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Abstract. We develop an algorithm using two coupled parabolic equations for numerical simula-
tion of wave propagation over long distances. The coupled parabolic equations are derived from a two
mode wave decomposition. An iterative procedure is used in our numerical algorithm. The coupling
between the two parabolic equations allow us to deal with fine scale inhomogeneities in the medium
and capture the back scattering that are usually neglected in a one way parabolic approximation.
We study stability issues of our numerical algorithm and present numerical examples.
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1. Introduction. Efficient numerical algorithms are important in order to un-
derstand wave propagation in complex media. Resolving the wavelength is one of the
basic sampling conditions for numerical algorithms. However, in many applications,
such as underwater acoustics, communications and remote sensing, the wave prop-
agates over a long distance which may be several order of magnitudes compared to
the wavelength. If the medium is inhomogeneous there is an additional characteristic
scale corresponding to the correlation length of the medium inhomogeneities. Wave
propagation in a heterogeneous medium is thus a multi-scale problem in space and
time, which poses a great challenge for numerical simulations. Here we focus on the
simulation of time harmonic waves, that is, we reduce the full wave equation in space
and time to the Helmholtz equation in space only by Fourier transformation in time.
The Helmholtz equation gives a boundary value problem and it is very expensive to
solve with a computational domain that is large compared to the wavelength. If the
wave propagates in a weakly inhomogeneous medium, e.g., underwater acoustics or
electromagnetic waves in the atmosphere [8, 15, 19] the Helmholtz equation can be
further simplified. In a situation where the propagation distance is much larger than
the transverse dimension corresponding to a narrow angle geometry and when the
back scattering can be neglected the Helmholtz equation can be reduced to a par-
abolic equation. The main advantage of the parabolic approximation is that it gives
an initial value problem which is much easier to analyze and much cheaper to compute.
The parabolic equation (PE) approximation provides an important tool for analysis
and computation of wave propagation. More advanced parabolic approximations have
been developed to deal with back scattering and wide angle geometries.

Marten de Hoop and coauthors have developed [5, 18] and analyzed a directional
wave decomposition framework that involves generalized Bremmer series. They intro-
duce a principal direction of propagation and decompose the acoustic wave equations
into a coupled system of one way wave equations which leads to the Bremmer series
approximation for the wave field via a high frequency series expansion. The n’th
term in the series can be interpreted as the wave components being scattered n times.
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Various approaches have been proposed for approximating the Bremmer series with a
paraxial type approach being presented in [18]. Here the coupled system of one way
equations are approximated via a sparse approximation of the propagator over thin
sections where rational approximation of the exponent provides numerical stability.
In this procedure the different terms in the Bremmer series is then approximated by
forward and backward sweeps. The approach has applications to for instance inverse
scattering problems in seismics.

In [9] Fishman developed a one-way propagation formulation based on a wave-field
decomposition and the a scattering operator approximation. The wave field is decom-
posed as u = u(+)+u(−) and the condition ux = iB(x)[u+−u(−)] is required, where x

is propagation direction and B(x) =
√

∂2
z + k2(x, z) is the square root operator which

can be identified in terms of the eigenvalues and eigenfunctions of the transverse oper-
ator ∂2

z +k2. The construction of several explicit, uniform asymptotic approximations
of the square root Helmholtz operator are given in [10]. A re-formulation based on
the Dirichlet-to-Neumann (DtN) map has also been derived in [12] and [13, 14]. An
operator Riccati equation should be solved for decreasing propagating distance with
an initial condition that matches the exact radiation condition at ∞. While the field
should be solved for increasing propagating distance. This is practical only if the total
number of operator equation solutions required is not very large.

A two way parabolic approximation motivated by underwater acoustics is intro-
duced by Collins in [4]. In this paper the authors consider a generalization of the one
way or outgoing parabolic approximation to handle medium variations in the range,
that is, the propagation direction. Their approximation is motivated by applications
to ocean wave-guides where often the depth variation of the medium parameters is
stronger than the variation in range. The range-dependent medium is approximated
by a sequence of range-independent sections. At each interface the reflected field is ap-
proximated via an iterative technique using the parabolic wave operator. The reflected
field components are then propagated back via the incoming parabolic approximation.
Here our focus is rather on relatively rapidly fluctuating small scale scatterers and we
do not decompose the medium into range independent sections, thus the parabolic
modes couple at all depths, moreover, we carry out many iterations in range.

We start with the Helmholtz equation and use a wave decomposition as in [16, 17]
to derive a system of coupled parabolic equations. We use a bidirectional wave de-
composition and get two coupled parabolic equations. Our decomposition of the wave
field is based on local condition and can deal with fine local structure in the medium
and capture high frequency components of the wavefield. The coupling comes from
backscattering and transverse spreading of the wave. Based on this decomposition,
a straightforward Jacobi type of iterative algorithm can be applied. However, this
iterative algorithm is not stable and will not converge due to the lagged coupling in
the iterative procedure. In this paper we modify these two equations and develop an
efficient algorithm that is as simple as the standard PE approximation but can better
deal with heterogeneities and back scattering.

We consider the Helmholtz equation in 2-dimensions for simplicity. However the
algorithm can easily be generalized to the 3-dimensional case. Numerical experiments
are used to compare our method with the standard parabolic approximation.

The outline of the paper is as follows, in Section 2 we give a brief review of the
standard parabolic approximation and the two way parabolic approximation. The
coupled parabolic system and the absorbing boundary condition will be derived in
Sections 3- 5. We present our numerical algorithm and numerical results in Section
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6. In the appendix we present a stability analysis.

2. The Parabolic Approximation. We consider the problem of propagation
of acoustic signals over large distances. Let u(x, t) and p(x, t) be the acoustic velocity
and pressure satisfying the equation of continuity of momentum and mass

ρut + ∇p = F(x, z, t) , (1)

K−1pt + ∇ · u = 0, (2)

where t is time, z is depth into the medium and defined so as to increase with depth,
(x, z) = (x, y, z) are the space coordinates, ρ is the density, K is the bulk modulus
and the source F(x,t) is supported in the half-space z < 0. We model the medium by
ρ = ρ0 constant and

K−1(x, z) =

{

K−1
0 z ∈ (−∞, 0]

K−1
p (x, z)(1 + ν(x, z)) z ∈ (0,∞).

The function ν modulating the compliance corresponds the medium fluctuations.
In the case of a stationary random medium it is a zero-mean, stationary stochastic
process whose statistics take on particular forms depending on the assumptions about
the medium, whether it is locally layered, strongly or weakly heterogeneous media and
so on [1].

At this stage, the source term is omitted, but it will be taken into account through
the initial conditions for the parabolic equation.

Eliminating u from equations (1) and (2), we get

△p −
ρ

K
ptt = 0. (3)

The time-harmonic version of (3) is the Helmholtz Equation:

△p̂ + (1 + ν)ω2γ2p̂ = 0 , (4)

where

γ(x, z) =

√

K−1
p (x, z)ρ ,

and p̂ is the Fourier transform of p with respect to time:

p̂ =

∫

peiωt dt.

Note that below we suppress the ‘hat’ and that γ represents an effective slowness.
The Helmholtz equation is associated with some specific boundary values. If the

computational domain of this boundary value problem is large compared to the wave-
length, solving the discretized linear system using a direct method may be impossible
due to memory constraints. Moreover, since the linear system is not positive definite,
usual iterative methods typically converge slowly, if at all. The parabolic approxima-
tion can be used to deal with this problem in various settings. The main idea is to
neglect the back scattering and only consider forward going waves. The PE approx-
imation becomes an initial value problem which significantly reduces the complexity
for both analysis and computation. This approximation is accurate in many scenarios
such as in range dependent ocean wave-guides or in the case of atmospheric wave
propagation.
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We are interested in wave propagation mainly in one direction, along the z axis
in our notation. We use the plane wave ansatz

p(x, z) = A(x, z) exp(ik0z) , (5)

for the solution of Helmholtz Equation:

△p + ω2γ2(x, z)(1 + ν)p = 0 , (6)

where k0 is a reference wave number. The factor exp(ik0z) in (5) represents a plane
wave traveling in the positive z direction and is supposed to take out the rapid oscilla-
tions of p in the z direction; the function A(x, z) captures the modulation of the plane
wave phase and usually varies slowly with z in the context of the PE approximation.

Substitution of Equation (5) into Equation (6) gives

∂2A

∂z2
+ 2ik0

∂A

∂z
+ △⊥A + [ω2γ2(1 + ν) − k2

0 ]A = 0 ,

with △⊥ being the Laplacian in the lateral coordinates x. We next make the crucial
paraxial approximation (small angle approximation) corresponding to the situation
with

∂2A

∂z2
<< 2ik0

∂A

∂z
,

so that we have

2ik0
∂A

∂z
+ △⊥A + [ω2γ2(1 + ν) − k2

0 ]A = 2ik0
∂A

∂z
+ △⊥A + ω2γ2νA = 0 ,

for k0 = ωγ. This approximation requires that we consider wave propagation in
a narrow beam geometry, not close to the source and that the medium is weakly
inhomogeneous. The resulting equation is called the narrow-angle parabolic equation
(PE). In the PE method we take into account only waves traveling in the positive z

direction; back scattering is neglected, see [8, 15].

3. Decomposition Of Waves In One Dimensional Case . We next aim to
extend the parabolic approximation to a strongly range or ‘depth’ dependent medium
and consider first the layered or one-dimensional case. The field is decomposed into
outgoing and incoming components. Our equations are based on a decomposition
of the field, instead of an operator factorization. The parabolic approximation is a
special case of our approach.

In the one dimensional case the bulk modulus K = K(z) depends on z only, the
reduced wave equation is now:

pzz + (1 + ν)ω2γ2p = 0 , (7)

with γ = γ(z). Define

τ(z) =

∫ z

zs

γ(s)ds ,

where zs is the location of source signal. The phase τ(z) is the travel time from the
source to depth z for a plane wave traveling in the depth direction. Equation (7) can
then be written as:

pzz + (1 + ν)ω2τ2
z p = 0.
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Let the pressure p be decomposed as:

p = A(z)eiωτ + B(z)e−iωτ . (8)

Note that by writing the pressure in this way we introduced two degrees of free-
dom. Therefore, we need an additional constraint on the amplitudes beyond (8).

The velocity is

u =
γ

ρ
(Aeiωτ − Be−iωτ ) −

i

ωρ
(Aze

iωτ + Bze
−iωτ ),

and we make the ansatz

Aze
iωτ + Bze

−iωτ = 0. (9)

This is the additional constraint on the amplitudes. With it, the velocity becomes:

u =
γ

ρ
(Aeiωτ − Be−iωτ ) ,

and we have decomposed velocity and pressure into down (A) and up-propagating
(B) components.

From (9), it follows that

Az = −Bze
−2iωτ ,

Bz = −Aze
2iωτ ,

and moreover

(Azz + iωγAz)e
iωτ + (Bzz − iωγBz)e

−iωτ = 0.

Combining the above relations and Helmholtz equation (7) we find the following
equations for the amplitudes A and B:

2τzAz + τzzA = iω2τ2
z ν(A + Be−2iωτ ) + τzzBe−2iωτ , (10)

2τzBz + τzzB = −iω2τ2
z ν(Ae2iωτ + B) + τzzAe2iωτ . (11)

We may interpret A and B in the decomposition (8) as amplitudes of the down-
and up-propagating wave modes respectively.

The decomposition that we introduced above means that we replaced the problem
of solving (7) to that of solving the system (10) and (11) and in order to do so we need
to introduce boundary conditions for the amplitudes. Note that in the case where the
medium is homogeneous, with ν ≡ 0 and γ constant, the amplitude equations decou-
ple. The term associated with A then corresponds exactly to the wave component
traveling in the positive range or depth direction and the term B with the wave com-
ponent traveling in the opposite direction. In the general case the wave components
couple and correspond to approximate locally up and down traveling wave terms.

In Section 6 we will introduce an iterative based numerical scheme for computing
approximate solutions to the system (10) and (11).
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4. Decomposition In Terms Of Generalized Plane Wave Components.

We consider next the case with waves propagating in a three dimensional medium
with a constant background slowness γ, but with general three dimensional medium
fluctuations modelled by ν. The governing Helmholtz equation is

△p + (1 + ν)ω2γ2p = 0 ,

and we now define

τ(z) =

∫ z

zs

√

ρ

Kp
− |κ|2ds = (z − zs)

√

γ2 − |κ|2 , and S± = κ · x ± τ ,

with κ being the lateral slowness vector. Note that S+ is a plane wave phase corre-
sponding to waves traveling in the spatial direction (κ,

√

γ2 − |κ|2). In the case with
a general three dimensional background the phase terms S± will be solutions of the
Eiconal equation associated with the slowness γ(x, z), see [1].

We decompose the wave into up-ward and down-ward modes as above:

p = AeiωS+

+ BeiωS−

, (12)

0 = Aze
iωS+

+ Bze
iωS−

. (13)

In this generalized case the mode coupling transport equations become:

2∇S+ · ∇A + △S+A − iωγ2ν(A + Beiω(S−−S+))

=
i

ω
△⊥A − R−eiω(S−−S+) , (14)

2∇S− · ∇B + △S−B − iωγ2ν(B + Aeiω(S+−S−))

=
i

ω
△⊥B − R+eiω(S+−S−) , (15)

with

R+ = 2∇⊥S+ · ∇⊥A + △S+A −
i

ω
△⊥A ,

R− = 2∇⊥S− · ∇⊥B + △S−B −
i

ω
△⊥B ,

where △⊥ is the transverse Laplacian. In the case that the fluctuations and the
reflected field vanish, (ν ≡ 0, B ≡ 0), (14) becomes

2∇S+ · ∇A + △S+A =
i

ω
△⊥A ,

which in the high frequency limit gives

2∇S+ · ∇A0 + △S+A0 = 0 ,

that is, the leading order transport equation of geometrical optics.
Here, we will consider the generalization of the parabolic case with waves prop-

agating primarily in the z direction and set κ = 0. Then the coupling transport
equations become

2ikAz + △⊥A + k2νA = −(k2νB + △⊥B)e−2ikz , (16)

−2ikBz + △⊥B + k2νB = −(k2νA + △⊥A)e2ikz , (17)
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with k = γω.
In the case that the reflected wave vanish, B ≡ 0, (16) becomes

2ikAz + △⊥A + k2νA = 0 ,

which is the standard narrow-angle parabolic approximation. On the other hand, in
the case that there is no lateral variation in the amplitudes we find

2ikAz = −k2ν(A + Be−2ikz) ,

2ikBz = k2ν(Ae2ikz + B).

These are the transport equations associated with the layered three dimensional case
which are analyzed in for instance [1], [11] and [17]. In fact, in this layered case a
particular κ in the generalized decomposition corresponds to a specific plane wave
mode. This variable is then the Fourier variable dual to the lateral space variable
x introduced when the wave field in space and time is transformed into plane wave
modes via Fourier transformation with respect to the lateral spatial coordinates.

We next continue our discussion of the system (16) and (17) by introducing specific
boundary conditions and a scheme for numerical approximation of the solution.

5. Boundary Conditions.

5.1. Initial Condition For Parabolic Equations. We assume that the scat-
terer ν is compactly supported and is located in a slab of thickness L, so that k is
constant for z < 0 and z > L. The source is located in the homogeneous medium,
at zs < 0. Recall that with B = 0 the amplitude equation for A is equivalent to the
standard parabolic equation. We impose an initial condition for the down-ward field
A at z = 0 and for the reflected field B at z = L. At the top, we use a Gaussian form
for the initial data [19]:

A(x, 0) =
√

k0e
−

|x|2

2 .

Since the medium is homogeneous for z > L and there are no sources located in this
half space we set

B(x, L) = 0.

5.2. Artificial Boundary. The scatterer ν is located in infinite homogeneous
medium. We truncate the domain by adding PML (Perfectly Matched Layer) artificial
boundary in the lateral dimensions. The idea is to introduce an exterior layer at
the artificial boundary in such a way that all plane waves are totally absorbed, and
no reflection occurs at the boundary [2]. For simplicity, we now assume two spatial
dimensions corresponding to one lateral dimension. In order to introduce the artificial
boundary condition we return to the Helmholtz equation:

pzz + pxx + k2(1 + ν(x, z))p = 0.

In the matched layer we change this equation to obtain damping of the plane wave
modes. We introduce the governing equations
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∂2p

∂z2
+

iω

σ − iω

∂

∂x
(

iω

σ − iω

∂p

∂x
) + k2(1 + ν)p = 0 ,

where σ(x) > 0 in the artificial domain giving damping of the plane wave modes,
whereas σ(x) = 0 in the physical domain giving the Helmholtz equation there. Denote

s(x) =
iω

σ(x) − iω
,

then with the PML, the coupling transport equations can be written

2ikAz + s2(x)Axx + k2νA + s(x)s′(x)Ax

= −(k2νB + s2(x)Bxx + s(x)s′(x)Bx)e−2ikz , (18)

−2ikBz + s2(x)Bxx + k2νB + s(x)s′(x)Bx

= −(k2νA + s2(x)Axx + s(x)s′(x)Ax)e2ikz . (19)

The ideal case of using these two coupled parabolic equations for the forward wave
field A and backward wave field B in numerical computations would be that we can
solve them in the form of Jacobi iteration, i.e., solve A with current B and then solve
B with current A iteratively. This would reduce the computation of the Helmholtz
equation into the computation of a sequence of parabolic equations. However, as we
will show in the appendix, this iterative procedure is not stable. Since we are interested
in the narrow angle wave propagation in the z-direction, we drop the lateral scattering
terms △⊥B ( or △⊥A ) when we solve for A(x, z) ( or B(x, z)) in (16) (or (17)) which
cause the instability. Consider the equation (16). In the homogeneous case with ν ≡ 0
the terms involving the reflected field B will be lower order correction terms to the
paraxial approximation. We will consider regimes where there is significant back-
scattering due to the scatterer ν and therefore retain the term involving ν in the
coupling part of equations (16) and (17). With PML included we have the following
two coupled parabolic approximations (with one lateral dimension):

2ikAz + s2(x)Axx + k2νA + s(x)s′(x)Ax = −k2νBe−2ikz , (20)

−2ikBz + s2(x)Bxx + k2νB + s(x)s′(x)Bx = −k2νAe2ikz , (21)

A(x, 0) =
√

k0e
−

|x|2

2 ; B(x, L) = 0.

We next introduce a numerical scheme for approximation of the solution to this
system.

6. Numerical Solution. We will solve the system (20, 21) by iteration. In the
first step we compute an approximation for A using (20) with B = 0. Next, we solve
for B using (21) with the computed approximation for A. This procedure is then
repeated with the updated values for A and B. Observe that in the homogeneous
case with ν = 0 the iteration converges after the first step with B ≡ 0 and A solving
the standard narrow-angle parabolic equation.

We now discretize the above iteration by introducing finite differences for the
derivatives. The discretized field variables are denoted Am

l and Bm
l , where l and m

are grid indices in x and z, respectively. Assuming the field A is known at step m, we
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proceed to determine the field at step m+1. For B, we do it backward, i.e., determine
the field at step m from the m + 1 step.

We use Crank-Nicolson scheme to solve equation (20). At the half grid point
(xl, zm+ 1

2
), we have

2ikAz(xl, zm+ 1
2
) + k2νA(xl, zm+ 1

2
) + s2(xl)Axx(xl, zm+ 1

2
) (22)

+s(xl)s
′(xl)Ax(xl, zm+ 1

2
) = −k2νB(xl, zm+ 1

2
)e

−2ikz
m+ 1

2 .

By using the standard finite difference formulae, we can express the solution in
vector form as

[ul, v
m+ 1

2

l , wl]





Am+1
l−1

Am+1
l

Am+1
l+1



 (23)

= [−ul, v̂
m+ 1

2

l ,−wl]





Am
l−1

Am
l

Am
l+1



 − 2k2h2ν
m+ 1

2

l (Bm+1
l + Bm

l )e
−2ikz

m+ 1
2 ,

where

ul = (2s2(xl) − s(xl)s
′(xl)h) ,

v
m+1/2
l = 8ik

h2

τ
+ 2k2h2ν

m+ 1
2

l − 4s2(xl) ,

wl = (2s2(xl) + s(xl)s
′(xl)h) ,

v̂
m+1/2
l = 8ik

h2

τ
− 2k2h2ν

m+ 1
2

l + 4s2(xl).

To complete the formulation we finally collect the local solutions given by (23)
into a global matrix solution over the mesh points in depth.

The coefficient of Bz in (21) is negative of that of Az in (20), however, since we
solve B from bottom to top, we will determine B at level m from level m + 1. Then,
we obtain the same matrix formulation as when solving for A (modulo the sign of the
phase):

6.1. Numerical Example. We test our algorithm by considering a sound signal
propagating through a random medium with some imbedded compact scatterers.

There are 20 imbedded strong scatterers in the domain, they are strongly
anisotropic with dimensions about 50m in the vertical direction and 150m in the
horizontal dimension. The signal speed in the homogeneous medium is 330m/s and
the wavelength is about 13m and the speed is increased by 50% in the scatterers. In
addition there are random fluctuations in the refractive index of relative magnitude
1% and correlation length 10m.

Our computational domain contains 20 wavelength (horizontal) and 200 wave-
length (vertical). We use 10 grid points per wavelength in both directions, whereas
on the left and the right sides, we use 25 grid points for the PML medium. The
medium and the computational domain and the Helmholtz solution are shown in
Figure 1 (a) and (b).

After 15 iterations, we get the solution for the coupled parabolic equations. The
solutions of Parabolic approximation and Coupled Parabolic approximation are shown
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in Figures 1 (c), (d) respectively and we see that the Coupled Parabolic approximation
captures well the spatial structures of the Hemholtz solution.

In Figure 2 we show p at the center of the domain along the propagation direction
in z. The solid line is the numerical solution of the Helmholtz equation. The solution
of the parabolic equation is shown by the dashed line in the left plot. The solution of
the coupled parabolic equations (C-PE) using the algorithm described in the previous
section is shown by the dashed line in the right plot. Note that our C-PE solution
is very close to the Helmholtz solution whereas the PE solution fails to capture the
oscillations in p that is due to the imbedded scatterers which give a significant back-
scattering.

Figure 3 are the spectrum of the signal in the center of the domain solved by
the different methods. Here we compute the spectrum as the Fourier transform of
the squared magnitude of the signal. The solid line is the spectrum associated with
the Helmholtz solver, while the dashed lines are the spectra for PE (a) and C-PE (b)
respectively. The spectra associated with the Helmholtz and coupled PE solvers are
indeed very similar.

7. conclusion. In this paper we develop an algorithm using two coupled par-
abolic equations to simulate wave propagation over long distances. The two coupled
parabolic equations are derived from a wave field decomposition. Both forward and
backward propagation field components, as well as their interactions, are captured.
Though not solving the Helmholtz equation, our method can deal with strong inho-
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Fig. 3. The Spectrum computed by different algorithms

mogeneities with arbitrary geometry in the medium and the computational cost is
comparable to that of the parabolic approximation. A main objective has been to
capture the structure of the high frequency components of the solution caused by rapid
incoherent fluctuations in the medium parameters and this has been accomplished in
our numerical example.

Appendix. In this section, we show that the system (18, 19) is unstable using
Fourier analysis. We consider the system in the homogeneous case with γ = 0:

2ikAz + Axx + Bxxe−2ikz = 0 , (24)

−2ikBz + Bxx + Axxe2ikz = 0. (25)

We are looking for the solution in the form:

A(x, z) = a(z)e2iπnx and B(x, z) = b(z)e2iπnx.

In the first iteration, we set B = 0 in (24), the equation then becomes

2ikAz + Axx = 0 ,
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and we are looking for a solution of the type A(x, z) = a(z)e2iπnx with initial condition
a(0) = 1. The solution is given by

a(z) = e−4iπ2n2z/(2k).

Next, with the above A(x, z), we solve for B = b(z)e2iπnx in the equation (25) with
the prescribed initial value at the bottom b(1) = 0, the solution is then

b(z) =
(−4π2n2)[eiz(4k2−4n2π2)/(2k) − ei(−8n2π2+4k2+4n2π2z)/(2k)]

−4k2 + 8n2π2
.

In the 2nd iteration, we solve for A with the B(x, z) from the 1st iteration, and
solve for B with the obtained A, we find then

|a(z)| = O(n2) and |b(z)| = O(n4).

In 3rd iteration, we will have

|a(z)| = O(n6) and |b(z)| = O(n8).

The order of n in the amplitude will in general increase by two in each iteration
and we see that this iteration scheme for the system (24, 25) is unstable.

Since we are interested in wave propagation in the z-direction, we drop the term
Bxx (respectively Axx) when we solve for A(x, z) (respectively B(x, z)) to obtain the
system

2ikAz + k2γA(x, z) + Axx + k2γB(x, z)e−2ikz = 0 ,

−2ikBz + k2γB(x, z) + Bxx + k2γA(x, z)e2ikz = 0.

If the same analysis were applied to the above system, we would find that the order
of amplitudes of A(x, z) and B(x, z) remain the same during the iteration.
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