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INFINITE INTERVAL PROBLEMS ARISING IN THE MODEL OF A
SLENDER DRY PATCH IN A LIQUID FILM DRAINING UNDER
GRAVITY DOWN AN INCLINED PLANE *

RAVI P. AGARWALT AND DONAL O’REGANf?

Abstract. Existence results are established for a second order boundary value problem on the
half line motivated from the model of a slender dry patch in a liquid film draining under gravity
down an inclined plane.

1. Introduction. Consider a thin film of viscous liquid with constant density p
and viscosity p flowing down a planer substrate inclined at an angle a (0 < a < 7)
to the horizontal. We adopt Cartesian coordinates (z,y,z) with the x-axis down
the greatest slope and the z-axis normal to the plane. With the usual lubrication
approximation the height of the free surface z = h(x,y, z) satisfies [4]

(1.1) 3puhy =V.[W3V(pgh cosa —oV?*h)| — pg sina[h’],

where t denotes time, g the magnitude of acceleration due to gravity and o the
coefficient of surface tension. We are interested in solutions symmetric about y = 0,
and we seek a steady state solution for a slender dry patch for which the length
scale down the plane (i.e. in the x direction) is much greater than in the transverse
direction (i.e. in the y direction), so the equation (1.1) is approximated by [4]

(1.2) [h* (pgh cosa —ahyy)yly, — pg sina [h®], = 0.

_ pgsina[2hz—z7
e T
slender dry patch of semi-width y. = y.(x) the average volume flux around the dry

patch per unit width in the transverse direction down the plane (denoted by Q(z))
is approximately [4]

The velocity component down the plane is u(z,y, 2) and so for a

pg sina

y
(1.3) Q=" " lim y! / h(z, w)? dw.
Sp vmee ve (@)

We seek a similarity solution to equation (1.2) of the form h = f(x) G(n) where

N = ;- Note G(1) =0 and (1.2) takes the form

pg cosa f2yE (GF QY — o f2(GF G
—3pgsin ay? G2 (f'Gye — fG'y.n) =0

with the corresponding expression for ) being

(1.4)

pg sina

Q= f2 lim pt /nG 3
n (w)? dw.
1

3 n—00
For weak surface-tension effects the second term in (1.4) can be neglected and so the
only relevant similarity solution is given (after a suitable choice of origin in x) by

f(x)=0b(cx)™ and ye(z) = (cz)*
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where the coefficients b and ¢ and the exponents m and k are constants with
m = 2k — 1. In this case o # 7 and so we may choose without loss of generality
b= ck tana and so (1.4) becomes

(1.5) (G +n) G — (7 — %) G3=0.

The unknown exponent k is determined by the requirement that the average volume
flux per unit width around the dry patch, @, is independent of x. This is possible
only if m =0 and G ~ Gy > 0 (a constant) as n — oo. Thus

pg sina
3

Q= (bGp)® and so m:(),k:%.

Setting k = 3 in (1.5) yields
(1.6) (GG +n(G*) =0

Also the solutions to (1.6) must satisfy the boundary condition G(1) = 0 and the
far-field condition lim, .., G(1) = Go. As a result one is interested in the boundary
value problem

(1.7) (G3G) +n(G3) =0, 1<n<oo
’ G(1) =0, lim, o G(n) =Gy > 0.

Keeping this problem in mind, in Section 2 we discuss the general boundary value
problem

(G'(y) +pt)y™) +qt) f(t,y) =p'(t)y™, a<t<n
(18) {m>:ﬁ%$:%iq e

where n >a, G(z) = [ g(z)dz, G'(y) = & G(y(t)) and
o) ={ T2

—x™ <0

with m > 0 odd. A very general existence theory will be presented for (1.8) in Section
2. Our theory relies on the following nonlinear alternative of Leray—Schauder type [1,
2].

THEOREM 1.1. Let U be an open subset of a Banach space E, .J : U—Ea
continuous compact map, p* € U and let N : U x[0,1] — E be a continuous compact
map with N1 = J and No = p* (here Ny(u) = N(u,\)). Also assume

(1.9) u# Ny (u) for wedU and )€ (0,1].

Then J has a fized point in U.

In Section 3 we discuss the following boundary value problem on the half line

{ (G'(y) + () y™) +a(t) f(t,y) =p'(t)y™, a<t<oo
y(a) =0, y bounded on [a,c0),

and our existence theory will then be applied to (1.7).
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2. Existence theory on finite intervals. In this section we first establish the
existence of a solution to

(G'(y) +pt)y™) +q(t) f(t,y) =p' () y™, a<t<n
21 {()—0 y(ny):bo>0 oy

(here n > a) where G(z) = [ g(z)dz and

(@) = ™, x>0
I\E) = —z™=z|™, =<0

and with m > 0 odd. Note G'(y) = £ G(y(t)) and

dt
Zm+1
2Z— 220
G(Z) = er,,,lLil m+41
=70 = =l Z<0
m—+1 m+1 :

By a solution to (2.1) we mean a function y € Cla,n|, with G(y) € C[a,n], G'(y) +
py™ € AC[a,n] N C'(a,n] which satisfies y(a) = 0, y(n) = by and the differential
equation in (2.1) on (a,n).

THEOREM 2.1. Suppose the following conditions are satisfied:

(2.2) f:la,n] x R =R is continuous
(2.3) q € C(a,n] N L'a,n] with ¢ >0 on (a,n]
(2.4) p € C'a,n] with p>0 on [a,n]
(2.5) f(t,0) >0 for te (a,n)

and

(2.6) f(t,bo) <0 for t e (a,n).

Then (2.1) has a solution y with 0 < y(t) <by for t € [a,n].

Proof. Consider the boundary value problem

2.7) { (G'(y) + Apy™) =X f*(t,y), a<t<n
A y(a) =0, y(n) =by >0, 0<A<1

with
—q(t) f(t,0)+y, y<0
[ ty) =9 —q@) f(t,y) +p'(t)y™, 0<y<by

Solving (2.7)y is equivalent (see [2]) to finding a y € C[a,n] which satisfies

(28)  y(t) =G A(t—a) )\/ ds—i—)\/ (t — ) f* (2, y(a) de)
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where

(2.9) A= G(bo) + A f:P(S) y"(s)ds — A fan(n —z) f*(x,y(x)) d;v.

n—a

Define the operator Ny : Cla,n] — Cla,n] by

Nyy(t) = GH(A(t - a) — A / p(s) 4™ (s) ds + A / (t— ) (2, y(x)) da).

The argument in [2] guarantees that N : Cla,n] — Cla,n] is continuous and com-
pletely continuous. We now show any solution y to (2.7)x (0 < A < 1) satisfies

(2.10) 0<G(y(t)) < G(by) for t€ [a,n].
If (2.10) is true then
(2.11) 0<y(t) <by for te€la,n].

Suppose G(y(t)) <0 for some ¢ € (a,n). Then G(y) has a negative minimum at say
to € (a,m), so G'(y(to)) = 0. Also there exists §; > 0, dy > 0 with (tg—d1,t0+d2) C
[a,n] and with

(2.12) { G(y(t)) <0 for te (to — 1, to + 02)

and G(y(to — 01)) = G(y(to +02)) = 0.
Now for t € (tg — 01,to + d2) we have
(G'(y(®) + Ap(t) y™ (1)) = =Aq(t) f(£,0) + Ay(t) <O,

so integration from tg to tg + d2 yields

G'(y(to + 02)) + Ap(to + 02) y™ (to + d2) < Ap(to) y™ (o).
Now y(to + d2) =0, so (note m is odd, p >0 and y(to) <0)
(2.13) G'(y(to +d2)) < Ap(to) y™ (to) < 0.
Thus there exists d3 > 0, d3 < do with
(2.14) G'(y(t)) <0 for t e (to+ d3,to + d2).
As a result
0=G(y(to + 02)) < G(y(to + d3)),

and this contradicts (2.12). Thus 0 < G(y(t)) for ¢ € [a,n], so 0 < y(t) for t € [a,n].
Next suppose G(y(t)) > G(by) for some t € (a,n). Then G(y) has a positive
maximum at say t; € (a,n), so G'(y(t1)) = 0. Also there exists d4 > 0, d5 > 0 with
(t1 — d4,t1 + 05) C [a,n] and with

(215) G(y(t)) > G(bo) for t e (tl — 54,t1 + 55)
and

(2.16) G(y(ty —d4)) = G(y(t1 + d5)) = G(bo)-
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Also for t € (t1 — 04,t1 + 05) we have
(G'(y(®) + Ap(t) y™ (1)) = =Xq(t) f (£, bo) + AP () bg" + A (y(t) — bo)
> Ap/(t) bg'
so integration from ¢; to ¢; + d5 yields (note (2.16))
G'(y(ti +05)) + Ap(ts +05) bg" > Ap(t1) y™ (t1) + Abg" [p(ts + d5) — p(t1)]-

Thus

G'(y(tr +05)) > Ap(tr) [y™ (t1) — bG'] = 0
since p > 0. As a result there exists dg > 0, dg < 5 with

G'(y(t)) > 0 for te (t1+ ds,t1 + J5),
S0

G(bo) = G(y(t1 +d5)) > G(y(t1 + d6)),

and this contradicts (2.15). Thus G(y(t)) < G(bg) for t € [a,n], so (2.11) holds.
Now Theorem 1.1 applied to Ny with E = Cla,n], U = {u € FE

SUP(, ) [u(t)] < bo+1} and p* =G~ (W) guarantees that N; has a fixed

point y € U. Thus y is a solution of (2.7); and the argument above guarantees that
0 <y(t) <by for t € [a,n]. As aresult y is a solution of (2.1). 0O

REMARK 2.1. It is possible to replace p > 0 on [a,n] by p <0 on [a,n] and
the result in Theorem 2.1 is again true; we leave the details to the reader.

Keeping our application in Section 1 in mind we now discuss the situation when
our solution to (2.1) is positive on (a,n]. Suppose the following conditions hold:

Ja € Cla,n] with G(a) € Cla,n], G'(a) +pa™ € ACla,n]
(2.17) NCa,n] with by >a >0 on (a,n], a(a) =0, a(n) < by
and (G'(a)+pa™) +q(t) f(t,a) > p'(t) ™ (t) on (a,n)

for each t € (a,n) we have q(t)[f(t,y) — f(t,a(t)] >0
(2.18) {forogygeé(t)> g(t) [£(t.y) — f(t,a(t)]
and
(2.19) p >0 on (a,n).

Also in this case we discuss the boundary value problem

(2.20) { W™y +p™) +af(ty) =0, a<t<n

y(a) =0, y(n) = by > 0.
By a solution to (2.20) we mean a function y € Cla,n]NC'(a,n] with G(y) € C'[a,n],
y™y' € C'(a,n] which satisfies y(a) =0, y(n) = by and the differential equation in
(2.20) on (a,n).
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THEOREM 2.2. Suppose (2.2)—(2.6), (2.17), (2.18) and (2.19) are satisfied. Then
(2.1) has a solution y with «(t) < y(t) < by for t € [a,n]. In addition y € C*(a,n]
with G'(y) =y™y" on (a,n) and y is a solution of (2.20).

Proof. Theorem 2.1 guarantees that (2.1) has a solution y with 0 < y(t) < by
for ¢ € [a,n]. Next we claim that

(2.21) y(t) > a(t) for te [a,n].

Suppose G(«a(t)) > G(y(t)) for some ¢ € (a,n). Then G(y) — G(a) has a negative
minimum at say to € (a,n), so G'(y(to)) = G'(a(tp)). Also there exists é; > 0, Jo >
0 with (to — d1,t0 + d2) C [a,n] and with

(2.22) G(y(t)) < G(a(t)) for te (to— b1,to+ 62)
and

(223)  G(y(to— 1)) = G(alto — 1)) and G(y(to + 62)) = Gla(to + 8)).
Also for ¢ € (to — 81,0 + 82) we have (note 0 <y < by on [a, 7))

(G () +py™) () = (G'(@) + pa™) () < q(t) [f(t, a(t) — f(t,y(1))]
+0' (1) [y™ () — o™ (1)
<0,

since p’ > 0 on (a,n). Integrate from t; to to+ d2 to obtain

G'(y(to + 02)) + p(to + 02) y™ (to + 02) — G'(y(to)) — p(to) y™ (to)
< G'(alto + 82)) + pto + 62) ™ (to + d2) — G’ (a(to)) — p(to) ™ (to),

so (note (2.23))
G'(y(to + 02)) — G'(a(to + d2)) < p(to) [y™ (to) — a™(to)] < 0,
since p > 0 on [a,n]. Thus there exists d3 > 0, d3 < §y with
G'(y(t)) — G'(a(t)) <0 for te (to+ d3,to+ 2).
As a result
0= G(y(to +02)) — Gla(to + 82)) < G(y(to + d3)) — G(alto + d3)),
i.e.
G(a(to + 03)) < G(y(to + 03)),

and this contradicts (2.22). Thus G(a(t)) < G(y(t)) for t € [a,n], so a(t) < y(t) for
t € [a,n] i.e (2.21) is true.
In particular note y(t) > 0 for t € (a,n]. Also

ym+l (t)

L = a—a = [ as)ym(s)is

+ / (t — 2)[—q(@) f (2, y(@) + ¥ (@) y™ (&) da
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where A is given in (2.9) with A = 1 and f*(z,y(z)) = —q(z) f(z,y(x)) +
p'(x)y™(x). Since y > 0 on (a,n] we have y' € C(a,n]. Then the change of
variables theorem [3 pp. 181] guarantees that G'(y) = g(y)y' = y™y’ on (a,n). Also
for t € (a,n) we have

o)y = A—py™ + / —q(z) f(,y(@)) + P (2) y™ (2)] de,

so g(y)y' € Cl(a,n). Thus for t € (a,n) we have

!’

—qf(ty) +p'y" = (9()y +py™) = (W) y) + (py™),
so y is a solution of (2.20). O
Suppose the following condition is satisfied:

Ja € Cla,n] N CY(a,n] with G(a) € Cla,n],

(2.24) a™a’ € Cl(a,n], bp > a >0 on (a,n], ala) =0, a(n) < by
and (™ o)+ p (™) + g(t) f(t,0) >0 on (a,n).

Then we have the following theorem.

THEOREM 2.3. Suppose (2.2)—(2.6), (2.18), (2.19) and (2.24) are satisfied. Then
(2.20) has a solution y with a(t) <y(t) < by for t € [a,n].

Proof. Now the change of variables theorem [3 pp. 181] guarantees that G'(«) =
gla)a’ =a™a’ on (a,n), so for ¢t € (a,n) we have
(@) +pa™) +qf(t,a) = (@™ a' +pa™) +q¢f(t,a)
= (@™ d) + (pa™) +qf(tq)
2 (pam)/ _p(am)/ — p/ am,
Thus (2.17) holds and the result follows from Theorem 2.2. 0O

3. Existence theory on infinite intervals. In this section we first establish
the existence of a solution to

o { R or et

where g and G are as in Section 2 and m > 0 is odd. By a solution to (3.1)
we mean a function y € BC[a,0) (bounded continuous functions on [0, 00)) with
G(y) € Ctla,0), G'(y) + py™ € ACipc[a,00) N Ct(a, ) which satisfies y(a) = 0
and the differential equation in (3.1) on (a, o).

THEOREM 3.1. Suppose the following conditions are satisfied:

(3.2) fila,00) x R — R is continuous
(3.3) q € C(a,00) N L}, [a,00) with ¢>0 on (a,00)

(3.4) p € Cla,00) with p>0 on [a,00)
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(3.5) f(t,0) >0 for te (a,00)
(3.6) by >0 with f(t,bo) <0 for t € (a,o0)
and

A€ Lygela,00) with |f(t,u)| < M( )
(3.7) {foraeltG[a,oo) and u € [0, b].

Then (3.1) has a solution y with 0 < y(t) <by for t € [a,0).

Proof. Fix n € N ={1,2,...} with n > a+ 1 and consider the boundary value
problem

(G'W) + D) ™) +a(t) f(t.9) =P DY, a <t <n
CL IR (A v SO

Theorem 3.1 guarantees that there exists a solution y, to (3.8) (i.e. y, € C[a,n],
with G(yn) € Clla,n], G'(yn) +py™ € ACla,n] N C(a,n]) with 0 < y,,(t) < by for
t € [a,n]. We now claim that there exist constants A; and As (independent of n)
with

t

(39)  [C ()] < Ay + 4o / p/(s)| ds + / j(s)ds for t ¢ [a,n].

a

The mean value theorem guarantees that there exists £ € (a,a+1) with G'(y,(&)) =
G(yn(a+1)) — G(0), and so

|G (yn(€))] < G(bo) = Ko.

To prove (3.9) we consider first the case when ¢ € [a,n] and ¢t > . Integrate (3.8)
from £ to t to obtain (note (3.7)),

|G (yn ()] < |G (ynE))] + [p(t) y™ (1) — p(E) y™ (E)]

t t
oy [ weldss [ s
13 13

< Ko+ [p(O[y™ (@) —y™(©)] + [p(t) — p(E)]y™(t)
+b3! / \p’(s)|ds+/ w(s)ds

< Ko+2bj" sup p(s)+ b / p'(s)ds
s€la,a+1] I3

t t
s [ Wolds+ [ utsds

< Ko+2bg" sup p(s +2bm/ P (s)] ds
s€la,a+1]

+/at p(s) ds,
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so (3.9) is true in this case. Next consider the case when t < £. Note in particular
that ¢ < a + 1. Integrate the differential equation in (3.8) from ¢ to £ to obtain

|G (yn (1)) < Ko+ [p(E)] [y™ () —y™ ()] + |p(t) — p(E)[y™ (1)
13 13
st [ W eldst [ ue)ds

a+1
< Ko+2by* sup p(s)+2by / |p’(s)| ds
s€la,a+1] a

a+1
+ [ uds,

0 (3.9) is again true.
Thus (3.9) is true in all cases, so for ¢, s € [a,n] with s < ¢ we have

Glon(s)) ~ ()] = | [ 6/ (a1 o

+A2// |dzd$+// x)dzdx.

We can do this argument for each k € N with k > n. Define for k£ > n an integer

<A1|t—8|

_ (z), € la, k]
ux(z) = { gg, x € [k, 00),

SO
Gyx(x)), x € la, k]
G (uk () = { ). o oo,
It is easy to see that
|G (ur(s)) — G(ug(t))| < Ay |t — s| + As / / z)| dz dx

x)dz dx

for t, s € [a,00).

Consider {u}72,,. The Arzela-Ascoli theorem guarantees that there is a subsequence
Ny of {n,n+1,...} and afunction G(z,) € Cla,n] with G(uy) converging uniformly
on [a,n] to G(z,) as k — oo through N}. This together with the fact that G~*
is continuous and G(uk(t)) € [0,bo] for ¢ € [a,n] implies wuj converges uniformly
on [a,n] to z, as k — oo through N}. Note 0 < z,(t) < by for t € [a,n].
Let N, = N3\ {n}. Also the Arzela—Ascoli theorem guarantees the existence of
a subsequence N}, of N, and a function G(zn4+1) € Cla,n + 1] with G(ux)
converging uniformly on [a,n + 1] to G(z,41) as k — oo through N}, ,, and so
uy converges uniformly on [a,n + 1] to 2,41 as k — oo through N, ,. Note
0 < zpy1(t) < bo for t € [a,n+1] and 2,41 = 2, on [a,n] since N}, 3 C N,. Let
Npi1 = Nj 1\ {n + 1}. Proceed inductively to obtain for m € {n+2,n+3,....} a
subsequence N, of N,,_1 and a function z,, € Cla,m| with u converges uniformly
on [a,m] to z, as k — oo through N} . Note 0 < z,,(t) < by for ¢ € [a,m] and
Zm = Zm—1 on [a,m — 1]. Let N,, = N} \ {m}.
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Define a function y as follows. Fix z € (a,00) and let | € {n,n+1,...} with
x < 1. Then define y(x) = z;(z) so y € Cla,00) and 0 < y(t) < by on [a,00). Also
for n € N; we have

Glun(z)) = A (2 — a) — / " p(s)um(s) ds
4 [ = ) a(6) S () + 2/ 6) ()]

where
l
A (l —a) = G(un(1)) —|—/ p(s)ur(s)ds

l
= [ 0= 9 als) fsvun(s) + 9 (6) () s,

Let n — oo through N; to obtain
Glale)) = At (e =) = [ pls) " (s)ds
" /x(x —s)[=a(s) f(s,2u(5)) +p'(s) 2" ()] ds

where
l
Af (- a) = G(a () + / p(s) 2" (5) ds
l

= [ 9 als) 1526 + 56 0 () s

Thus
Gly(e)) = 4f o —a) - [ " p(s)y™ (s) ds

+ “(@— ) [a(s) f(5, () + /() g™ ()] ds

where

l
Ar (- a) = Gy(D) + / p(s) 4™ (5) ds

l
—/(Z—S) [=a(s) f(s,y(5)) +p'(s) y™ (s)] ds.

We can do this for each = > a and so the above integral equation yields for each
l€ N and t € [a,l] that

G w(®) = ~p) ™)+ AF + [ [=a(5) F(5:9(5) + 5/(5) 7™ 5))
so G’ € Cla,l], G'(y) +py™ € AC[a,l] N C'(a,l] and

(G'(y) +py™)'(8) = —q(t) f(ty(1)) + P/ (t)y™(t) for t€ [a,l].
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Keeping the application in section 1 in mind it is important to discuss the situation
when our solution to (3.1) is positive on (a, c0). Suppose the following conditions hold:

Ja € BCla,) with G(a) € Cta,00), G'(a) +pa™
€ ACipc[a,00) N CY(a,0) with by > a >0 on (a,0),

(3.10) a(a)(z 0 (G'(a) + pa™)' (1) + q(t) f(t,a) > /(1) a™ (1)
for each t € [a,00) we have q(t) [f(t,y) — f(t,a(t)] >0

1) {f0r0<y<eg(t)> a(t) [f(t,) — F(t,a(t)

and

(3.12) p'>0 on (a,o00).

Also in this case we discuss the boundary value problem

(9 ) +p™) +qf(t,y) =0, a<t<oo
(3.13) { g(a)gO y boundedqon [g,oo).

By a solution to (3.13) we mean a function y € BCla,00) N C(a,00) with y™y’ €
C'(a,00) which satisfies y(a) =0 and the differential equation in (3.13) on (a, 00).

THEOREM 3.2. Suppose (3.2)—(3.7), (3.10), (3.11) and (3.12) hold. Then (3.1)
has a solution y with 0 < y(t) < by for t € [a,00). In addition y € C'(a,c0) with
G'(y) =y™y on (a,00) and y is a solution of (3.13).

Proof. Fix n € N = {1,2,..} with n > a+ 1 and consider (3.8). Theorem
2.2 guarantees that there exists a solution y, to (3.8) with a(t) < y,(t) < by for
t € [a,n]. Essentially the same reasoning as in Theorem 3.1 guarantees that (3.1) has a
solution y € BCla,00) with G(y) € Clla, ), G'(y)+py™ € ACisc[a,c0)NC(a, o)
and with «a(t) < y(t) < by for t € [a,00). In particular note y > 0 on (a,00). Fix
Il €{n,m+1,..} and consider t € [a,l]. We know (see Theorem 3.1) that

y" (1)

preE Al (t—a) - / p(s)y™(s)ds

+/ (t =) [=a(s) f(s,y(s)) + P'(s)y™ (s)] ds

where

l

A7 (1 - a) = G(y() + / p(s) y™(s) ds

a

l
- / (L - 9) [~a(s) F(5,y(s)) + 0/(5) 5™ (5)] s,

and since y > 0 on (a,l] we have y' € C'(a,l). Then [3 pp. 181] guarantees that
G'(y) =gy =y™y on (a,l). Also for t € (a,l) we have

t

o)y = Af —py™ + / [—a(s) F(s,y(s)) + 9 (5) 4™ (s)] ds,

a
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so g(y)y' € C'(a,l). In addition for t € (a,l) we have

—qf(t.y) +p'y" = (9 y +py™) = (9()y) + (py™)"
We can do this for each [ € N, so y is a solution of (3.13). 0O

REMARK 3.1. If lim; .o a(t) = by (here by is as in (3.6)) then the solution y
o (3.1) (guaranteed from Theorem 3.2) is a solution of the boundary value problem

G v)Y +pW™) +qf(t,y) =0, a<t< oo
(3.14) { g(a)—O limy_, oo y(?:boy,

Suppose the following condition is satisfied:

Ja € BCla,0) N Cl(a,0) with G(a) € Ca,c0),
(3.15) a™ao € Cl(a,00), bp > a >0 on (a, ), ala) =0

and (a™a’)' +p(a™) +q(t) f(t,a) 20 on (a,00).
Then we have the following theorem.

THEOREM 3.3. Suppose (3.2)—(3.7), (3.11), (3.12) and (3.15) hold. Then (3.13)
has a solution y with «a(t) <y(t) <by for t € [a,0).

Proof. Now [3 pp. 181] guarantees that G'(«a) = g(a) o/ = a™ o’ on (a,l) for
each [ € N, so for ¢ € (a,l) we have
(G'(@) +pa™) +qf(t,a) = (™' +pa™) + ¢ f(t a)
= (a™a) +(pa™) +qf(t, )
> (pa™) —p(a™) =pa™
Thus (3.10) holds and the result follows from Theorem 3.2. 0O

REMARK 3.2. If lim;_.o a(t) = by (here by is as in (3.6)) then the solution y
0 (3.13) (guaranteed from Theorem 3.3) is a solution of (3.14).

EXAMPLE. (Slender dry patch in a liquid film).

From Section 1 consider the boundary value problem

( Y+ ()'—0 1<t<oo

We will now use Theorem 3.3 (with Remark 3.2) to show that (3.16) has a solution.
To see this consider

(3.17) WPy +ty?) =y, 1<t<oo
’ (1) =0, y bounded on [1,00).

REMARK 3.3. Notice y =0 is a solution of (3.17).
Let m=3,a=1,p=t4¢=0, f(t,y) =0, by = Gy and
23, z>0
9(z) = { 3 = 4|3

—z z < 0.
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Clearly (3.2)—(3.7), (3.11) and (3.12) hold. Let

¢ 352
t)y=A -
a(t) /1 exp< 2Go> ds

where
A=— G .
() a
Note a(1) =0 and o —Aexp( > Also for t € (1,00) we have
3 3 s 3s g 3t2
AVYA ! __ -
() +t(a’) =A (/1 exp( 2G0>d8> [3exp( Go)
3t 32 /t _ 382N |
o exp aEYeR exp Yeh s
t 2 2
3t
3 -
+3tA (/1 exp( ) ) exp( 2G0)
! 312
= A3
3t (/ exp( QGO) ) exp< 2G0>
x[l——/exp( )ds}
Go
2
3t?
+3A* </ ex ( ) > ex < )
s p
>0,
since

92
A 342 Ji e (= 32) ds
—/ exp|— — | ds = . <1.
Go 1 2G0 floo exp (7 3s )ds

2Gy

Thus (3.15) holds so Theorem 3.3 guarantees that (3.17) has a solution y with «a(t) <
y(t) < Gq for t € [1,00). Also since lim;—. o a(t) = Go then y is a solution of (3.16).
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