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EXACT BOUNDARY CONTROLLABILITY OF UNSTEADY FLOWS
IN A TREE-LIKE NETWORK OF OPEN CANALS*
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Abstract. In this paper we establish the exact boundary controllability of unsteady flows in a
tree-like network of open canals with general topology.
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1. Introduction. The goal of this paper is to establish the exact boundary
controllability of unsteady flows in a tree-like network of open canals.

The one-dimensional mathematical model of unsteady flows in an open canal
was given by Saint-Venant system [1], which has been frequently used by hydraulic
engineers in their practice (see also [2]-[7]). Using the theory on the semi-global C?
solution and the exact boundary controllability for quasilinear hyperbolic systems (cf
[10-15]), the exact boundary controllability of unsteady flows in both a single open
canal and a star-like network of open canals was obtained in [8]. Later on, the exact
boundary controllability of unsteady flows in a string-like network of open canals was
established in [9)].

In this paper we will generalize the previous results to a tree-like network of open
canals with general topology. For this purpose, we will serve the total flux at the
multiple node as an interface control. By means of a method different from that in [8],
we establish another type of result on the exact boundary controllability of unsteady
flows in a star-like network of open canals. Based on this new result and the results
obtained in [8-9] on the exact boundary controllability of unsteady flows for a single
open canal, a star-like network and a string-like network of open canals, we establish
the exact boundary controllability of unsteady flows in a tree-like network of open
canals with general topology.

This paper is organized as follows. In §2 we give the statement of the exact
boundary controllability of unsteady flows in a network of open canals and show the
main idea of realizing it. In §3, we recall some results given in [8-9] on the exact
boundary controllability of unsteady flows in a network of open canals with simpler
topology. In §4, a fundamental Lemma on the continuation of piecewise C'! solution in
a star-like network of open canals is established. Then, combining the results in §§3-4,
we establish in §5 the exact boundary controllability of unsteady flows in a general
tree-like network of open canals. Finally, some remarks are given in §6.

2. Statement on the exact boundary controllability of unsteady flows
in a network of open canals. We consider unsteady flows in a network composed
of N open canals. Let a;p and a;; be the z-coordinates of two ends of the i-canal and
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L; = a;1 — aip its length. Suppose that there is no friction and the canal is horizontal
and cylindrical, the corresponding Saint-Venant system can be written as (cf. [2],

[8]-[9))

0A;  O(A;Vi)

ot or =90,

(21) tZO, al'LOSxSa”Ll(Z:l;vN)a
ovi 95 _
ot or

where, for the i-th canal, A, = A;(t,z) stands for the area of the cross section at
x occupied by the water at time ¢, V; = V;(t,x) the average velocity over the cross
section and

(2.2) Si = %Vf + ghi(Ai) + gYi,
where g is the gravity constant, constant Y;; denotes the altitude of the bed and
(2.3) hi = hi(A;)
is the depth of the water, h;(A;) being a suitably smooth function of A; such that
(2.4) R} (As) > 0.

The initial condition is
(2.5) t=0: (A4;,Vi) = (Aio(z),Vio(z)), aio<x<apn (i=1,---,N).

When a;o (resp. a;1)is a simple node, we have the flux boundary condition:
(2.6) x=ap: AiVi=qio(t) (resp. x = a;1: AVi = qi1(t)).
While, when a;p (resp. ai1) is a multiple node, we denote by Jio (resp. Ji1) the set
of indices corresponding to all the canals jointed at a0 (resp. a;1). At aio (resp. a;1)
we have (cf. [2],[8])the energy-type interface conditions
(2.7) Si =S, VieJiw  (resp.Vje Jn)

and the total flux interface condition

(2.8) Z +A;V; = Qio(t) (Tesp. Z +A;V; =Qa (t))

j€Tio j€Ti1

An equilibrium state (A;, Vi) = (A;, V;) with A; > 0 (i = 1,--- N) is subcritical
if

(2.9) (i=1,---,N).
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For the purpose of the exact boundary controllability of unsteady flows in a net-
work of open canals, we want to find a time 7" > 0 such that for any given initial data
(Ai, ‘/z) = (Azo(x),vlo(x)) and final data (AZ,Vl) = (AlT(:Z?), ‘/lz(ID (Z = 1, e N) in
a C! neighbourhood of a given subcritical equilibrium state (A4;,V;) (i = 1,---N),
there exist suitable flux boundary controls at some simple nodes and suitable total flux
interface controls at some multiple nodes, such that the corresponding mixed initial-
boundary value problem for Saint-Venant system (2.1) with the initial data (2.5), the
corresponding boundary conditions (2.6) and the interface conditions (2.7)-(2.8) ad-
mits a unique piecewise C! solution on the time interval 0 < ¢t < T', which satisfies
exactly the final condition

(2.10) t=T: (A, Vi) = (Air(x),Vir(z)), ao<z<an (i=1,---,N).

To this end, it suffices to construct a piecewise C! solution to Saint-Venant system
(2.1) on the time interval 0 < ¢ < T, which satisfies the initial condition (2.5), the
final condition (2.10), all the energy-type interface conditions (2.7) and a part of flux
boundary conditions (2.6) and total flux interface conditions (2.8). Once this solution
is obtained, we put it into the rest of flux boundary conditions (2.6) and total flux
interface conditions (2.8) to get the desired flux boundary controls gio(t) (resp. gi1(t))
and total flux interface controls Qo(t) (resp. Qi1(t)), which realize the exact boundary
controllability for the Saint-Venant system.

To construct this kind of piecewise C1 solution is a nonstandard problem which
can be regarded as an inverse problem. There is no uniqueness in general. However
we can get this solution in a stable way, i.e., by solving several well-posed problems.
The main principle in the resolution consists in making the number of controls or the
controllability time 7" as small as possible. However, for a smaller number of controls,
we need a larger controllability time, and vise versa.

3. Construction of piecewise C! solution in a network of canals with
simpler topology. In this section, we recall some results given in [8-9], which will
be useful in what follows.

1). Consider a single canal with flux boundary conditions at one end. If

11
3.1 T>2Lmax{——, —},
(8:1) Ao’ Mo

where \g and po are given by (2.9) and L = a1 — ao is the length of the canal, we can
construct a C'1 solution on the single canal, such that it satisfies any given initial and
final conditions in a C'! neighbourhood of a given subcritical equilibrium state(A, V)
as well as the the flux boundary condition on one end (see [8] for the detail). We
illustrate this procedure by the following figure:

e ———>——0

Fic. 3.1. A single canal

Here a bold point “e” denotes the starting end on which the flux boundary con-
dition is satisfied, while a hollow point “o” denotes the arriving end, on which the
value of solution is determined by the procedure of resolution, and the arrow denotes
the direction along which we solve the problem.
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2). By rescaling and folding all corresponding z-interval to the interval 0 < z < 1,
the previous method can be applied to a star-like network of N open canals (see [8]
for the detail). Let T satisfy

1 1
(3.2) T > 2 max (Limax{——, —}),
1<i<N Aio phio

where A\;jp and w0 are given by (2.9) and L; = a;1 — aip is the length of the i-th canal
(i =1,---N). Then, by solving the problem from the joint end to all simple nodes, we
can get a piecewise C'1 solution which satisfies any given initial and final conditions in
a piecewise C'! neighbourhood of a given subcritical equilibrium (A;,V;) (i =1,--- N)
as well as the interface conditions (2.7)-(2.8) at the joint end (the multiple node). We
illustrate this procedure by the following figure:

e

Fic. 3.2. A star-like network of canals

Here all simple nodes are the arriving ends “o” on which the solution is determined
by the procedure of resolution. The joint node is the starting end “e” on which all the
interface conditions (2.7)-(2.8) are satisfied. The procedure of resolution is indicated

[Pkl

by the arrows: from “e” to “o”.

3). For a string-like network of N open canals, if

al 11
(3.4) T>22Limax{—— —},

)\. ! .
P 0 M0

where \jo and pio are given by (2.9) and L; = aj1 — ajo is the length of i-th canal
(i =1,---N), by solving the problem from one simple node “#” to another simple node
“0o” indicated by Figure 3.3, we can still get a piecewise C'! solution which satisfies
any given initial and final conditions in a piecewise C! neighbourhood of a given
suberitical equilibrium (A;,V;) (i = 1,--- N) as well as the flux boundary condition
on one simple node and the interface conditions (2.7)-(2.8) on all the multiple nodes
denoted by “ (see [9] for the detail). This situation is similar to the case shown by

Figure 3.1 for a single canal, however, the controllability time should be much larger.

@ > Ts)

Fiac. 3.3. A string-like network of canals

4). Based on the results given in 2) and 3), if T is large enough (bigger than
the maximum of the exact controllability time corresponding to each string-like sub-
network), similarly we can get a piecewise C'lsolution for a star-like network of string-
like sub-networks, which satisfies any given initial and final conditions in a piecewise
C1 neighbourhood of a given subcritical equilibrium as well as the interface conditions
(2.7)-(2.8) on each multiple node. We illustrate this procedure by the following figure:
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Fic. 3.4. A star-like network of string-like sub-networks

Here the joint node of all the string-like sub-networks is the starting end “e”,
all the simple nodes are the arriving end “o”, while all the joint nodes in the string-
like sub-networks are denoted by “” on which the interface conditions (2.7)-(2.8)are
satisfied.

4. Fundamental Lemma on the continuation of piecewise C! solution.

In order to get a desired piecewise C! solution for a network of N open canals with
general topology, we should extend the piecewise C! solution on a network of open
canals with simpler topology shown in the previous section. To this end, we now give
another way to construct a piecewise C'1 solution for a star-like network of N open
canals by assuming that a C1 solution satisfying any given initial and final condi-
tions in a C! neighbourhood of a corresponding subcritical equilibrium is obtained
on one canal, and then solving the problem from the joint end to other simple ends
respectively, which is illustrated in the following figure:

Fia. 4.1 A star-like network of canals

Let (A1, V1) be a known C! solution on the first canal denoted by ? In
order to construct the desired C! solution on other canals in the star-like network,
we serve the energy-like interface condition as a boundary condition at the joint node
x = 0 for each corresponding canal. Thus the piecewise C1 solution constructed
satisfies only the energy-like interface conditions (2.7), while the total flux interface
condition (2.8) is no longer satisfied at the joint node which is then denoted by “®”.
More precisely, we have the following result.

LeEMMA 4.1. Let (A;,V;) = (4;,V;) (i = 1,---, N) be a subcritical equilibrium
state. Suppose that

1 1
(4.1) T >2 max {Limax(——, —)},
Aio - Hio

=2,

where Ao and pio(i = 2,---,N) are still given by (2.9). Let (Aio(z), Vio(z)) and
(Air(z), Vir(z)) (i =1,---, N) be any given initial state and final state with small C?

norms Zl 1(Aio(-) = Ai, Vio () = Vi)llerjo, .y and 3 [[(Air (1) = Ai, Vir () =Vi)lorpo, L

which satisfy the conditions of piecewise C1 comp;tibility with the energy-like interface
conditions (2.7) at the points (¢,z) = (0,0) and (T, 0) respectively.
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Let
(4.2) R(T)={(t,z)|0<¢t<T, 0<z<L;j} (i=1,---,N).

Assume that we have already determined the solution (A1, V1) with small C! norm

(A1 — A1, Vi = V1) | crpg, (), which satisfies the initial condition (2.5) and the final

condition (2.10) for ¢ = 1. Then there exists a piecewise C1 solution (A4;,V;)(i =

1,---,N) on the domain UY | R;(T) with small piecewise C1 norm Y ||(A; — A;, Vi —
i=1

Vi)llerir, (1)), which satisfies the initial condition (2.5), the final condition (2.10) and

the energy-like interface conditions (2.7) at the joint node = = 0.

Proof. For i =1,---, N, introducing the Riemann invariants r; and s; as follows:
27°i = Vl —Vi — Gi(Ai)
4. — ’
(43) {QSiZW—Vi+Gi(Ai)7
where

(4.4) / ,/gh/

Let H; be the inverse function of G;(A;). We have

Vi=r;+si+ Vi,
(45) {Ai = H;(si — i)
and
A;
4. Hi(si — 1) = (| 21
(4.6) 1(ss — 1) (A >0

Since (A;,V;) = (A, V;) correspond to (r;,s;) = (0,0), we get

4.7 H; (0 ZAi, H{O = — >0
(@) ) 0=\
Taking (r;,s;) (i = 1,---,N) as new unknown variables, system (2.1) can be
reduced to the following system of diagonal form:
673 (97‘1' -
a T Noe =Y
(4.8) (t=1,---N),
0s; n 0Os; 0
or " Mor T

N =V — \/gAihg(Ai) < O,
wi = Vi +/gAihi(Ai) >0
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The energy-type interface conditions (2.7) now become

1 —
(4.10) z=0: 5(7"1 + 8+ Vi)2+ ghi(Hi(si —7i)) + 9Yni

1 _
25(7"1 + 51+ V)2 + ghi(Hi(s1 — 1)) + gynm
(i=2-N).

Foreachi=2,---, N, let

1 _
(411) B(Ti, Si,T1, 51) 25(7”1' + s; + VZ)Q + th(HZ(Sl — ’I”l)) + 9Ypi
1 _
- (5(7‘1 +s1+V1)24ghi(Hi(s1 —r1)) + gybl).

Since the state (Ag, Vi) = (Ax, V1) corresponds to (ry,si) = (0,0) for k = 1,--- N,
condition (4.10) implies

(4.12) P;(0,0,0,0) = 0.

On the other hand, a straightforward computation gives

op,; _ ——
(4.13) 55, (0:0,0.0) =V + \/ gAihi(A;) > 0.

Then, by the implicit function theorem, we can find a C! function f; in a neighbour-
hood of (r;,r1,s1) = (0,0,0) such that (4.10) can be equivalently rewritten as

(414) S; = fi(Ti,Tl,Sl)

with £;(0,0,0) = 0. Since the solution (r1, s1) is known, putting the values r1(¢,0) and
s1(t,0) into (4.14) and noting f;(0,0,0) = 0, (4.14) can be equivalently rewritten as

(4.15) s; = Gi(t,ri) + Hi(t),

where G; and H; are C?! functions such that

(4.16) Gi(t,0)=0

and

(4.17) |Hillc1jo,r) is small enough.
Similarly, for each ¢ = 2,---, N, we have

oF; — — —
4.1 - = Vl — Alhl Al .

Then, in a neighbourhood of (r;, si,r1,s1) = (0,0,0,0), condition (4.10) can be equiv-
alently rewritten as

(4.19) ri = Gi(t, si) + Hi(t),
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where G; and H; are C1 functions such that

(4.20) Gi(t,0)=0
and
(4.21) |Hil|crjo,ry  is small enough.

Moreover, under the assumption of Lemma 4.1, it is easy to see that the conditions
of C compatibility with (4.15)(resp.(4.19)) are still satisfied at the point (¢, z) = (0,0)
(resp. (T,0)). Then, applying the results given in [13] and [8] to system (4.8) for the
i-th canal, we get the solution (ri,s;), i.e., (4;,V;) for each ¢ = 2,--- N, which,
together with (Aj, V1), satisfy the initial condition (2.5), the final condition (2.10)
and the energy-type interface conditions (2.7) at x = 0. The proof is then complete.

REMARK 4.1. Lemma 4.1 is still valid for a star-like network of string-like sub-
networks, when a piecewise C! solution is known on one string-like sub-network and
T > 0 is suitably large.

Fic. 4.2. A star-like network of string-like sub-networks

5. Exact boundary controllability of unsteady flows in a tree-like net-
work of open canals. A network is called to have a tree-like configuration, if any
two nodes in the network can be connected by a unique path of canals. In other words,
a tree-like network is a connected network without loop. In what follows, for T' > 0
suitably large, taking the results given in §3 as the first step, we will successively use
Lemma 4.1 or Remark 4.1 to get a desired piecewise C! solution on the whole network,
which implies the exact boundary controllability for a tree-like network of open canals.

Arbitrarily choosing a node as the starting end, we construct a desired piecewise
C1 solution as follows.

Case A. When the starting end Oy is a simple node, on which the boundary flux
g, with small C! norm ||gx(-) — AxVi||c1jo,7) is given, we assume that the initial data
and the final data satisfy the conditions of C! compatibility with the flux boundary
condition (2.6) at O. For T' > 0 suitably large, by the procedure illustrated in Figure
3.1, we can get a C! solution of system (2.1) on the canal with the end Oy (another
end of this canal is denoted by O;), which satisfies the corresponding initial condition
(2.5) and the final condition (2.10) on the canal and the flux boundary condition (2.6)
at the simple node Oj. This procedure can be shown in the following figure:

O, O
&———O

Fic. 5.1. Starting from a simple node

Still for 7" > 0 suitably large, applying Lemma 4.1 illustrated in Figure 4.1 to
the local star-like network of open canals jointed at the multiple node O;, we get a
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piecewise C1 solution which satisfies the corresponding initial condition (2.5) and the
final condition (2.10) on this local star-like network, the flux boundary condition (2.6)
at the simple node Oy, and the energy-like interface conditions (2.7) at the multiple
node O;. We illustrate this procedure by the following figure:

Fic. 5.2. Extension to a local star-like network

Then, repeating the procedure given by Lemma 4.1, we can construct a piecewise
C'? solution on the whole network of canals, which satisfies the initial condition (2.5)
and the final condition (2.10) on the whole network, the boundary condition (2.6) at
the starting end Oy and the energy-like interface conditions (2.7) at all multiple nodes.
Finally, we substitute this solution in (2.8) to get the total flux interface controls Q;(t)
for all multiple nodes, and in (2.6) to get the flux boundary controls ¢;(¢) for all simple
nodes except the starting end Oy. We illustrate this procedure by the following figure:

FiG. 5.3. Ezact controllability starting from a simple node (23 controls for 23 canals)

Case B. When the starting end O; is a multiple node, on which the total flux
Qi with small norm [|Qi(-) = > ;c 7 +A;Vl|crjo,r) is given, we assume furthermore
that the initial data and the final data also satisfy the conditions of piecewise C'
compatibility with the total flux interface condition (2.8) at the multiple node O;. For
T > 0 suitably large, by the procedure illustrated in Figure 3.2, we get a piecewise C'!
solution for the local star-like network jointed at the multiple node O;, which satisfies
the corresponding initial condition (2.5) and the final condition (2.10) on the whole
local star-like network, the interface conditions (2.7) and (2.8) at multiple node O;.
We illustrate this procedure by the following figure.
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o)

Fic. 5.4. Starting from a multiple node

Then repeating the procedure given by Lemma 4.1 as shown in the previous
situation, we finally get a piecewise C! solution for the whole network of canals,
which satisfies the initial condition (2.5) and the final condition (2.10) on the whole
network, the total flux interface condition (2.8) at the starting multiple node O; and
the energy-type interface conditions (2.7) at all multiple nodes. Thus, in a similar
way, we can define the flux boundary controls ¢;(¢) for all simple nodes, and the total
flux controls Q;(¢) for all multiple nodes except the starting end Oy, respectively. We
illustrate this procedure by the following figure:

F1c. 5.5. Ezact controllability starting from a multiple node (23 controls for 23 canals)

Case C. If the tree-like network contains string-like sub-networks, we can use the
procedure shown in Figure 3.3 or Figure 3.4 as the first step and then apply repeatedly
Remark 4.1 to get a desired C! piecewise solution for the whole network of the canals
(see Figures 5.6 and 5.7). In this way we can reduce the number of controls, however,
the controllability time should be correspondingly enlarged (cf. (3.4)).
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starting end

F1G. 5.6. Ezact controllability starting from a simple node

for a tree-like network containing string-like sub-networks (15 controls for 23 canals)

starting end

FiG. 5.7. Ezact controllability starting from a multiple node

for a tree-like network containing string-like sub-networks (15 controls for 23 canals)

6. Some remarks. 1). The exact controllability time obtained in each case is
optimal.

2). The flux boundary condition (2.6) can be replaced by the water level boundary
condition

(61) Xr = QG0 - Al = qio(t).

Accordingly, the energy-like interface conditions (2.7) can be also replaced by the
water level interface conditions

(6.2) hZ(Al) + Y, = hj(Aj) + ij, Vj € Jio-

3). The flux boundary condition (2.6) can be replaced by the following boundary
condition of underflow gate (cf.[7])

(6.3) T =aio: AVi|AiVi| = 2guf(yio — hi(Ai)),
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where y;o is the water level outside the i-th canal and w, is the height of gate opening
at r = a;o.

Accordingly, on each intermediate joint end aip of a string-like sub-network, the
interface conditions (2.7)-(2.8) can be also replaced by the interface conditions of
underflow gate (cf.[7])

(6.3) Ai Vi1 |AisVier| = AVi|AiVi| = 2guiy(hi—1(Ai—1) — hi(43)).

4). When one considers the friction in a network of open canals, Saint-Venant
system (2.1) becomes

0A;  0(A:iVi)

"o 0

(6-4) t>0, apn<z<an(i=1,---,N)
Vi s -

ot t g T4 V) =0

with F;(A;,0) = 0 and V;F;(A;, Vi) > 0. For any given equilibrium state (A4;,0) =
(A;,0) with A; > 0(i = 1,---, N), we still have the exact boundary controllability.

5). Since both the initial and final states belong to a piecewise C! neighbourhood
of an arbitrarily given subcritical state, our results give only the local exact boundary
controllability for unsteady flows in a tree-like network of open canals, however, that is
enough to get the corresponding global exact boundary controllability. In fact, in order
to drive any initial state given in a piecewise C'! neighbourhood of a subcritical state
to any final state given in a piecewise C'! neighbourhood of another subcritical state,
it suffices to use the previous results to drive the initial state to the first equilibrium
state, then successively transfer the first equilibrium state to the second equilibrium
state, and finally reach the final state. Thus we get the corresponding global exact
boundary controllability, however, the controllability time must be enlarged many
times.
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