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INFINITE INTERVAL PROBLEMS ARISING IN THE MODEL OF A
SLENDER DRY PATCH IN A LIQUID FILM DRAINING UNDER

GRAVITY DOWN AN INCLINED PLANE ∗

RAVI P. AGARWAL† AND DONAL O’REGAN‡

Abstract. Existence results are established for a second order boundary value problem on the
half line motivated from the model of a slender dry patch in a liquid film draining under gravity
down an inclined plane.

1. Introduction. Consider a thin film of viscous liquid with constant density ρ
and viscosity µ flowing down a planer substrate inclined at an angle α (0 < α ≤ π

2 )
to the horizontal. We adopt Cartesian coordinates (x, y, z) with the x-axis down
the greatest slope and the z-axis normal to the plane. With the usual lubrication
approximation the height of the free surface z = h(x, y, z) satisfies [4]

(1.1) 3µ ht = ∇ . [h3 ∇(ρ g h cos α − σ∇2 h)] − ρ g sin α [h3]x

where t denotes time, g the magnitude of acceleration due to gravity and σ the
coefficient of surface tension. We are interested in solutions symmetric about y = 0,
and we seek a steady state solution for a slender dry patch for which the length
scale down the plane (i.e. in the x direction) is much greater than in the transverse
direction (i.e. in the y direction), so the equation (1.1) is approximated by [4]

(1.2) [h3 (ρ g h cos α − σ hy y)y]y − ρ g sin α [h3]x = 0.

The velocity component down the plane is u(x, y, z) = ρ g sin α [2 h z−z2]
2 µ and so for a

slender dry patch of semi-width ye = ye(x) the average volume flux around the dry
patch per unit width in the transverse direction down the plane (denoted by Q(x))
is approximately [4]

(1.3) Q =
ρ g sin α

3µ
lim

y→∞ y−1

∫ y

ye(x)

h(x,w)3 dw.

We seek a similarity solution to equation (1.2) of the form h = f(x)G(η) where
η = y

ye(x) . Note G(1) = 0 and (1.2) takes the form

(1.4)
ρ g cos α f2 y2

e (G3 G′)′ − σ f2 (G3 G′′′)′

−3 ρ g sin α y3
e G2 (f ′ Gye − f G′ y′

e η) = 0

with the corresponding expression for Q being

Q =
ρ g sin α

3µ
f3 lim

η→∞ η−1

∫ η

1

G(w)3 dw.

For weak surface-tension effects the second term in (1.4) can be neglected and so the
only relevant similarity solution is given (after a suitable choice of origin in x) by

f(x) = b (c x)m and ye(x) = (c x)k
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where the coefficients b and c and the exponents m and k are constants with
m = 2 k − 1. In this case α �= π

2 and so we may choose without loss of generality
b = c k tan α and so (1.4) becomes

(1.5) ((G′ + η)′ G3)′ −
(

7 − 3
k

)
G3 = 0.

The unknown exponent k is determined by the requirement that the average volume
flux per unit width around the dry patch, Q, is independent of x. This is possible
only if m = 0 and G ∼ G0 > 0 (a constant) as η → ∞. Thus

Q =
ρ g sin α

3µ
(b G0)3 and so m = 0, k =

1
2
.

Setting k = 1
2 in (1.5) yields

(1.6) (G3 G′)′ + η (G3)′ = 0.

Also the solutions to (1.6) must satisfy the boundary condition G(1) = 0 and the
far-field condition limη→∞ G(η) = G0. As a result one is interested in the boundary
value problem

(1.7)
{

(G3 G′)′ + η (G3)′ = 0, 1 < η < ∞
G(1) = 0, limη→∞ G(η) = G0 > 0.

Keeping this problem in mind, in Section 2 we discuss the general boundary value
problem

(1.8)
{

(G′(y) + p(t) ym)′ + q(t) f(t, y) = p′(t) ym, a < t < n
y(a) = 0, y(n) = b0 > 0,

where n > a, G(z) =
∫ z

0
g(x) dx, G′(y) = d

d t G(y(t)) and

g(x) =
{

xm, x ≥ 0
−xm, x < 0

with m > 0 odd. A very general existence theory will be presented for (1.8) in Section
2. Our theory relies on the following nonlinear alternative of Leray–Schauder type [1,
2].

Theorem 1.1. Let U be an open subset of a Banach space E, J : U → E a
continuous compact map, p� ∈ U and let N : U× [0, 1] → E be a continuous compact
map with N1 = J and N0 = p� (here Nλ(u) = N(u, λ)). Also assume

(1.9) u �= Nλ (u) for u ∈ ∂U and λ ∈ (0, 1].

Then J has a fixed point in U .

In Section 3 we discuss the following boundary value problem on the half line{
(G′(y) + p(t) ym)′ + q(t) f(t, y) = p′(t) ym, a < t < ∞
y(a) = 0, y bounded on [a,∞),

and our existence theory will then be applied to (1.7).
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2. Existence theory on finite intervals. In this section we first establish the
existence of a solution to

(2.1)
{

(G′(y) + p(t) ym)′ + q(t) f(t, y) = p′(t) ym, a < t < n
y(a) = 0, y(n) = b0 > 0

(here n > a) where G(z) =
∫ z

0
g(x) dx and

g(x) =
{

xm, x ≥ 0
−xm = |x|m, x < 0

and with m > 0 odd. Note G′(y) = d
d t G(y(t)) and

G(z) =

{
zm+1

m+1 , z ≥ 0
− zm+1

m+1 = − |z|m+1

m+1 , z < 0.

By a solution to (2.1) we mean a function y ∈ C[a, n], with G(y) ∈ C1[a, n], G′(y) +
p ym ∈ AC[a, n] ∩ C1(a, n] which satisfies y(a) = 0, y(n) = b0 and the differential
equation in (2.1) on (a, n).

Theorem 2.1. Suppose the following conditions are satisfied:

(2.2) f : [a, n] × R → R is continuous

(2.3) q ∈ C(a, n] ∩ L1[a, n] with q > 0 on (a, n]

(2.4) p ∈ C1[a, n] with p ≥ 0 on [a, n]

(2.5) f(t, 0) ≥ 0 for t ∈ (a, n)

and

(2.6) f(t, b0) ≤ 0 for t ∈ (a, n).

Then (2.1) has a solution y with 0 ≤ y(t) ≤ b0 for t ∈ [a, n].

Proof. Consider the boundary value problem

(2.7)λ

{
(G′(y) + λ p ym)′ = λ f�(t, y), a < t < n
y(a) = 0, y(n) = b0 > 0, 0 < λ ≤ 1

with

f�(t, y) =

⎧⎨
⎩

− q(t) f(t, 0) + y, y < 0
− q(t) f(t, y) + p′(t) ym, 0 ≤ y ≤ b0

− q(t) f(t, b0) + p′(t) bm
0 + y − b0, y > b0.

Solving (2.7)λ is equivalent (see [2]) to finding a y ∈ C[a, n] which satisfies

(2.8) y(t) = G−1(A (t − a) − λ

∫ t

a

p(s) ym(s) ds + λ

∫ t

a

(t − x) f�(x, y(x)) dx)
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where

(2.9) A =
G(b0) + λ

∫ n

a
p(s) ym(s) ds − λ

∫ n

a
(n − x) f�(x, y(x)) dx

n − a
.

Define the operator Nλ : C[a, n] → C[a, n] by

Nλ y(t) = G−1(A (t − a) − λ

∫ t

a

p(s) ym(s) ds + λ

∫ t

a

(t − x) f�(x, y(x)) dx).

The argument in [2] guarantees that Nλ : C[a, n] → C[a, n] is continuous and com-
pletely continuous. We now show any solution y to (2.7)λ (0 < λ ≤ 1) satisfies

(2.10) 0 ≤ G(y(t)) ≤ G(b0) for t ∈ [a, n].

If (2.10) is true then

(2.11) 0 ≤ y(t) ≤ b0 for t ∈ [a, n].

Suppose G(y(t)) < 0 for some t ∈ (a, n). Then G(y) has a negative minimum at say
t0 ∈ (a, n), so G′(y(t0)) = 0. Also there exists δ1 > 0, δ2 > 0 with (t0−δ1, t0 +δ2) ⊆
[a, n] and with

(2.12)
{

G(y(t)) < 0 for t ∈ (t0 − δ1, t0 + δ2)
and G(y(t0 − δ1)) = G(y(t0 + δ2)) = 0.

Now for t ∈ (t0 − δ1, t0 + δ2) we have

(G′(y(t)) + λ p(t) ym(t))′ = −λ q(t)f(t, 0) + λ y(t) < 0,

so integration from t0 to t0 + δ2 yields

G′(y(t0 + δ2)) + λ p(t0 + δ2) ym(t0 + δ2) < λ p(t0) ym(t0).

Now y(t0 + δ2) = 0, so (note m is odd, p ≥ 0 and y(t0) < 0)

(2.13) G′(y(t0 + δ2)) < λ p(t0) ym(t0) ≤ 0.

Thus there exists δ3 > 0, δ3 < δ2 with

(2.14) G′(y(t)) < 0 for t ∈ (t0 + δ3, t0 + δ2).

As a result

0 = G(y(t0 + δ2)) < G(y(t0 + δ3)),

and this contradicts (2.12). Thus 0 ≤ G(y(t)) for t ∈ [a, n], so 0 ≤ y(t) for t ∈ [a, n].
Next suppose G(y(t)) > G(b0) for some t ∈ (a, n). Then G(y) has a positive
maximum at say t1 ∈ (a, n), so G′(y(t1)) = 0. Also there exists δ4 > 0, δ5 > 0 with
(t1 − δ4, t1 + δ5) ⊆ [a, n] and with

(2.15) G(y(t)) > G(b0) for t ∈ (t1 − δ4, t1 + δ5)

and

(2.16) G(y(t1 − δ4)) = G(y(t1 + δ5)) = G(b0).
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Also for t ∈ (t1 − δ4, t1 + δ5) we have

(G′(y(t)) + λ p(t) ym(t))′ = −λ q(t)f(t, b0) + λ p′(t) bm
0 + λ (y(t) − b0)

> λ p′(t) bm
0 ,

so integration from t1 to t1 + δ5 yields (note (2.16))

G′(y(t1 + δ5)) + λ p(t1 + δ5) bm
0 > λ p(t1) ym(t1) + λ bm

0 [p(t1 + δ5) − p(t1)].

Thus

G′(y(t1 + δ5)) > λ p(t1) [ym(t1) − bm
0 ] ≥ 0

since p ≥ 0. As a result there exists δ6 > 0, δ6 < δ5 with

G′(y(t)) > 0 for t ∈ (t1 + δ6, t1 + δ5),

so

G(b0) = G(y(t1 + δ5)) > G(y(t1 + δ6)),

and this contradicts (2.15). Thus G(y(t)) ≤ G(b0) for t ∈ [a, n], so (2.11) holds.
Now Theorem 1.1 applied to Nλ with E = C[a, n], U = {u ∈ E :

sup[a,n] |u(t)| < b0 + 1} and p� = G−1
(

G(b0) (t−a)
n−a

)
guarantees that N1 has a fixed

point y ∈ U . Thus y is a solution of (2.7)1 and the argument above guarantees that
0 ≤ y(t) ≤ b0 for t ∈ [a, n]. As a result y is a solution of (2.1).

Remark 2.1. It is possible to replace p ≥ 0 on [a, n] by p ≤ 0 on [a, n] and
the result in Theorem 2.1 is again true; we leave the details to the reader.

Keeping our application in Section 1 in mind we now discuss the situation when
our solution to (2.1) is positive on (a, n]. Suppose the following conditions hold:

(2.17)

⎧⎨
⎩

∃α ∈ C[a, n] with G(α) ∈ C1[a, n], G′(α) + p αm ∈ AC[a, n]
∩C1(a, n] with b0 ≥ α > 0 on (a, n], α(a) = 0, α(n) ≤ b0

and (G′(α) + p αm)′ + q(t) f(t, α) ≥ p′(t)αm(t) on (a, n)

(2.18)
{

for each t ∈ (a, n) we have q(t) [f(t, y) − f(t, α(t)] ≥ 0
for 0 ≤ y ≤ α(t)

and

(2.19) p′ > 0 on (a, n).

Also in this case we discuss the boundary value problem

(2.20)
{

(ym y′)′ + p (ym)′ + q f(t, y) = 0, a < t < n
y(a) = 0, y(n) = b0 > 0.

By a solution to (2.20) we mean a function y ∈ C[a, n]∩C1(a, n] with G(y) ∈ C1[a, n],
ym y′ ∈ C1(a, n] which satisfies y(a) = 0, y(n) = b0 and the differential equation in
(2.20) on (a, n).
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Theorem 2.2. Suppose (2.2)–(2.6), (2.17), (2.18) and (2.19) are satisfied. Then
(2.1) has a solution y with α(t) ≤ y(t) ≤ b0 for t ∈ [a, n]. In addition y ∈ C1(a, n]
with G′(y) = ym y′ on (a, n) and y is a solution of (2.20).

Proof. Theorem 2.1 guarantees that (2.1) has a solution y with 0 ≤ y(t) ≤ b0

for t ∈ [a, n]. Next we claim that

(2.21) y(t) ≥ α(t) for t ∈ [a, n].

Suppose G(α(t)) > G(y(t)) for some t ∈ (a, n). Then G(y) − G(α) has a negative
minimum at say t0 ∈ (a, n), so G′(y(t0)) = G′(α(t0)). Also there exists δ1 > 0, δ2 >
0 with (t0 − δ1, t0 + δ2) ⊆ [a, n] and with

(2.22) G(y(t)) < G(α(t)) for t ∈ (t0 − δ1, t0 + δ2)

and

(2.23) G(y(t0 − δ1)) = G(α(t0 − δ1)) and G(y(t0 + δ2)) = G(α(t0 + δ2)).

Also for t ∈ (t0 − δ1, t0 + δ2) we have (note 0 ≤ y ≤ b0 on [a, n])

(G′(y) + p ym)′(t) − (G′(α) + p αm)′(t) ≤ q(t) [f(t, α(t)) − f(t, y(t))]
+ p′(t) [ym(t) − αm(t)]
< 0,

since p′ > 0 on (a, n). Integrate from t0 to t0 + δ2 to obtain

G′(y(t0 + δ2)) + p(t0 + δ2) ym(t0 + δ2) − G′(y(t0)) − p(t0) ym(t0)
< G′(α(t0 + δ2)) + p(t0 + δ2)αm(t0 + δ2) − G′(α(t0)) − p(t0)αm(t0),

so (note (2.23))

G′(y(t0 + δ2)) − G′(α(t0 + δ2)) < p(t0) [ym(t0) − αm(t0)] ≤ 0,

since p ≥ 0 on [a, n]. Thus there exists δ3 > 0, δ3 < δ2 with

G′(y(t)) − G′(α(t)) < 0 for t ∈ (t0 + δ3, t0 + δ2).

As a result

0 = G(y(t0 + δ2)) − G(α(t0 + δ2)) < G(y(t0 + δ3)) − G(α(t0 + δ3)),

i.e.

G(α(t0 + δ3)) < G(y(t0 + δ3)),

and this contradicts (2.22). Thus G(α(t)) ≤ G(y(t)) for t ∈ [a, n], so α(t) ≤ y(t) for
t ∈ [a, n] i.e (2.21) is true.

In particular note y(t) > 0 for t ∈ (a, n]. Also

ym+1(t)
m + 1

= A (t − a) −
∫ t

a

p(s) ym(s) ds

+
∫ t

a

(t − x)[−q(x)f(x, y(x)) + p′(x) ym(x)] dx
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where A is given in (2.9) with λ = 1 and f�(x, y(x)) = −q(x) f(x, y(x)) +
p′(x) ym(x). Since y > 0 on (a, n] we have y′ ∈ C(a, n]. Then the change of
variables theorem [3 pp. 181] guarantees that G′(y) = g(y) y′ = ym y′ on (a, n). Also
for t ∈ (a, n) we have

g(y) y′ = A − p ym +
∫ t

a

[−q(x) f(x, y(x)) + p′(x) ym(x)] dx,

so g(y) y′ ∈ C1(a, n). Thus for t ∈ (a, n) we have

−q f(t, y) + p′ ym = (g(y) y′ + p ym)′ = (g(y) y′)′ + (p ym)′,

so y is a solution of (2.20).

Suppose the following condition is satisfied:

(2.24)

⎧⎨
⎩

∃α ∈ C[a, n] ∩ C1(a, n] with G(α) ∈ C1[a, n],
αm α′ ∈ C1(a, n], b0 ≥ α > 0 on (a, n], α(a) = 0, α(n) ≤ b0

and (αm α′)′ + p (αm)′ + q(t) f(t, α) ≥ 0 on (a, n).

Then we have the following theorem.

Theorem 2.3. Suppose (2.2)–(2.6), (2.18), (2.19) and (2.24) are satisfied. Then
(2.20) has a solution y with α(t) ≤ y(t) ≤ b0 for t ∈ [a, n].

Proof. Now the change of variables theorem [3 pp. 181] guarantees that G′(α) =
g(α)α′ = αm α′ on (a, n), so for t ∈ (a, n) we have

(G′(α) + p αm)′ + q f(t, α) = (αm α′ + p αm)′ + q f(t, α)
= (αm α′)′ + (p αm)′ + q f(t, α)
≥ (p αm)′ − p (αm)′ = p′ αm.

Thus (2.17) holds and the result follows from Theorem 2.2.

3. Existence theory on infinite intervals. In this section we first establish
the existence of a solution to

(3.1)
{

(G′(y) + p(t) ym)′ + q(t) f(t, y) = p′(t) ym, a < t < ∞
y(a) = 0, y bounded on [a,∞)

where g and G are as in Section 2 and m > 0 is odd. By a solution to (3.1)
we mean a function y ∈ BC[a,∞) (bounded continuous functions on [0,∞)) with
G(y) ∈ C1[a,∞), G′(y) + p ym ∈ ACloc[a,∞) ∩ C1(a,∞) which satisfies y(a) = 0
and the differential equation in (3.1) on (a,∞).

Theorem 3.1. Suppose the following conditions are satisfied:

(3.2) f : [a,∞) × R → R is continuous

(3.3) q ∈ C(a,∞) ∩ L1
loc[a,∞) with q > 0 on (a,∞)

(3.4) p ∈ C1[a,∞) with p ≥ 0 on [a,∞)
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(3.5) f(t, 0) ≥ 0 for t ∈ (a,∞)

(3.6) ∃ b0 > 0 with f(t, b0) ≤ 0 for t ∈ (a,∞)

and

(3.7)
{ ∃µ ∈ L1

loc[a,∞) with |f(t, u)| ≤ µ(t)
for a.e. t ∈ [a,∞) and u ∈ [0, b0].

Then (3.1) has a solution y with 0 ≤ y(t) ≤ b0 for t ∈ [a,∞).

Proof. Fix n ∈ N = {1, 2, ...} with n ≥ a + 1 and consider the boundary value
problem

(3.8)
{

(G′(y) + p(t) ym)′ + q(t) f(t, y) = p′(t) ym, a < t < n
y(a) = 0, y(n) = b0 > 0.

Theorem 3.1 guarantees that there exists a solution yn to (3.8) (i.e. yn ∈ C[a, n],
with G(yn) ∈ C1[a, n], G′(yn) + p ym

n ∈ AC[a, n] ∩ C1(a, n]) with 0 ≤ yn(t) ≤ b0 for
t ∈ [a, n]. We now claim that there exist constants A1 and A2 (independent of n)
with

(3.9) |G′(yn(t))| ≤ A1 + A2

∫ t

a

|p′(s)| ds +
∫ t

a

µ(s) ds for t ∈ [a, n].

The mean value theorem guarantees that there exists ξ ∈ (a, a+1) with G′(yn(ξ)) =
G(yn(a + 1)) − G(0), and so

|G′(yn(ξ))| ≤ G(b0) ≡ K0.

To prove (3.9) we consider first the case when t ∈ [a, n] and t > ξ. Integrate (3.8)
from ξ to t to obtain (note (3.7)),

|G′(yn(t))| ≤ |G′(yn(ξ))| + |p(t) ym(t) − p(ξ) ym(ξ)|

+bm
0

∫ t

ξ

|p′(s)| ds +
∫ t

ξ

µ(s) ds

≤ K0 + |p(ξ)| |ym(t) − ym(ξ)| + |p(t) − p(ξ)| ym(t)

+bm
0

∫ t

a

|p′(s)| ds +
∫ t

a

µ(s) ds

≤ K0 + 2 bm
0 sup

s∈[a,a+1]

p(s) + bm
0

∣∣∣∣
∫ t

ξ

p′(s) ds

∣∣∣∣
+bm

0

∫ t

a

|p′(s)| ds +
∫ t

a

µ(s) ds

≤ K0 + 2 bm
0 sup

s∈[a,a+1]

p(s) + 2 bm
0

∫ t

a

|p′(s)| ds

+
∫ t

a

µ(s) ds,
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so (3.9) is true in this case. Next consider the case when t < ξ. Note in particular
that t < a + 1. Integrate the differential equation in (3.8) from t to ξ to obtain

|G′(yn(t))| ≤ K0 + |p(ξ)| |ym(t) − ym(ξ)| + |p(t) − p(ξ)| ym(t)

+bm
0

∫ ξ

t

|p′(s)| ds +
∫ ξ

t

µ(s) ds

≤ K0 + 2 bm
0 sup

s∈[a,a+1]

p(s) + 2 bm
0

∫ a+1

a

|p′(s)| ds

+
∫ a+1

a

µ(s) ds,

so (3.9) is again true.
Thus (3.9) is true in all cases, so for t, s ∈ [a, n] with s < t we have

|G(yn(s)) − G(yn(t))| =
∣∣∣∣
∫ t

s

G′(yn(x)) dx

∣∣∣∣ ≤ A1 |t − s|

+ A2

∫ t

s

∫ x

a

|p′(z)| dz dx +
∫ t

s

∫ x

a

µ(x) dz dx.

We can do this argument for each k ∈ N with k ≥ n. Define for k ≥ n an integer

uk(x) =
{

yk(x), x ∈ [a, k]
b0, x ∈ [k,∞),

so

G(uk(x)) =
{

G(yk(x)), x ∈ [a, k]
G(b0), x ∈ [k,∞).

It is easy to see that

|G(uk(s)) − G(uk(t))| ≤ A1 |t − s| + A2

∣∣∣∣
∫ t

s

∫ x

a

|p′(z)| dz dx

∣∣∣∣
+

∣∣∣∣
∫ t

s

∫ x

a

µ(x) dz dx

∣∣∣∣ for t, s ∈ [a,∞).

Consider {uk}∞k=n. The Arzela–Ascoli theorem guarantees that there is a subsequence
N�

n of {n, n+1, ...} and a function G(zn) ∈ C[a, n] with G(uk) converging uniformly
on [a, n] to G(zn) as k → ∞ through N�

n. This together with the fact that G−1

is continuous and G(uk(t)) ∈ [0, b0] for t ∈ [a, n] implies uk converges uniformly
on [a, n] to zn as k → ∞ through N�

n. Note 0 ≤ zn(t) ≤ b0 for t ∈ [a, n].
Let Nn = N�

n \ {n}. Also the Arzela–Ascoli theorem guarantees the existence of
a subsequence N�

n+1 of Nn and a function G(zn+1) ∈ C[a, n + 1] with G(uk)
converging uniformly on [a, n + 1] to G(zn+1) as k → ∞ through N�

n+1, and so
uk converges uniformly on [a, n + 1] to zn+1 as k → ∞ through N�

n+1. Note
0 ≤ zn+1(t) ≤ b0 for t ∈ [a, n + 1] and zn+1 = zn on [a, n] since N�

n+1 ⊆ Nn. Let
Nn+1 = N�

n+1 \ {n + 1}. Proceed inductively to obtain for m ∈ {n + 2, n + 3, ....} a
subsequence N�

m of Nm−1 and a function zm ∈ C[a,m] with uk converges uniformly
on [a,m] to zm as k → ∞ through N�

m. Note 0 ≤ zm(t) ≤ b0 for t ∈ [a,m] and
zm = zm−1 on [a,m − 1]. Let Nm = N�

m \ {m}.
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Define a function y as follows. Fix x ∈ (a,∞) and let l ∈ {n, n + 1, ...} with
x ≤ l. Then define y(x) = zl(x) so y ∈ C[a,∞) and 0 ≤ y(t) ≤ b0 on [a,∞). Also
for n ∈ Nl we have

G(un(x)) = Al (x − a) −
∫ x

a

p(s)um
n (s) ds

+
∫ x

a

(x − s) [−q(s) f(s, un(s)) + p′(s)um
n (s)] ds

where

Al (l − a) = G(un(l)) +
∫ l

a

p(s)um
n (s) ds

−
∫ l

a

(l − s) [−q(s) f(s, un(s)) + p′(s)um
n (s)] ds.

Let n → ∞ through Nl to obtain

G(zl(x)) = A�
l (x − a) −

∫ x

a

p(s) zm
l (s) ds

+
∫ x

a

(x − s) [−q(s) f(s, zl(s)) + p′(s) zm
l (s)] ds

where

A�
l (l − a) = G(zl(l)) +

∫ l

a

p(s) zm
l (s) ds

−
∫ l

a

(l − s) [−q(s) f(s, zl(s)) + p′(s) zm
l (s)] ds.

Thus

G(y(x)) = A�
l (x − a) −

∫ x

a

p(s) ym(s) ds

+
∫ x

a

(x − s) [−q(s) f(s, y(s)) + p′(s) ym(s)] ds

where

A�
l (l − a) = G(y(l)) +

∫ l

a

p(s) ym(s) ds

−
∫ l

a

(l − s) [−q(s) f(s, y(s)) + p′(s) ym(s)] ds.

We can do this for each x > a and so the above integral equation yields for each
l ∈ N and t ∈ [a, l] that

G′(y(t)) = −p(t) ym(t) + A�
l +

∫ t

a

[−q(s) f(s, y(s)) + p′(s) ym(s)] ds,

so G′ ∈ C1[a, l], G′(y) + p ym ∈ AC[a, l] ∩ C1(a, l] and

(G′(y) + p ym)′(t) = −q(t) f(t, y(t)) + p′(t) ym(t) for t ∈ [a, l].
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Keeping the application in section 1 in mind it is important to discuss the situation
when our solution to (3.1) is positive on (a,∞). Suppose the following conditions hold:

(3.10)

⎧⎪⎪⎨
⎪⎪⎩

∃α ∈ BC[a,∞) with G(α) ∈ C1[a,∞), G′(α) + p αm

∈ ACloc[a,∞) ∩ C1(a,∞) with b0 ≥ α > 0 on (a,∞),
α(a) = 0 and (G′(α) + p αm)′(t) + q(t) f(t, α) ≥ p′(t)αm(t)
on (a,∞)

(3.11)
{

for each t ∈ [a,∞) we have q(t) [f(t, y) − f(t, α(t)] ≥ 0
for 0 ≤ y ≤ α(t)

and

(3.12) p′ > 0 on (a,∞).

Also in this case we discuss the boundary value problem

(3.13)
{

(g(y) y′)′ + p (ym)′ + q f(t, y) = 0, a < t < ∞
y(a) = 0, y bounded on [a,∞).

By a solution to (3.13) we mean a function y ∈ BC[a,∞) ∩ C1(a,∞) with ym y′ ∈
C1(a,∞) which satisfies y(a) = 0 and the differential equation in (3.13) on (a,∞).

Theorem 3.2. Suppose (3.2)–(3.7), (3.10), (3.11) and (3.12) hold. Then (3.1)
has a solution y with 0 ≤ y(t) ≤ b0 for t ∈ [a,∞). In addition y ∈ C1(a,∞) with
G′(y) = ym y′ on (a,∞) and y is a solution of (3.13).

Proof. Fix n ∈ N = {1, 2, ...} with n ≥ a + 1 and consider (3.8). Theorem
2.2 guarantees that there exists a solution yn to (3.8) with α(t) ≤ yn(t) ≤ b0 for
t ∈ [a, n]. Essentially the same reasoning as in Theorem 3.1 guarantees that (3.1) has a
solution y ∈ BC[a,∞) with G(y) ∈ C1[a,∞), G′(y)+p ym ∈ ACloc[a,∞)∩C1(a,∞)
and with α(t) ≤ y(t) ≤ b0 for t ∈ [a,∞). In particular note y > 0 on (a,∞). Fix
l ∈ {n, n + 1, ...} and consider t ∈ [a, l]. We know (see Theorem 3.1) that

ym+1(t)
m + 1

= A�
l (t − a) −

∫ t

a

p(s) ym(s) ds

+
∫ t

a

(t − s) [−q(s) f(s, y(s)) + p′(s) ym(s)] ds

where

A�
l (l − a) = G(y(l)) +

∫ l

a

p(s) ym(s) ds

−
∫ l

a

(l − s) [−q(s) f(s, y(s)) + p′(s) ym(s)] ds,

and since y > 0 on (a, l] we have y′ ∈ C1(a, l). Then [3 pp. 181] guarantees that
G′(y) = g(y) y′ = ym y′ on (a, l). Also for t ∈ (a, l) we have

g(y) y′ = A�
l − p ym +

∫ t

a

[−q(s) f(s, y(s)) + p′(s) ym(s)] ds,
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so g(y) y′ ∈ C1(a, l). In addition for t ∈ (a, l) we have

−q f(t, y) + p′ ym = (g(y) y′ + p ym)′ = (g(y) y′)′ + (p ym)′.

We can do this for each l ∈ N , so y is a solution of (3.13).

Remark 3.1. If limt→∞ α(t) = b0 (here b0 is as in (3.6)) then the solution y
to (3.1) (guaranteed from Theorem 3.2) is a solution of the boundary value problem

(3.14)
{

(g(y) y′)′ + p (ym)′ + q f(t, y) = 0, a < t < ∞
y(a) = 0, limt→∞ y(t) = b0.

Suppose the following condition is satisfied:

(3.15)

⎧⎨
⎩

∃α ∈ BC[a,∞) ∩ C1(a,∞) with G(α) ∈ C1[a,∞),
αm α′ ∈ C1(a,∞), b0 ≥ α > 0 on (a,∞), α(a) = 0
and (αm α′)′ + p (αm)′ + q(t) f(t, α) ≥ 0 on (a,∞).

Then we have the following theorem.

Theorem 3.3. Suppose (3.2)–(3.7), (3.11), (3.12) and (3.15) hold. Then (3.13)
has a solution y with α(t) ≤ y(t) ≤ b0 for t ∈ [a,∞).

Proof. Now [3 pp. 181] guarantees that G′(α) = g(α)α′ = αm α′ on (a, l) for
each l ∈ N , so for t ∈ (a, l) we have

(G′(α) + p αm)′ + q f(t, α) = (αm α′ + p αm)′ + q f(t, α)
= (αm α′)′ + (p αm)′ + q f(t, α)
≥ (p αm)′ − p (αm)′ = p′ αm.

Thus (3.10) holds and the result follows from Theorem 3.2.

Remark 3.2. If limt→∞ α(t) = b0 (here b0 is as in (3.6)) then the solution y
to (3.13) (guaranteed from Theorem 3.3) is a solution of (3.14).

Example. (Slender dry patch in a liquid film).

From Section 1 consider the boundary value problem

(3.16)
{

(y3 y′)′ + t (y3)′ = 0, 1 < t < ∞
y(1) = 0, limt→∞ y(t) = G0 > 0.

We will now use Theorem 3.3 (with Remark 3.2) to show that (3.16) has a solution.
To see this consider

(3.17)
{

(y3 y′ + t y3)′ = y3, 1 < t < ∞
y(1) = 0, y bounded on [1,∞).

Remark 3.3. Notice y ≡ 0 is a solution of (3.17).

Let m = 3, a = 1, p = t, q ≡ 0, f(t, y) ≡ 0, b0 = G0 and

g(z) =
{

z3, z ≥ 0
− z3 = |z|3, z < 0.
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Clearly (3.2)–(3.7), (3.11) and (3.12) hold. Let

α(t) = A

∫ t

1

exp
(
− 3 s2

2G0

)
ds

where

A =
G0∫ ∞

1
exp

(
− 3 s2

2 G0

)
ds

.

Note α(1) = 0 and α′ = A exp
(
− 3 t2

2 G0

)
. Also for t ∈ (1,∞) we have

(α3 α′)′ + t (α3)′ = A4

(∫ t

1

exp
(
− 3 s2

2G0

)
ds

)2

[ 3 exp
(
− 3 t2

G0

)

− 3 t

G0
exp

(
− 3 t2

2G0

) ∫ t

1

exp
(
− 3 s2

2G0

)
ds ]

+ 3 t A3

(∫ t

1

exp
(
− 3 s2

2G0

)
ds

)2

exp
(
− 3 t2

2G0

)

= 3 t A3

(∫ t

1

exp
(
− 3 s2

2G0

)
ds

)2

exp
(
− 3 t2

2G0

)

×
[
1 − A

G0

∫ t

1

exp
(
− 3 s2

2G0

)
ds

]

+ 3A4

(∫ t

1

exp
(
− 3 s2

2G0

)
ds

)2

exp
(
− 3 t2

G0

)
≥ 0,

since

A

G0

∫ t

1

exp
(
− 3 s2

2G0

)
ds =

∫ t

1
exp

(
− 3 s2

2 G0

)
ds∫ ∞

1
exp

(
− 3 s2

2 G0

)
ds

≤ 1.

Thus (3.15) holds so Theorem 3.3 guarantees that (3.17) has a solution y with α(t) ≤
y(t) ≤ G0 for t ∈ [1,∞). Also since limt→∞ α(t) = G0 then y is a solution of (3.16).
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