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LEVEL SET METHOD FOR SHAPE OPTIMIZATION OF PLATE
PIEZOELECTRIC PATCHES ∗

JIANYING ZHANG†

Dedicated to Professor Stanley Osher’s 60th Birthday

Abstract. We consider a vibrating system with piezoelectric patches whose minimum vibration
frequency is to be minimized subject to some constraint on the patch geometry. A numerical scheme
is constructed using the level set method devised in [12] and the projected gradient method devised
in [14] to optimize the patch geometry. An integral equation approach introduced in [4, 17, 20, 21]
is also presented for the computation of the corresponding eigenvalue problem.

Introduction. A piezoelectric material can respond to mechanical
forces/pressures and generate an electric charge/voltage. This piezoelectric
phenomenon is called the direct piezoelectric effect. On the other hand, an electric
charge/field applied to the material induces mechanical stresses or strains, and
this phenomenon is called the converse piezoelectric effect. In active piezoelectric
structures, the direct effect is used for structural measurements while the converse
effect is used for active vibration controls of the continua.

In recent years, piezoelectric materials are being used increasingly in noise control
[5, 6], vibration control [3, 8] and shape control [9, 10]. They have been effectively
employed in areas such as acoustics for noise cancellations with applications to reduce
interior noise in aircraft, aerodynamics to adjust wing surfaces and electronics where
they are used in the reading heads in videocassette recorders and in compact discs as
positioning devices. Another application is in adaptive structures for shape control by
piezo-actuation. Also adaptive materials and structures are presently being used in a
variety of applications involving static control such as robotic and space structures.
One of the important issues in the use of piezo actuators is their optimal deployment
to minimize their weight and enhance system performance. In many applications, the
piezo materials are used in the form of several patches in order to provides flexibility
in choosing their locations which can be optimized to improve the effective of the
control [2].

This work concerns a closed-loop displacement feedback control of a thin rectan-
gular plate reinforced with a sensor patch and an actuator patch. The sensor senses
the bending strains of the plate and generates a signal which is amplified and sent to
the actuator. The actuator then generates a corresponding signal which causes the
plate to bend in the opposite direction. The optimal shapes of the patches (under
some constraint) are to be determined to minimize the minimum vibration frequency.

We consider the equation of motion, a fourth order hyperbolic equation derived in
[19], with simply supported boundary conditions. In the classical approach presented
in [20], the modeling equation is converted into a certain integral equation to which
a kernel can be determined explicitly. Consequently, the kernel is expressed in terms
of the patch shapes by converting the domain integrals over the patches into the
corresponding line integrals over their boundaries. Then optimizing the shapes of the
patches amounts to optimizing the parameterizations of their boundaries with the
admissible set composed of all the reasonable parameters.
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However optimizing the parameterizations of the patch boundary is quite limited
since only curves with special geometries can be parameterized explicitly. The level
set method [12] – considering the varying patch boundaries in a continuous framework
as driven by a certain velocity field overcomes this difficulty and allows much more
general admissible sets for the optimization. Shape optimization problems are also
studied in [1], [11] and [16] in the level set frame work.

The modeling equation presented here involves the biharmonic operator and a
term that is singular on the free boundary. Theoretical issues concerning the existence
and uniqueness of the minimizer are not yet completed. However, our numerical
observation provides positive evidence of the uniqueness.

In the following section, we set up the optimization problem and introduce some
notation that will be used in the later presentation. The level set formulation and the
detailed numerical scheme are presented in section 2 and 3, respectively. Numerical
results are shown in section 4, followed by discussions in section 5.

1. Mathematical formulation of the optimization problem.

1.1. The optimization problem. Consider a thin plate of length a and width
b occupying a rectangular domain denoted by

U = {(x, y) : 0 < x < a, 0 < y < b}.
Assume that the plate is reinforced with a laminated biaxial piezoelectric actuator
patch (occupying Ae ⊂ U) on the top and a laminated biaxial piezoelectric sensor
patch (occupying Se ⊂ U) on the bottom (Which layer serves as a sensor and which
serves as an actuator is not crucial).

We first discuss the equation of motion of the plate.
Let u(x, y, t) represent the transverse deflection of the plate. In the absence of

mechanical excitations, the equation of motion of the plate with externally applied
control moments is given by ([19])

(1.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D∆2u+ ρh

∂2u

∂t2
= αL1[u]∆χAe in U , t > 0

u(x, y, t) = 0 on ∂U , t > 0
∂2u

∂n2
= 0 on ∂U , t > 0

in which

L1[u] = −c
∫∫

Se

∆u

and

χAe =

{
1 in Ae

0 otherwise

with D, ρ, h, α and c being positive physical constants. In particular, ρ is the material
density of the plate and h represents the plate thickness.

In the particular case of a rectangular plate, we have

(1.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
D∆2u+ ρh

∂2u

∂t2
= αL1[u]∆χAe in U , t > 0

u(x, y, t) = 0 on ∂U , t > 0
uxx(0, y, t) = uxx(a, y, t) = 0 for 0 < y < b, t > 0
uyy(x, 0, t) = uyy(x, b, t) = 0 for 0 < x < a, t > 0.
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The detailed derivation of equation (1.2) is given in [20].
We shall consider the boundary value problem (1.2) and further seek the solution

of the form

(1.3) u(x, y, t) = eiλtw(x, y),

where λ is the plate vibration frequency depending on the shapes of the patches.
Define the following functional

I[Ae] = minλ |λ (Ae)| .

Our goal is to minimize I[Ae] among suitable patch shapes in a certain admissible set
A with constraint |Ae| = K (K > 0 is some fixed constant representing the area of
the patch). That is,

minimize I[Ae] among Ae ∈ A, subject to |Ae| = K.

1.2. Reformulation of the optimization problem. Consider the solution in
the form of (1.3). By direct computation, w(x, y) satisfies

(1.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆2w − α

D
L1[w]∆χAe = σw in U

w(x, y) = 0 on ∂U
wxx(0, y) = wxx(a, y) = 0 for 0 < y < b

wyy(x, 0) = wyy(x, b) = 0 for 0 < x < a,

where

(1.5) σ =
λ2ρh

D
.

Denote the linear operator

(1.6) L[w] = ∆2w − α

D
L1[w]∆χAe .

Equation (1.4) then reads

(1.7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L[w] = σw in U
w(x, y) = 0 on ∂U
wxx(0, y) = wxx(a, y) = 0 for 0 < y < b

wyy(x, 0) = wyy(x, b) = 0 for 0 < x < a.

This is an eigenvalue problem in differential equation form. The eigenvalue σ is related
to the plate vibration frequency λ via (1.5).

In the case that λ > 0, the above optimization problem is equivalent to

minimize minσσ (Ae) among Ae ∈ A, subject to |Ae| = K.

due to (1.5).
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1.3. A weak formulation of the eigenvalue problem. Equation (1.7) is
understood in the sense of distributions. It is natural to consider a weak solution
w ∈ H1

0 (U) ∩H2(U). Due to the boundary conditions that w satisfies, we have∫∫
U

ψ∆2w =
∫∫

U

ψ∆(∆w)

= −
∫∫

U

∇ψ · ∇(∆w) +
∫

∂U

ψ∇(∆w) · dS︸ ︷︷ ︸
=0

=
∫∫

U

∆w∆ψ −
∫

∂U

∆w∇ψ · dS︸ ︷︷ ︸
=0

and ∫∫
U

ψ∆χAe = −
∫∫

U

∇ψ · ∇(χAe) +
∫

∂U

ψ∇(χAe) · dS︸ ︷︷ ︸
=0

=
∫∫

U

χAe∆ψ −
∫

∂U

χAe∇ψ · dS

=
∫∫

Ae

∆ψ −
∫

∂U

χAe∇ψ · dS︸ ︷︷ ︸
=0

.

Hence the weak form of (1.7) can be written as∫∫
U

∆w∆ψ +
αc

D

∫∫
Se

∆w
∫∫

Ae

∆ψ = σ

∫∫
U

wψ, ∀ψ ∈ H1
0 (U) ∩H2(U).

Assume throughout this paper that Ae = Se so that the bilinear form on the left-
hand side is positive and symmetric, and positive real eigenvalues can be expected.
On the other hand, the Fredholm Alternative holds due to the compact embedding
of H1

0 (U) ∩ H2(U) into L2(U). This fact will be used in the later derivation of the
functional differential.

2. Level set formulation. An integral equation approach for the analytical
solution to the corresponding one dimensional eigenvalue problem (1.7) was first pro-
posed in [17] and generalized to the two dimensional case in [4]. Shape optimization
in two dimensions was studied in [20] using boundary parameterization optimization.
In order to handle more general patch geometries, we use the level set method for op-
timization problems introduced in [11, 15]. The applications of the level set method
to other type of structural boundary design problems can be found in [16].

A key idea is to represent the unknown set Ae as the level set of a scalar function
φ(x), where

(2.1) φ(x)

⎧⎪⎨
⎪⎩
> 0 inside Ae

= 0 on ∂Ae

< 0 outside Ae.

The generic optimization problem can now be reformulated as

minimize F [φ] subject to G(φ) = 0
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where F is the minimum vibration frequency in terms of the level set function and G
can be written as

(2.2) G(φ) =
∫∫

{x:φ>0}
dx−K.

The Lagrange multiplier method can be used to solve the constrained optimization
problem. Let γ be the Lagrange multiplier, then the augmented optimization problem
can be written as

L(φ, γ) = F (φ) + γG(φ).

The necessary condition for φ to be a minimizer is

(2.3) DφL(φ, γ) = DφF (φ) + γDφG(φ) = 0.

Combining (2.3) and (2.2) we can in principle determine φ and γ. Numerically,
we start from an initial guess of the boundary of Ae and keep updating it following
the gradient direction until the algorithm converges.

To determine the gradient along the level curve, We compute DφF and DφG in
terms of φ as follows:

• Compute the shape derivative of F .

Assume σ solves (1.7) with the corresponding eigenfunction w. Let σδ and wδ

be the variation in σ and w with respect to the variation in Ae, respectively.
The variation in Ae is the symmetric difference between two different sets
which will be denoted by “diff” in the following presentation. Since both of
the pairs (σ, w) and (σ + σδ, w + wδ) satisfy the above eigenvalue problem,
we have

∆2wδ + β

(∫∫
Ae

∆wδ

)
∆χAe − σwδ

= σδw − β

(∫∫
Ae

∆w
)

∆χdiff − β

(∫∫
diff

∆w
)

∆χAe

where β = αc
D .

By Fredholm Alternative, for the above equation of wδ to yield a nontrivial
solution, the right-hand side must be orthogonal to w, which implies that

(2.4) σδ =
2β
∫∫

Ae ∆w
∫∫

diff
∆w∫∫

U
w2

.

Let δx denote the infinitesimal displacement of a point x ∈ ∂Ae under the
variation of Ae. As explained in [11, 15], if ∂Ae is smooth, then for any scalar
function f(x),

(2.5)
∫∫

diff

f = −
∫

∂Ae

δx · ∇φ
|∇φ|f.

Note that δx is a function of x ∈ ∂Ae so the line integral on the right over
∂Ae makes sense. In addition, by the definition of the level set function φ,
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− ∇φ
|∇φ| is the outer normal of the patch boundary. Therefore, (2.4) amounts

to

(2.6) σδ = −
2β
∫∫

Ae ∆w
∫

∂Ae δx · ∇φ
|∇φ|∆w∫∫

U
w2

.

• Represent the shape derivatives DφF and DφG in terms of the level set func-
tion φ.

Let δφ be the infinitesimal variation of the level set function φ under the
variation of Ae. In order to rewrite σδ in terms of δφ, we take the variation
of φ(x) = 0, which yields the time-discretized Hamilton-Jacobi equation

(2.7) δφ+ ∇φ · δx = 0

and allows us to represent the directional derivative of F as

(2.8) DφF · δφ = σδ =
2β
∫∫

Ae ∆w
∫

∂Ae
δφ

|∇φ|∆w∫∫
U
w2

.

Similarly by (2.5) and (2.7), the directional derivative of G reads

(2.9) DφG · δφ =
∫

∂Ae

δφ

|∇φ| .

• Determine the gradient along ∂Ae.

We use the projected gradient method introduced in [11, 15] to determine the
gradient along ∂Ae.
To view the varying patch boundary in a continum framework, we assume
that it is driven by some vector field. The evolving rate of ∂Ae at each point x
is just δx, which can be understood as the rate of change of the displacement
with respect to the patch shape.
Let v be the normal component of δx on ∂Ae, i.e.

v = δx · ∇φ
|∇φ| .

Then the time-discretized Hamilton-Jacobi equation (2.7) can be written
equivalently as

(2.10) δφ+ v|∇φ| = 0.

By (2.8),(2.9) and (2.10), we have

DφL · δφ = DφF · δφ+ γDφG · δφ

=
∫

∂Ae

δφ

|∇φ|
(
γ +

2β
∫∫

Ae ∆w∫∫
U
w2

∆w
)

= −
∫

∂Ae

v

(
γ +

2β
∫∫

Ae ∆w∫∫
U
w2

∆w
)
.
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Hence, to minimize DφL · δφ, a descent direction can be chosen as

(2.11) v =
2β
∫∫

Ae ∆w∫∫
U
w2

∆w + γ.

To determine the Lagrange multiplier, we use the projection approach pre-
sented in [11] basing on the one introduced in [14].
Differentiating the constraint G(φ) = 0 yields

DφG · δφ = 0,

which is, by (2.9) and (2.10)∫
∂Ae

δφ

|∇φ| =
∫

∂Ae

v = 0.

Since

0 =
∫

∂Ae

v =
∫

∂Ae

vn · n = −
∫

∂Ae

v
∇φ
|∇φ| · n = −

∫∫
Ae

∇ ·
(
v
∇φ
|∇φ|

)
,

we conclude by (2.11) that

(2.12) γ = −2β
∫∫

Ae ∆w∫∫
U
w2

·
∫∫

Ae ∇ ·
(
∆w ∇φ

|∇φ|
)

∫∫
Ae ∇ · ∇φ

|∇φ|
.

3. The numerical scheme. The main algorithm for the optimization is shown
in the following:

initialize φ(x)
do while DφL �= 0

solve for the eigenvalue σ and the corresponding eigenvector w
compute the Lagrange multiplier γ using (2.12)
compute the descent direction v (2.11)
update φ via the time-discretized Hamilton-Jacobi equation (2.10)

Note that the eigenvalue and the corresponding eigenvector are to be computed
at each step. We achieve this by the integral equation approach presented in [20],
where the eigenvalue problem (1.4) is converted into an integral equation which is
furthermore approximated by a finite dimensional linear system. The procedure goes
as follows:

• Convert the PDE into an integral equation with an explicit kernel.

Let K(x, y;x1, y1) = g(x, y;x1, y1) + p(x, y)q(x1, y1), where

g(x, y;x1, y1) =
∞∑

m=1

∞∑
n=1

4
ab
gmn sin

mπx

a
sin

nπy

b
sin

mπx1

a
sin

nπy1
b

with gmn = 1
π4ω2

mn
and ωmn =

(
m
a

)2 +
(

n
b

)2,
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p(x, y) =
∫∫

Ae

∆g(x, y;x1, y1) dx1 dy1

and

q(x1, y1) = −cCq

∫∫
Se

∆g(x, y;x1, y1) dx dy

with

Cq =
α

D + αc|Ae| .

Note that g(x, y;x1, y1) is the kernel of the biharmonic operator with the
simply supported boundary conditions, i. e. it satisfies

(3.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆2g = δ(x− x1)δ(y − y1) in U
g(x, y;x1, y1) = 0 on ∂U
gxx(0, y;x1, y1) = gxx(a, y;x1, y1) = 0 for 0 < y < b

gyy(x, 0;x1, y1) = gyy(x, b;x1, y1) = 0 for 0 < x < a

where δ(x)δ(y) denotes the Dirac measure giving unit mass at the origin. And
p(x, y) solves

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

∆2p = ∆χAe in U
p(x, y) = 0 on ∂U
∂2p

∂n2
= 0 on ∂U.

Then (1.4) implies that

(3.3) w(x, y) = σ

∫∫
U

K(x, y;x1, y1)w(x1, y1) dx1 dy1.

• Approximate the integral equation by a finite dimensional linear system.

Define

ϕmn(x, y) =
2√
ab

sin
mπx

a
sin

nπy

b
for m,n = 1, 2, · · · .

{ϕmn(x, y)} forms a complete orthonormal system in the function space
L2 ([0, a] × [0, b]) with simply supported boundary conditions, which the func-
tions w(x, y), p(x, y) and q(x, y) all belong to.
Denote dmn, pmn and qmn as the Fourier coefficients of the functions w(x, y),
p(x, y) and q(x, y), respectively, for m,n = 1, 2, · · · . That is,

dmn =
∫∫

U

w(x, y)ϕmn(x, y) dx dy,



LEVEL SET METHOD FOR SHAPE OPTIMIZATION 337

pmn =
∫∫

U

p(x, y)ϕmn(x, y) dx dy

and

qmn =
∫∫

U

q(x, y)ϕmn(x, y) dx dy.

Also put

Q =
∫∫

U

q(x, y)w(x, y) dx dy

and

R =
∫∫

U

p(x, y)q(x, y) dx dy.

Set µ = 1
σ for σ �= 0. Substituting w(x, y) =

∑∞
m=1

∑∞
n=1 dmnϕmn(x, y) into

equation (3.3) yields

(3.4) µ

∞∑
m=1

∞∑
n=1

dmnϕmn(x, y) =
∞∑

m=1

∞∑
n=1

gmndmnϕmn(x, y) +Qp(x, y).

(1) Multiplying equation (3.4) by ϕkl(x, y) and integrating both sides over U
yields

(3.5) µdkl = gkldkl + pklQ.

for k, l = 1, 2, · · · .
(2) Multiplying equation (3.4) by q(x, y) and integrating both sides over U
yields

(3.6) µQ =
∞∑

m=1

∞∑
n=1

gmnqmndmn +RQ.

(3) Formally define the infinite dimensional matrix B as

B =
(

G Gc

Gr R

)
,

where G is the infinite diagonal matrix

G = diag(g11, g12, . . . , . . .)

and Gc, Gr are the infinite column vector and the infinite row vector, respec-
tively,

Gc = (p11, p12, . . . , . . .)T and Gr = (g11q11, g12q12, . . . , . . .).

Combining (3.5) and (3.6), we get

Bv = µv, v = (d11, d12, . . . , Q).
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• Finite dimensional approximation of the infinite linear system.

Truncating the first MN terms of the Green’s function g(x, y; ξ, η):

gMN (x, y; ξ, η) =
M∑

m=1

N∑
n=1

gmnϕmn(x, y)ϕmn(ξ, η),

the above infinite linear system can be approximated by MN +1 linear equa-
tions (a finite dimensional eigenvalue problem):

BMNvMN = µMNvMN , for vMN = (v1, v2, · · · , vMN+1),

with BMN defined as an (MN + 1) × (MN + 1) matrix:

BMN =

(
G

MN
GMN

c

GMN
r R

)
,

where

G
MN

= diag(b11, b22, · · · , bMN,MN ),

GMN
c = (b1,MN+1, b2,MN+1, · · · , bMN,MN+1)T ,

GMN
r = (bMN+1,1, bMN+1,2, · · · , bMN+1,MN )

and

R = bMN+1,MN+1.

Although it is hard to give a rigid error estimate for the convergence rate of the
approximated solution, the above approximation is numerically convincing as
shown later.

• Explicit formulations of pmn, qmn and R.

We shall express pmn, qmn and R explicitly in order to determine the matrix
B. By the definitions above, we have

pmn =
∫∫

U

p(x, y)ϕmn(x, y) dx dy

=
∫∫

U

ϕmn(x, y)
(∫∫

Ae

∆g(x, y;x1, y1) dx1 dy1

)
dx dy

= −
∫∫

U

ϕmn(x, y)

(∫∫
Ae

∞∑
k=1

∞∑
l=1

ĝklϕkl(x, y)ϕkl(x1, y1) dx1 dy1

)
dx dy

= −
∞∑

k=1

∞∑
l=1

ĝkl

(∫∫
U

ϕkl(x, y)ϕmn(x, y) dx dy
)(∫∫

Ae

ϕkl(x1, y1) dx1 dy1

)

= −ĝmn

∫∫
Ae

ϕmn(x1, y1) dx1 dy1,
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qmn = c0Cq ĝmn

∫ ∫
Se

ϕmn(x, y) dx dy

and

R =
∞∑

m=1

∞∑
n=1

pmnqmn.

Remark 3.1. The advantage of the integral approach for the eigenvalue problem
is that the size of the linear system does NOT depend on the mesh size. Since
computing the eigenvalue and the eigenvector is the key time-consuming issue in this
numerical scheme, the mesh independence of the matrix size allows us to refine the
mesh without dramatically slowing down the computational process. Actually, the
choice of M,N = 5 is large enough to provide very accurate results of the eigenvalue
and the eigenvector.

4. Numerical results. Numerical simulations are provided in this section.
To update the level set function, higher order schemes such as ENO [13] and

WENO [7] are advanced schemes for solving Hamilton-Jacobi equations. With an
acceptable accuracy, we simply implement the monotone upwind scheme [12] here.
Moreover, we do not use the reinitialization technique [18] which would have also
increased the computational stability.

For a numerical test, we consider a square domain U = (0, 1)×(0, 1) and discretize
it using regular meshes. The physical constants are taken as follows:

ρ = 1.19, h = 0.0016, D = 1.167, c = 28.1895 and α = 1.64 × 10−4.

Our numerical results show that the minimizer of the optimization problem
is NOT sensitive to the initial choice of the patch shape, which provides positive
evidence of the uniqueness of the minimizer.

The following types of initial data are tested (the region occupied by the patch
is in white):

(1) A square patch located in the center of the plate with boundaries

|x− 0.5| = 0.4
√
π/2, |y − 0.5| = 0.4

√
π/2.

Taking the mesh size of ∆x = ∆y = 1/80 (80 × 80 grids), Figure 1 shows the
evolution of the square patch towards the optimal shape and Figure 2 shows the
minimum vibration frequency as a function of the number of iterations.

(2) A circular patch located in the center of the plate with boundary

(x− 0.5)2 + (y − 0.5)2 = 0.42.

Taking the mesh size of ∆x = ∆y = 1/100 (100 × 100 grids), Figure 3 shows
the evolution of the circular patch towards the optimal shape and Figure 4 shows the
minimum vibration frequency as a function of the number of iterations.

(3) A polygonal patch located in the center of the plate with boundary

|x+ y − 0.5| = 0.4
√
π/2, |y − 0.5| = 0.4

√
π/2.
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Fig. 1. Shape evolution of the square patch

Taking the mesh size of ∆x = ∆y = 1/100 (100 × 100 grids), Figure 5 shows the
evolution of the polygonal patch towards the optimal shape and Figure 6 shows the
minimum vibration frequency as a function of the number of iterations.

The above choices of the patch size make the patch areas the same in all cases.
We observe from the following numerical results that the three different initial data
lead to the same minimum value of the minimum vibration frequency. In addition,
the minimizers in the three cases are quite similar (in the sense that they all break
down into pieces first and evolve towards the boundary).

(4) Two circular patches of radius 0.2 located in the center of the upper half plate
and the center of the lower half plate, respectively.

Taking the mesh size of ∆x = ∆y = 1/100 (100 × 100 grids), Figure 7 shows the
evolution of the two circular patches towards the optimal shape and Figure 8 shows
the minimum vibration frequency as a function of the number of iterations.

(5) Two square patches of length 0.2 × √
π located in the center of the upper half

plate and the center of the lower half plate, respectively.
Taking the mesh size of ∆x = ∆y = 1/100 (100 × 100 grids), Figure 9 shows the

evolution of the two square patches towards the optimal shape and Figure 10 shows
the minimum vibration frequency as a function of the number of iterations.

In Case (4) and (5), the patch regions still evolve towards the plate boundary but
keep their original connectivity without merging into one piece in the end.

Remark 4.1. Here is an interesting phenomenon: Comparing with the patch
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Fig. 2. Minimum vibration frequency λ vs. iteration number for the square patch

behaviors in Case (4) and (5), although the patches in Case (1), (2) and (3) lose their
original connectivity during the evolution, each ends up in a single piece. We believe
that the center patch regions in Case (1), (2) and (3) play an important role in their
final unification.

Due to the numerical diffusion, the patch area may dissipate during the iteration.
This can be solved by modifying the Lagrange multiplier γ using Newton’s method as
stated in [11]. We do not implement it here since only slight area dissipation occurs
in our computation and it does not affect the property of the minimizer.

5. Discussions. The level set method is implemented for the shape optimization
of plate piezoelectric patches. It is proved to be quite efficient for the presented
problem in which complicated topological changes occur during the evolution of the
free boundary. On the other hand, the integral equation approach introduced in
[4, 17, 20] is used to speed up the computation of the corresponding eigenvalue problem
at each iteration step.

According to the numerical simulation, the optimal shape of the patch, does
not seem to depend on the initial data (with the same connectivity), which provides
positive evidence of the uniqueness of the minimizer of the optimization problem
(with the same connectivity). We conclude that to minimize the minimum vibration
frequency, the patch has the tendency to evolve towards the plate boundary. By
choosing the positive gradient direction, we can do the same work to maximize the
minimum vibration frequency. And a polygonal shape located in the patch center
is a preferred maximizer and the numerical results also give positive evidence of its
uniqueness.

The assumption that Ae = Se is made in this paper not only for the simplification
but also for the mathematical rigidity of the problem, since it has not been proved
theoretically that the eigenvalue problem studied above has real and positive minimum
eigenvalue when Ae �= Se, although numerical results in [21, 20] provide a positive
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Fig. 3. Shape evolution of the circular patch

answer in several cases. However, the level set formulation and the integral equation
approach introduced here can be easily extended to the general case when Ae �= Se.
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Fig. 5. Shape evolution of the polygonal patch
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Fig. 6. Minimum vibration frequency λ vs. iteration number for the polygonal patch
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Fig. 7. Shape evolution of two circular patches
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Fig. 8. Minimum vibration frequency λ vs. iteration number for two circular patches



346 J. ZHANG

20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100

20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100

20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100

20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100
20 40 60 80100

20
40
60
80

100

Fig. 9. Shape evolution of two square patches
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Fig. 10. Minimum vibration frequency λ vs. iteration number for two square patches


