where α(Yr) is defined by (3.5).

Proof. We use Lemma 3.3. Point (i) follows from Proposition 2.1 applied to the
reduced equations (3.3). With Proposition 2.1 and Lemma 3.3, the proofs of (ii), (iii)
and (iv) are straightforward. If X = T (Y, α(Y )) is small for large t, then Y is small
as well, hence, by point (v) of Proposition 2.1, Y is exponentially approximated by
some trajectory Yr on Cr. Now, with the notations of section 3.1,

α(Y (t)) − α(Yr(t)) = ∆α −

∫ ∞

t

(h(Y (t′)) − h(Yr(t
′))) dt′,

where

∆α := a(Y (0)) − α(Yr(0)) +

∫ ∞

0

(h(Y (t′)) − h(Yr(t
′))) dt′.

As h is Lipschitz in a neighborhood of the origin, there exists η > 0 (strictly smaller
than the spectral gap of dF (0)) such that

eηt|α(Y (t)) − α(Yr(t)) − ∆α| → 0, as t → ∞,

and (3.9) follows by regularity of T.

For an equation (2.1) with symmetry, one can define orbital stability of the orbits
as in the case of periodic orbits. That is, orbital stability of X as a solution of (2.1)
means stability of its first coordinate Y as a solution of (3.3), and asymptotic orbital
stability of X means asymptotic stability of Y and convergence of the shift α as
t → ∞.

Proposition 3.7. Under the assumptions of Theorem 3.6, if ℜσ(dG(0)) ≤ 0,
then globally bounded solutions X = T (Y, α) of (3.3) confined to a sufficiently small
neighborhood of the origin are orbitally stable (resp. asymptotically orbitally stable) if
and only if Y is stable (resp. asymptotically stable) as solution of the reduced ODE
on the center manifold Cr.

Proof. Let Y be a trajectory of (3.3) that is stable within Cr and contained in a
small neighborhood of the origin. By Proposition 2.3, Y is also stable with respect to
perturbations in R

n−1. That is, the corresponding trajectory X of (2.1) is orbitally
stable. If Y is small enough and asymptotically stable, then by point (iv) of Theorem
3.6, the perturbation converges exponentially, hence the shift is eventually convergent,
and the corresponding trajectory in R

n is orbitally asymptotically stable.

3.3. Application to periodic orbits. We now combine Theorem 2.6 with
Lemma 3.3.

Consider (2.14), where F be a Ck+1 vector field in R
n, depending on the scalar

parameter ǫ, such that for all ǫ, F (ǫ, 0) = 0. Let Ψ denote the flow of F.
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Assume that the spectrum of ∂xF (ǫ, 0) is contained in {z,ℜz 6= 0} for small ǫ,
except for the simple eigenvalue 0 and two conjugate eigenvalues λ(ǫ), λ̄(ǫ) = γ(ǫ) ±
iτ(ǫ), such that (2.10) holds. Assume in addition that Assumption 3.1 holds, and that
∂Φα

∂α |α=0(0) =: e0 generates the Kernel of ∂xF (ǫ, 0). This assumption is natural in the
context of the partial differential equations (1.2), see section 4. We use again global
coordinates X = (Y, z) = Y ⊕ ze0, and local coordinates induced by the symmetry
X = T (Y, α) in a neighborhood of the origin (T as in (3.2)). With Lemma 3.3, (2.14)
reduces to

(3.10) Y ′ = G(Y, ǫ) ∈ R
n−1, α′ = h(Y, ǫ) ∈ R.

Then we have the following theorem:

Theorem 3.8 (relative Poincaré-Hopf bifurcation). For any small a > 0, there
exists an orbit X of (2.14) for the value ǫ(a) of the parameter such that X(0) =
T (Y (0), α(0)), |Y (0)| = a, X = T (Y, α) where Y is periodic and α(t) = α0t + β(t),
where α0 is a constant drift and β is periodic.

Proof. As ∂Φα

∂α |α=0(0) generates ker∂xF (ǫ, 0), for all ǫ, the spectrum of ∂xG(0, ǫ))
coincides with the spectrum σ(∂xF (0, ǫ), except for the eigenvalue 0. With Theorem
3.6, the equations (2.14) possess a 3-dimensional reduced center manifold, where two
directions correspond to the neutral eigenvalues ±iτ(0) of ∂xF (0, 0), and one direction
corresponds to variation of the parameter ǫ. Now with Theorem 2.2, for a small
enough, there exists a periodic orbit Y of the reduced equations (3.10) issued from
Y (0), with |Y (0)| = a, for the value ǫ(a) of the parameter. Let τ be a period. Remark
that (Y (t), 0) = Φα(t)X(t), and that α = α(Y, ǫ) is such that

α(Y (t), ǫ(a)) −
t

τ

∫ τ

0

h(Y (t′), ǫ(a))dt′

is periodic.

For the orbits of (2.14) described above, one can define orbital stability as orbital
stability of the periodic Y coordinate, and asymptotic orbital stability as asymptotic
orbital stability of Y and convergence of the shift α as τ → ∞. Then the following
proposition is a straighforward consequence of Proposition 2.7:

Proposition 3.9. Under the assumptions of Theorem 3.6, if the spectrum of
∂xF (0, ǫ) is contained strictly contained in {z,ℜz < 0} for small ǫ, except for the two
eigenvalues λ(ǫ), λ̄(ǫ) and the eigenvalue 0, then for small ǫ, bounded solutions X =
T (Y, α) of (3.3), with Y periodic, that are confined to a sufficiently small neighborhood
of the origin are orbitally stable (resp. asymptotically orbitally stable) if and only if Y
is orbitally stable (resp. asymptotically stable) as a periodic orbit of the reduced ODE
on the center manifold Cr.

Proof. Let Y be an orbitally periodic orbit on the reduced center manifold. Then
with Proposition 2.7, Y is stable under perturbations in all of R

n−1, for ǫ held fixed,
and the corresponding orbit X of (2.14) is orbitally stable. If Y is asymptotically
orbitally stable, then the perturbation converges exponentially by point (iv) of The-
orem 3.6, hence the shift is eventually convergent, and X is asymptotically orbitally
stable.
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4. Applications to stability of traveling waves for partial differential
equations. We now turn to the analysis of the PDE bifurcation problem (1.6), with
associated group invariance

(4.1) Φ̃α(ũ) := ũ(x + α, t).

Following the approach of Section 3, introduce the related group invariance

(4.2)
Φα(u, ǫ) :=

(

Φ̃α(u + ū0) − ū0, ǫ
)

=
(

u(x + α) + (ū0(x + α) − ū0(x)), ǫ
)

on the perturbation equations

(4.3) ∂t

(

u
ǫ

)

=

(

L(0)u + M(0)ǫ + G(u, ǫ)
0

)

about the steady-state (ū0, 0) at bifurcation point ǫ = 0, where

L(ǫ) :=
∂F

∂u
(ǫ, ūǫ), M(ǫ) :=

∂F

∂ǫ
(ǫ, ūǫ),

and

(4.4) G(ǫ, u) = g(ǫ, u, ux, x) := f(ǫ, u, ux) − L(0)u − M(0)ǫ

is a quadratic-order Taylor remainder.

Notice that the Kernel of L(0) is one-dimensional, generated by

φ :=
∂ū0

∂x
=

dΦα

dα |α=0.

This justifies an assumption made in Theorem 3.8.
Associated with the linearized operator L(0), define the spectral projections

(4.5) Π2 := φ 〈φ̃, ·〉, Π1 := Id − Π2,

onto the range of right zero-eigenfunction φ := (∂/∂x)ū0 of L(0) and its complemen-
tary L(0)-invariant space, where φ̃ denotes the dual, left zero-eigenfunction, and 〈·, ·〉
denotes standard L2 inner product.

Lemma 4.1. Under the assumed regularity f ∈ C4 and the weighted norm condi-
tion (1.14), Πj, j = 1, 2 are bounded as operators from Hs

η to itself for 0 ≤ s ≤ 5.

Proof. We have only to observe that this is equivalent to the corresponding
statement for the projections associated with the conjugated operator Lη(0) :=

eη(1+|x|2)1/2

L(0)eη(1+|x|2)1/2

, for which by assumption there is a spectral gap between
the essential spectrum and the imaginary axis: in particular, λ = 0. (In unweighted
Sobolev norms, the statement may in general be false.)

Decomposing

(4.6) u =: v ⊕ wφ, v ∈ H := RangeΠ1, w ∈ R,
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coordinatize u alternatively as (v, w). In these coordinates, (4.3) take the form

(4.7) ∂t





v
w
ǫ



 =





Π1(L(0)v + M(0)ǫ + G(v + wφ, ǫ))
π2(M(0)ǫ + G(v + wφ, ǫ))

0



 ,

where we have defined π2u := 〈φ̃, u〉. Here, we are using Π2L = 0, π2L = 0 to simplify
the second row of the righthand side.

Now, as in (3.2), introduce the map T : H2
η × R → H2

η × R, defined as

T





v
α
ǫ



 := Φα





v
0
ǫ



 .

We claim that T is a local diffeomorphism in a neighborhood of the origin in H2
η ×R.

Indeed, remark that

∂Φα

∂α
|α=0





v
0
ǫ



 =





Π1∂xv

〈φ̃, φ + ∂xv〉
0



 .

For ‖v‖L2
η

small enough,

(4.8) 〈φ̃, φ + ∂xv〉 = 〈φ̃, φ〉 − 〈 ∂xφ̃, v〉 6= 0;

in particular,

〈φ̃,
∂Φα

∂α
|α=0(0)〉 = 〈φ̃, φ〉 = 1 6= 0.

Using Φ0 = Id, we find that

dT (0) =





IdL(H) 0 0

0 〈φ̃, φ〉 0
0 0 1



 ,

an isomorphism. We compute:

dT





v
0
ǫ





−1

=







IdL(H)
−Π1∂xv

〈φ̃,φ+∂xv〉
0

0 1
〈φ̃,φ+∂xv〉

0

0 0 1






.

Consider now a local solution t 7→ (u, ǫ) to (4.3). The same computations as
in section 3.1 show that the equations for the local coordinates (v, α, ǫ) (such that
(u, ǫ) = T (v, α, ǫ)) are

(4.9) ∂t





v
α
ǫ



 = dT





v
0
ǫ





−1



Π1(L(0)v + M(0)ǫ + G(v, ǫ))
π2(M(0)ǫ + G(v, ǫ))

0



 ,

that is

(4.10) ∂t

(

v
ǫ

)

= L0

(

v
ǫ

)

+ G0

(

v
ǫ

)

, ∂tα =
π2(M(0)ǫ + G(v, ǫ))

〈φ̃, φ + ∂xv〉
,
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where

L0 :=

(

Π1L(0) Π1M(0)
0 0

)

,

G0

(

v
ǫ

)

:=

(

Π1G(v, ǫ) − 〈φ̃, φ + ∂xv〉−1Π1∂xv〈φ̃, M(0)ǫ + G(v, ǫ)〉
0

)

.

Lemma 4.2. Under the assumed regularity f ∈ C4 and the weighted norm condi-
tion (1.14), both G and G0 are Frechet differentiable of order 4 considered as functions
from H2

η to H1
η : G on the whole space and G0 for |v|H2

η
sufficiently small.

Proof. Differentiability of G follows by direct calculation taking into account the
favorable effect of the weighted norm; see [S]. Differentiability of G0 follows similarly,
using also (4.8) and the fact (see Lemma 4.1) that Πj as bounded linear operators
from each Hs

η to itself are infinitely differentiable in the Frechet sense.

4.1. Preliminaries. Let ρ be a smooth truncation function, as in section 2.1,
and let

Gδ
0(v, ǫ) := ρ

( |v|H2
η

δ

)

G0(v, ǫ),

for small δ > 0. Remark that, for v in a neighborhood of 0 in H2
η , the intregro-

differential term G0 in the reduced equations above is as regular as G.

Lemma 4.3. The map Gδ
0 : H2

η × R → H1
η ×R is C4 and its Lipschitz norm with

respect to v can be made arbitrarily small as δ, ǫ → 0.

Proof. The norm in H2
η is a quadratic form, hence the map

v ∈ H2
η 7→ ρ

( |v|H2
η

δ

)

∈ R+,

is smooth, and Gδ
0 is as regular as G0. Now

|Gδ
0(v1, ǫ) − Gδ

0(v2, ǫ)|H1
η
≤ |ρ

( |v1|H2
η

δ

)

− ρ
( |v2|H2

η

δ

)

|L∞ |G0(v1, ǫ)|H1
η

+ |ρ
( |v2|H2

η

δ

)

|L∞ |G0(v1, ǫ) − G0(v2, ǫ)|H1
η

≤ 3|v1 − v2|H2
η

sup
|v|H2

η
<δ

|G0(v, ǫ)|H1
η
,

and sup|v|H2
η

<δ |G0(v, ǫ)|H1
η

= O(ǫ2 + δ2).

Lemma 4.4. Under the assumptions of Theorem 1.2,

(4.11)

‖etL0Πs‖H1
η→H2

η
≤ C(1 + t−1/2)e−βt,

‖etL0Πc‖H1
η→H3

η
≤ Cωeωt,

‖e−tL0Πu‖H1
η→H3

η
≤ Cωeβt,

for some β > 0, and for all ω > 0.



GALLOPING INSTABILITY OF TRAVELING WAVES 371

Proof. By definition of L0, σ(L0) = σ(Π1L(0)) ∪ {0}. Let

Πc :=

∫

Γc

(λ − L0)
−1 dλ, Πu :=

∫

Γu

(λ − L0)
−1 dλ,

where Γc is a contour enclosing only the neutral eigenvalues and Γu a contour en-
closing only the unstable eigenvalues. By the weighted norm property (1.14), and
the properties of asymptotically constant-coefficient operators described in the intro-
duction just below, there are finitely many neutral and unstable eigenvalues, so we
may choose these contours to be bounded. Further, we assume that |ℜΓc| ≤ ω and
ℜΓu ≥ β. Let Σ̃c be the range of Πc and Σ̃u be the range of Πu; one has Σ̃c = Σc⊕R,
where Σc is the neutral eigenspace of Π1L(0). Define also Πs := Id−Πc −Πu, a pro-
jector onto the stable (including essential) spectrum. As (1.2) is strictly parabolic,
L0 is sectorial and we have the inverse Laplace transform representations

(4.12)

etL(0)Πc :=

∫

Γc

eλt(λ − L0)
−1 dλ,

etL(0)Πu :=

∫

Γu

eλt(λ − L0)
−1 dλ,

etL(0)Πs :=

∫

Γs

eλt(λ − L0)
−1 dλ,

where Γs denotes a sectorial contour bounding the stable spectrum to the right [Pa],
without loss of generality ℜΓs ≤ −β.

Applying the resolvent formula L(λ − L)−1 = λ(λ − L)−1 − Id, we obtain in the
standard way

etL(0)Πj :=

∫

Γj

λeλt(λ − L0)
−1 dλ,

from which we obtain immediately the second two stated bounds, and, by a scaling
argument [Pa], the bound

(4.13) ‖etL0Πs‖H1
η→H3

η
≤ ‖LetL0Πs‖H1

η→H1
η
≤ C(1 + t−1)e−βt.

Recalling the standard bound ‖etL0Πs‖H1
η→H1

η
≤ Ce−βt, and interpolating between

| · |H1
η

and | · |H3
η
, we obtain the first stated bound.

Corollary 4.5. Under the assumptions of Theorem 1.2,

(4.14)

‖etL0ΠsG
δ
0‖H2

η→H2
η
≤ C(1 + t−1/2)e−βt,

‖etL0ΠcG
δ
0‖H2

η→H2
η
≤ Cωeωt,

‖e−tL0ΠuG
δ
0‖H2

η→H2
η
≤ Cωeβt,

for some β > 0, and for all ω > 0.

Remark 4.6. Sectorial estimates analogous to (4.11) may be obtained in
the W k,∞ framework (indeed, for any W k,p) by a more detailed analysis involving
pointwise bounds on the resolvent kernel, as described, for example, in [S, ZH, Z.1].
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Likewise, we may define a truncation analogous to Gδ
0(v, ǫ) in the W 1,∞ framework

by first truncating f(v, vx) in more standard fashion as

ρ(v, vx)f(v, vx),

and afterwards carrying out the reduction to the quotient space. These two modifi-
cations are all that is needed to convert our analysis to a W 1,∞ framework.

4.2. Proofs of the main theorems.

Proof. [Proof of Theorem 1.3.] It remains to prove (ii) and (iii). As in the finite-
dimensional case, we start by truncating the nonlinear term. As shown in Lemma
4.3, this can be done in a smooth way in H2

η . Then the center manifold is the graph

of the map φ defined on Σ̃c as φ(uc, ǫ) = (vc(0), ǫ), where vc is the unique solution of

(4.15)

v(x, t) = etL0uc +

∫ t

0

e(t−t′)L0ΠcG
δ
0(v(x, t′))dt′

+

∫ t

−∞

e(t−t′)L0ΠsG
δ
0(v(x, t′))dt′

−

∫ ∞

t

e(t−t′)L0ΠuG
δ
0(v(x, t))dt′,

in a space

Hη0
:= {z ∈ H, sup

t∈R

‖z(t)‖H2
η
≤ Ceη0t}.

That (4.15) has a unique solution in Hη0
, for any 0 < ω < η0 < β, follows from the

above bounds (4.11) and the contraction mapping theorem. Indeed, by Corollary 4.5,
the bounds on the integrands of (4.15) are identical to those of the finite-dimensional
case, up to the harmless integrable factor (1 + t−1/2) in the unstable term.

The more delicate proof of smoothness relies on these same bounds. It is thus
carried as in the finite-dimensional case.

One checks that the center manifold contains all bounded solutions exactly as
in the finite-dimensional case. By definition of Φα, these solutions correspond to
solutions of the original differential equation (1.2) remaining close to a translate of ū0.
The assertion concerning stability is proved as in the finite-dimensional case (Theorem
3.6 and Proposition 3.7).

Proof. [Proof of Theorem 1.2.] The above theorem states that the reduced equa-
tions (4.10) possess a local center manifold. It has dimension 3, that is 2 for the
neutral eigenvalues ±iτ(0) of Π1L(0) and 1 for the ǫ direction. The spectrum of L0 in
restriction to the sections ǫ = constant in the center manifold satisfies the assumption
of Theorem 2.2. Hence for all a > 0 small enough, there exists ǫ(a) and a periodic
orbit t 7→ v(t) on the center manifold that solves (4.10) for the value ǫ(a) of the
parameter. The associated shift α has the form described in Theorem 3.8, that is
α(t) = σat + θa(t), where σa is a constant drift and θa is periodic. With (4.2), the
corresponding solution of (4.3) is

v(x + αa(t)) + ū0(x + α(t)) − ū0(x),

and the corresponding solution of the original equations (1.6) is

ua(x, t) = ua(x + α(t), t) := v(x + αa(t)) + ū0(x + α(t)).



GALLOPING INSTABILITY OF TRAVELING WAVES 373

Uniqueness of solutions of (1.6) in this form follows from uniqueness of the periodic
orbits on the reduced center manifold. The assertion regarding stability is proved as
in the finite-dimensional case (Theorem 3.8 and Proposition 3.9).

4.3. Examples. Consider a reaction-diffusion-convection system (1.2), with u ∈
R

n, and a traveling wave ū that solves (1.2):

(4.16) ū(x − st), lim
z→±∞

ū(z) = u±.

After the change of variable x → x + st, the linearized operator about (4.16) is

L(ū, ∂x)u := ∂2
xu + (∂2f(ū, ∂xū) + s)∂xu + ∂1f(ū, ∂xū)u.

The associated constant-coefficient, conjugated operators M± are

M±(u±, ∂x) := e±ηxL(u±, ∂x)e∓ηx = L(u±,∓η + ∂x).

Let

∂jf± := lim
x→±∞

∂jf(ū(x), ∂xū(x)), j = 1, 2.

With these notations,

M±(u±, iκ) = (η2 ∓ 2iκη − κ2)Id + (∂2f± + s)(∓η + iκ) + ∂1f±.

A complex number λ lies in the L2 spectrum of M± if and only if

(4.17) det (M±(iκ) − λ) = det (L(u±,∓η + iκ) − λ) = 0,

for some κ ∈ R. Hence, (1.2)-(4.16) satisfy the weighted norm condition if and only if
there exists η ≥ 0 such that for all κ ∈ R, the roots of the algebraic equations (4.17)
all have strictly negative real part.

In the scalar case, n = 1, equation (4.17) simplifies to

(4.18) λ = (η2 ∓ 2iκη − κ2) + (∂2f± + s)(∓η + iκ) + ∂1f±, κ ∈ R,

two parabolae opening to the left in the complex plane. The solutions of (4.18) have
strictly negative real parts if

(4.19) η2 ∓ (∂2f± + s)η + ∂1f± < 0.

When ∂1f± 6= 0, equation (4.19) has solutions if and only if

(4.20) ∂1f± <
(∂2f± + s)2

4
,

in which case

η =
±(∂2f± + s)

2
≥ 0,

is a good choice.
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4.3.1. Scalar convection-diffusion equations. When (1.2) does not include
any reaction term, that is f(u, ∂xu) = −f0(u)∂xu, then, using the limit ∂xū → 0 as
x → ±∞, one has ∂1f± = 0. Besides, examination of the traveling-wave ODE (first-
order scalar, after an integration in x) reveals that existence of a profile connecting
hyperbolic rest points implies Lax’s condition,

∓(∂2f± + s) < 0.

Hence one can find a small η > 0 such that (4.19) holds.

Remarks 4.7. 1. Lax’s condition states that all the characteristic enter the
shock. If for instance s = 0, then signals convected by ∂2f+ < 0 can be expected to
decay in a weighted norm with a growing weight eηx. Likewise, signals convected by
∂2f− > 0 can be expected to decay in a weighted norm with a decaying weight e−ηx.
Hence one can expect stability in Ŵ 1,∞

±η . This is the classical “convection-enhanced”
stability phenomenon mentioned at the beginning of the introduction; see also a sim-
ilar remark in section 1.1.4, [ZH].

2. Similar considerations in the system case n > 1 yield that the weighted norm
condition is satisfied if and only if the profile is “totally compressive” in the sense that
all characteristics enter the shock. This is not satisfied for any physical example that
we know of; in particular, shock waves for gas dynamics or magnetohydrodynamics
(MHD) always possess at least one characteristic mode outgoing from the shock.
However, an interesting class of planar (n = 2) examples arises in certain simplified
models for MHD, as discussed in [Fre, FreL]. See [ZH] for further discussion.

3. In the scalar case, Sturm–Liouville theory gives that the spectrum of the
linearized operator is real, hence Poincaré–Hopf bifurcation cannot occur. Moreover,
traveling waves are stable if and only if monotone in x [S]. In particular, in the conser-
vative case, f(u, ∂xu) = g(u)x, for which the traveling-wave ODE may be integrated
to obtain a scalar first-order system, traveling waves are always stable. However, our
center manifold results may be used to explore the simpler, transcritical, pitchfork,
etc. bifurcations that may occur through passage of an eigenvalue through the origin
in the nonconservative case.

4.3.2. Reaction-diffusion equations. Consider the above system (1.2), where
f = f(u), that is the equation contains no convection term, and a traveling wave
(4.16). Equation (4.17) simplifies to

(4.21) det (f ′(u±) + s(∓η + iκ) + (η2 ∓ 2iκη − κ2 − λ)Id) = 0.

If

(4.22) ℜσ(f ′(u±)) < 0,

then the weighted norm condition is satisfied for η = 0. In the scalar case n = 1,
with speed s = 0, the traveling-wave ODE is Hamiltonian– the nonlinear oscillator
u′′ = −f(u)– and ℜσ(f ′(u±)) ≤ 0 is necessary in order that a connection between u±

exist, the alternative being that one or the other of u± be a nonlinear center. Thus,
(4.22) holds generically.

4.3.3. Majda’s model. Consider Majda’s model of reacting flow (M), as given
in the introduction. It is proved in [M, LyZ.1] for D = 0 and [La] for D > 0 (the
relevant case here) that, for a given choice of u+, s, for s large enough and u+ > ui,
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there exists a unique (up to translation) strong detonation profile, that is a traveling
wave

(4.23) ū(x − st), z̄(x − st),

solution of (1.21), with endstates

(4.24) (u−, 0), (u+, 1), ui < u− < ui < u+,

satisfying Lax’s condition

(4.25) f ′(u+) < s < f ′(u−).

The detonation wave decays exponentially to its endstates (u±, z±), as x → ±∞.
The detonation wave corresponds to a gas-dynamical shock followed by a chemical
reaction. The gas is for instance compressed, which increases the temperature and
triggers the reaction (see [FD], page 14). The values of z at the endstates, namely
z− = 0 and z+ = 1, mean that the gas is completely burnt in the course of the
reaction.

The linear operator in the equation for (u, z) := (ũ− ū, z̃ − z̄) is, after the change
of variable x → x − st,

L

(

u
z

)

=

(

(s − f ′(ū))∂xu − (f ′′(ū)∂xū)u + B∂2
xu + kqϕ(ū)z + kqz̄ϕ′(ū)u

s∂xz + D∂2
xz − kϕ(ū)z − kz̄ϕ′(ū)u

)

.

The associated, constant-coefficient operators are

L±(∂x)

(

u
z

)

=

(

(s − f ′(u±))∂xu + B∂2
xu + kqϕ(u±)z

s∂xz + D∂2
xz − kϕ(u±)z

)

.

Here, we used z±ϕ′(u±) = 0 and limx→±∞ ∂xū(x) = 0. A complex number λ lies in
the L2 spectrum of the conjugated operators e±ηxL±e∓ηx if and only if

det (L±(iκ ∓ η) − λ) = 0,

for some κ ∈ R. This condition decouples into a gas-dynamical equation

(4.26) λ = (s − f ′(u±))(∓η + iκ) + B(η2 ∓ 2iηκ − κ2), κ ∈ R,

and a reaction equation

(4.27) λ = s(∓η + iκ) + D(η2 ∓ 2iηκ− κ2) − kϕ(u±), κ ∈ R.

Both (4.26) and (4.27) are parabolae opening to the left in the complex plane. Using
(4.25), s > 0, ϕ(u+) = 0 and ϕ(u−) > 0, one can find η > 0 such that

(4.28) ∓(s − f ′(u±))η + Bη2 < 0, ∓sη + Dη2 − kϕ(u±) < 0.

With this choice of η, ση(L+) and σ−η(L−) both lie strictly in the stable complex
half-plane. Moreover, (4.28) is a continuous condition on the bifurcation parameters
k, u−. In other words, for this choice of η, the weighted norm condition is satisfied by
system (1.21).
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Appendix A. Center Manifold proofs.

Proof. [Proof of Proposition 2.1] We sketch the proof of [Bre]. We work on the
truncated equations (2.3). As a consequence, the following construction is only local
in a neighborhood of the origin in R

n. We use projectors πs, πu, πc satisfying (2.4)
and the bounds (2.5)-(2.6), choosing for instance spectral projectors of A, such that
Rangeπc = Σc.

(i) The center manifold is the graph of the map φ defined on Σc by φ(Xc) = YXc(0)
where YXc is the unique solution in Sη of

(A.1)

YXC (t) = Γ(XC , YXc)(t) := etAXc +

∫ t

0

e(t−t′)AπcG(Y (t′))dt′

+

∫ t

−∞

e(t−t′)AπsG(Y (t′))dt′ −

∫ ∞

t

e(t−t′)AπuG(Y (t′))dt′,

in the space of slowly growing applications

Sη := {t 7→ z(t) ∈ R
n, sup

t∈R

e−η|t||z(t)| < ∞}, for ω < η < β.

That (A.1) has a unique solution in Sη follows from the contraction mapping theorem,
the bounds (2.5)-(2.6), and the control of the Lipschitz norm of Gδ :

(A.2) ‖Gδ‖Lip := sup
x

|Gδ(x)|

|x|
≤ Cδ,

where C depends on F , through G. (Proof: ‖Gδ‖Lip ≤ |dGδ|L∞ ≤ |dρδG|L∞ +
|ρδdG|L∞ ≤ Cδ−1δ2|d2G|L∞

Loc
+ Cδ|d2G|L∞

Loc
.)

Indeed, one checks that ‖Gδ‖L∞ < ∞ implies that the map Γ(Xc, ·) maps Sη into
Sη; moreover its Lipschitz norm is bounded by

(A.3) ‖Gδ‖Lip

( 2Cωη

(η − ω)(η + ω)
+

4Cωβ

(β − η)(β + η)

)

.

The regularity of φ is more difficult to prove. Indeed, as Bressan points out, the
solution operator defined in (A.1) is not regular as a map Σc ×Sη → Sη; it is however
Cl as a map Σc×Sη′ → Sη, for (l+1)η′ < η. This fact is proved by the same estimates
used in the fixed point argument for the resolution of (A.1). This eventually implies
smoothness of φ; see [Bre].

(ii) Let X be a trajectory of (2.1) that is contained in a small ball about the
origin. Then X ∈ Sη and X is a trajectory for the truncated equations (2.3); it can
be represented as

X(t) = πc(e
(t−tc)AX(tc) +

∫ t

tc

e(t−t′)AGδ(X(t′))dt′)

+ πs(e
(t−ts)AX(ts) +

∫ t

ts

e(t−t′)AGδ(X(t′))dt′)

+ πu(e(t−tu)AX(tu) +

∫ t

tu

e(t−t′)AGδ(X(t′))dt′).

Now using the fact that X belongs to Sη, the bounds (2.5), (2.6) and (A.2), in the
limit ts → −∞, tc → 0, tu → ∞, one finds that X satisfies the representation (A.1),
hence belongs to the center manifold.
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(iii) Let X0 ∈ C. By construction of C, the unique trajectory of (2.1) on which
X0 lies belongs to Sη. By (ii), this trajectory is contained in C.

(iv) See [Bre].
(v) Let X be a solution of (2.1) that is eventually small. For t0 large enough and

t0 ≤ t, |X(t)| < 1. Hence for large times, X coincides with the solution Xδ of the
truncated equations that satisfies Xδ(0) = X(t0). The assumption on X implies that
Xδ is slowly growing at infinity: Xδ ∈ S+

0 . By Proposition 2.2, as t → ∞, Xδ, hence
X, is exponentially approximated by a trajectory on the center manifold.

Proof. [Proof of Proposition 2.2] Let X ∈ S+
η be a solution of the truncated

equations (2.3). As in [Bre], extend X to X∗, defined as X∗(t) := 0 for t < 0, and
X∗(t) := X(t) for t ≥ 0. Then X∗ solves

(X∗)′ = AX + Gδ(X) + x(t), x(t) :=

{

−AX(0) − Gδ(X(0)), t < 0,

0, t ≥ 0,

and can thus be represented as the sum of its stable, center and unstable components,
choosing possibly different initial times for the three components:

(A.4) X∗ = X∗
s + X∗

c + X∗
u + φ,

where

X∗
j (t) := e(t−tj)AX∗(tj) +

∫ t

tj

e(t−t′)AπjG
δ(X∗(t′))dt′,

and

φ(t) :=

∫ t

ts

e(t−t′)Aπsx(t′)dt′ +

∫ t

tc

e(t−t′)Aπcx(t′)dt′ +

∫ t

tu

e(t−t′)Aπux(t′)dt′.

Now consider a small perturbation Z of X∗ such that X∗ + Z is a global solution of
(2.3). Then X∗+Z can be decomposed as in (A.4), with φ = 0. If X∗+Z is assuming
to be slowly growing at infinity, then letting ts → −∞, tc → ∞ and tu → ∞,

e(t−tj)A(X∗ + Z)(tj) → 0,

with the bounds (2.5) and (2.6), and thus

(A.5)

Z =

∫ t

−∞

e(t−t′)Aπs(G
δ(X∗ + Z) − Gδ(X∗))dt′

−

∫ ∞

t

e(t−t′)A(πc + πu)(Gδ(X∗ + Z) − Gδ(X∗))dt′

−

∫ t

−∞

e(t−t′)Aπsx(t′)dt′ +

∫ ∞

t

e(t−t′)A(πc + πu)x(t′)dt′.

The equation (A.5) has a unique solution in the space of fast decaying functions at
+∞ :

Fη := {t 7→ z(t) ∈ R
n, sup

t∈R

eηt|z(t)| < ∞}.



378 B. TEXIER AND K. ZUMBRUN

One checks indeed that the map Z 7→ r.h.s. of (A.5), maps Fη into itself, with a
Lipschitz norm bounded by

(A.6) ‖Gδ‖Lip

( Cω

η − ω
+

Cβ

β − η

)

.

The bound (A.6) is strictly smaller than 1 as soon as (A.3) is. Now consider X∗ + Z,
where Z solves (A.5). By definition of Z, X∗ + Z is a trajectory of (2.3). Besides, it
belongs to Sη, hence by (ii) of Proposition 2.1, it is contained in the center manifold.
The exponential decay of Z then gives (2.8). Moreover,

(A.7) eηt|Z(t)| ≤
Cω

ω(1 − K)
|AX(0) + Gδ(X(0))|,

where K is the Lipschitz norm of the map in (A.5).

Proof. [Proof of Proposition 2.3] Let X be a stable periodic orbit on the center
manifold, contained in a small neigborhood of the origin. Consider a trajectory X̃
of the truncated equations, such that X̃(0) is a small perturbation of X(0). The
assumption on σ(dF (0)) implies that all solutions have a slow growth at infinity. In
particular, X̃ ∈ S+

η , for all η > 0, where the projectors in (2.5) and (2.6) can be

chosen to be spectral projectors. Proposition 2.2 then implies that X̃ is exponentially
approximated by a trajectory Y on the center manifold, as t → ∞. Moreover, by
(2.7), Y (0) is close to X̃(0), and Y remains close to X̃ for all times. In particular,
Y (0) is close to X(0). By stability of X on C, it follows that if X̃(0) is small enough,
then Y remains close to X for all times. Hence X̃ remains close to X for all times.
The case when X is asymptotically stable is handled in the same way. Finally, since
X̃(0) was assumed sufficiently small, X̃ and X remain so as well, and so the cutoff
has no effect, i.e., the conclusions remain valid for the original, unmodified equations
(2.1).

Proof of second assertion: omitted.
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