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GKM-sheaves and nonorientable surface group

representations

Thomas Baird

Let T be a compact torus and X a nice compact T -space (say
a manifold or variety). We introduce a functor assigning to X a
GKM-sheaf FX over a GKM-hypergraph ΓX . Under the condition
that X is equivariantly formal, the ring of global sections of FX are
identified with the equivariant cohomology, H∗

T (X;C) ∼= H0(FX).
We show that GKM-sheaves provide a general framework able to
incorporate numerous constructions in the GKM-theory literature.
In the second half of the paper we apply these ideas to study the

equivariant topology of the representation varietyRK := Hom(π1(Σ),K)
under conjugation by K, where Σ is a nonorientable surface and K
is a compact connected Lie group. We prove that RSU(3) is equiv-
ariantly formal for all Σ and compute its equivariant cohomology
ring. We also produce conjectural betti number formulas for some
other Lie groups.

1. Introduction

1.1. GKM-sheaves

The first goal of this paper is to develop a general formalism for calculating
the equivariant cohomology of torus actions. Let T ∼= U(1)r be a compact
torus of rank r and X a T -space. We call X nice if it admits the structure
of a finite T -CW complex1.

The equivariant cohomology2 H∗
T (X) = H∗

T (X;C) is a graded algebra
over the equivariant cohomology of a point H∗

T (pt) = H∗(BT ). A T -space
X is called equivariantly formal if H∗

T (X) is a free H
∗(BT )-module. In this

1This class of T -spaces include compact, smooth T -manifolds and compact, real
algebraic subsets of linear T representations [PS98].

2We use complex coefficients throughout.
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case there is an isomorphism of graded H∗(BT )-modules,

H∗
T (X) ∼= H∗(X)⊗H∗(BT ).

Many interesting examples of T -spaces are known to be equivariantly for-
mal, including compact Hamiltonian T -manifolds and spaces whose ordinary
cohomology is zero in odd degrees.

Consider the equivariant topological filtration

XT = X0 ⊆ X1 ⊆ · · · ⊆ Xr = X

where Xj is the union of T -orbits of dimension less than or equal to j. The
pair (X1, X0) is called the one-skeleton of X. IfX is a nice, equivariantly for-
mal T -space, the Chang–Skjelbred Lemma [CS74]3(see also [FP07]) identifies
H∗
T (X) with the kernel of the coboundary map of the pair

(1) δ : H∗
T (X0)→ H∗+1

T (X1, X0).

An important advantage of the Chang–Skjelbred lemma over other methods
of calculating equivariant cohomology (such as Morse theory) is that the iso-
morphism H∗

T (X) ∼= ker(δ) is an isomorphism of rings, not simply of graded
vector spaces. It is thus desirable to have methods to calculate ker(δ).

A class of T -spaces called GKM manifolds, introduced by Goresky
et al. [GKM97] (see also [GZ01]), are particularly amenable to this calcula-
tion. A GKM-manifold is a compact Hamiltonian T -manifold X for which
X0 is a finite set, and X1 is two dimensional. This forces X1 to be a union of
2-spheres upon which T acts by rotation through characters α : T → U(1).
These spheres intersect at the their fixed points or “poles”. The topology of
(X1, X0) is neatly encoded in a GKM-graph or moment graph; this is the
finite graph with vertices corresponding to points in X0, edges correspond-
ing to spheres in X1, and edges labelled by characters of T . The equivariant
cohomology H∗

T (X) can be calculated entirely in terms of this GKM-graph
using linear algebra.

In the current paper, we generalize this GKM procedure to all nice
T -spaces X. In Section 2.2 we define a functor X �→ ΓX from the category
of nice T -spaces to the category of GKM-hypergraphs, so that ΓX encodes
the combinatorics of the one-skeleton (X1, X0). In Section 2.3 we define the
notion of a GKM-sheaf over a GKM-hypergraph, and associate to any nice

3The conclusion of the Chang–Skjelbred Lemma holds under more general
hypotheses, see Allday et al. [AFP11]
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T -space X a GKM-sheaf FX over ΓX such that the algebra of global sections
H0(FX) is naturally isomorphic to ker(δ) from (1). If X is equivariantly
formal, then

(2) H0(FX) ∼= H∗
T (X)

by the Chang–Skjelbred Lemma.
Using GKM-sheaves opens access to sheaf theoretic operations that have

proven useful in calculations. We introduce several such operations in Sec-
tion 2.4, including push-fowards, external tensor products, induction and
convolution.

GKM-sheaves are related to and were inspired by the Γ-sheaves of Braden
and MacPherson [BM01], which are used in the study of equivariant inter-
section cohomology. In Section 2.6 we show that every pure Γ-sheaf deter-
mines a GKM-sheaf in such a way that their modules of global sections are
isomorphic. GKM-sheaves are also a useful framework for understanding
constructions due to Guillemin and Zara [GZ03] and Guillemin and Holm
[GH04], related to the topology of Hamiltonian actions, a point we address
in Section 2.6.

1.2. Representation varieties

Let π be the fundamental group of a manifold M and let K be a compact,
connected Lie group of rank r. The space of homomorphisms Hom(π,K)
is called a representation variety. The group K acts by conjugation on
Hom(π,K) producing a topological quotient stack which is naturally iso-
morphic to the moduli stack of flat K-bundles over M . The second half of
this paper studies the equivariant cohomology ring H∗

K(Hom(π,K)) when
M = Σ is a nonorientable 2-manifold (In fact, we work with a wider class of
varieties associated to a punctured surface that includes to Hom(π,K) as a
special case).

In [Bai10], the author derived formulas for the cohomology rings
H∗
SU(2)(Hom(π, SU(2))), describing Poincaré polynomials and cup product

structure (unless otherwise indicated, cohomology is singular with complex
coefficients). This calculation was greatly facilitated by the following fact:

Theorem 1.1. For K = SU(2), the K-space Hom(π,K) is equivariantly
formal.

Recall that a nice K-space X is called equivariantly formal if H∗
K(X) is

free as a module over H∗(BK) or equivalently, if H∗
K(X) ∼= H∗(X)
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⊗C H
∗(BK) as graded vector spaces. The second objective of the current

paper is to test whether this equivariant formality property generalizes to
other Lie groups. We get a positive result for K = SU(3).

Theorem 1.2. Let Σ be the connected sum of g + 1 copies of RP 2 and let
π = π1(Σ). The SU(3)-space Hom(π, SU(3)) is equivariantly formal, with
equivariant Poincaré series

(3)
(1 + t3 + t5 + t8)g + (1 + t2 + t4)(t3 + 2t4 + t5)g

(1− t2)(1− t4)(1− t6) .

Moreover, we obtain an explicit description of the cup product structure
on H∗

SU(3)(Hom(π, SU(3))). The formula (3) for the Poincaré series was
conjectured by Ho and Liu [HL08] and later proven by the author [Bai09]
using the Morse theory of the Yang–Mills functional, but this approach
concealed the cup product structure. Because GKM-theory respects the cup
product structure we are able to prove Theorem 1.2 by combining GKM
methods with the previously obtained formula (3).

In an earlier draft of this paper we claimed to show that the conjecture
fails for K = SU(5) when Σ is a Klein bottle. This claim relied on computer
calculations that are now in doubt, so the claim has been withdrawn. We are
currently only able to prove that equivariant formality does not generally
hold for the wider class of representation varietiesRg

K(c) defined in Section 3
(see Sections 4.6 and 4.7).

We briefly outline the strategy. Recall that if T ⊂ K is a maximal torus
andW = N(T )/T the Weyl group, then for any T -space X, there is a canon-
ical isomorphism

HK(X) = H∗
T (X)

W ,

so to a great extent the study of connected compact group actions reduces
to torus actions.

Let R := Hom(π,K). Because T is maximal abelian inK it follows easily
that

R0 := Hom(π,K)T = Hom(π, T ).

The codimension one tori in T that occur as stabilizer groups of the torus
action are precisely the root hypertori of T in K. Thus if we let Δ+ denote
the set of positive roots of K, we have

(4) R1 =
⋃

α∈Δ+

Hom(π,Kα),
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where Kα is the centralizer of the kernel of α. The groups Kα have semisim-
ple rank one, so admit a covering U(1)r−1 × SU(2)→ Kα, where r is the
rank of K. The representation variety Hom(π,Kα) can then be described
using the known properties of Hom(π, SU(2)) from [Bai10]. Since we have a
good understanding of the one-skeleton (R1, R0), we are able to construct the
GKM-sheaf FR. If H∗

T (R) is equivariantly formal, then necessarily H
0(FR)

must be a free module, so computing H0(FR) provides a test of the equiv-
ariant formality of H∗

T (R). In the case of K = SU(3), this is combined with
Morse theoretic information to compute H∗

T (R) as a ring.

2. GKM theory

2.1. Equivariant cohomology

Fix a compact torus T of rank r with complexified Lie algebra t = Lie(T )⊗ C

and dual t∗ = Hom(t,C). Let A := C[t] ∼= S(t∗) denote the symmetric alge-
bra of polynomial functions on t, graded so that t∗ has degree 2. As a graded
ring, A is naturally isomorphic to H∗(BT ). We say that a T -space X is nice
if it admits the structure of a finite T − CW complex.

LetX be a nice T -space and let Y be a nice T -subspace. Let tx denote the
complexified infinitesimal stabilizer of a point x ∈ X. The Borel localization
theorem says that as a module over A, the support of H∗

T (X,Y ) satisfies

(5) Supp(H∗
T (X,Y )) ⊆

⋃
x∈X\Y

tx.

Notice that by the finiteness condition on X, the right-hand side of (5) is a
finite union of linear spaces so it is an algebraic set.

An important special case is Y = X0 = XT . Combining the localization
theorem with the long exact sequence of the pair i : X0 ↪→ X, we conclude
that the kernel and cokernel of the homomorphism

(6) i∗ : H∗
T (X)→ H∗

T (X0)

are torsion A-modules. If X is equivariantly formal, then i∗ restricts to an
isomorphism between H∗

T (X) and the kernel of (1)

δ : H∗
T (X0)→ H∗+1

T (X1, X0).

Recall the filtration X0 ⊆ X1 ⊆ · · · ⊆ Xr = X described in Section 1.1.
This filtration is preserved by T , so it determines a spectral sequence
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(Ep,qr , dr) converging to H∗
T (X) (see [FP07]). The first page of the spectral

sequence satisfies

Ep,q1
∼= Hp+q

T (Xp, Xp−1)

and dp,q1 : Ep,q1 → Ep+1,q1 equals the coboundary operator of the triple
(Xp+1, Xp, Xp−1). In particular, we identify ker(δ) with the initial column
E0,∗
2 .

Proposition 2.1. Let X be a nice T -space. There is a natural short exact
sequence of graded A-algebras,

0→ TorA(H∗
T (X))→ H∗

T (X)
ψ→ ker(δ)→ cok(ψ)→ 0,

where cok(ψ) is an A-module with support in codimension ≥ 2. If X is equiv-
ariantly formal, then ψ is an isomorphism.

Proof. First, note that ker(δ) ⊂ H∗(X0) = H∗(X0)⊗A is torsion free, so
TorA(H∗

T (X)) ⊆ ker(ψ). Next, observe that because the spectral sequence
Ep,qr converges to H∗

T (X), ker(ψ) admits a finite filtration whose associated
graded object is isomorphic to a subquotient of the A-module
⊕rp=1H∗

T (Xp, Xp−1), which is a torsion module by the localization theorem
(5). We deduce that ker(ψ) is torsion and thus ker(ψ) = TorA(H∗

T (X)).
Similarly, an associated graded version of cok(ψ) is equal to

r⊕
p=2

im(dp : E0,∗
p → Ep,(∗−p+1)p )

which is a subquotient of
⊕r

p=2H
∗
T (Xp, Xp−1), so it has support in codi-

mension two by the localization theorem.
If X is equivariantly formal, then the Chang–Skjelbred Lemma says that

ψ is an isomorphism. �

2.2. GKM-hypergraphs

Let

Λ := Hom(T,U(1))

be the weight lattice of T , which we think of as embedded in t∗ in the usual
way. Let P(Λ) denote the set of nonzero weights modulo scalar multiplication
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or projective weights. The elements of P(Λ) are in one-to-one correspondence
with the codimension one subtori of T by the rule

α ∈ P(Λ)↔ ker(α̃) ⊂ T,

where α̃ ∈ Λ is a primitive representative of α. We will generally be sloppy
and write α in place of α̃.

Definition 1. A GKM-hypergraph Γ = (VΓ,∼) consists of
(i) a finite set VΓ called the vertices of Γ;

(ii) an equivalence relation ∼α on VΓ for each projective weight α ∈ P(Λ).

We denote by PartΓ(α) the set of nonempty equivalence classes of ∼α.
We frequently drop the subscript Γ and write V and Part(α) when there is
little risk of confusion.

A morphism of GKM-hypergraphs φ ∈ HomGKM (Γ,Γ′) is a map of sets

φ : VΓ → VΓ′ ,

such that for v, w ∈ VΓ and α ∈ P(Λ), v ∼α w implies φ(v) ∼α φ(w) .
The main motivating example of GKM-hypergraphs is the following.

Definition 2. To any nice T -space X, we associate the GKM-hypergraph
ΓX by

(i) VX = VΓX
:= π0(XT ), is the set of path components of the fixed point

set XT ,

(ii) If v1, v2 ∈ VX then v1 ∼α v2 if and only if corresponding path compo-
nents lie in the same path component of the fixed point set Xker(α).

The function X �→ ΓX extends to a functor from the category of nice
T -spaces and equivariant maps to the category of GKM-hypergraphs.

Let ℘(V) denote the power set of V. We consider Part(α) to be a subset
of ℘(V) ( by convention, the empty set ∅ 
∈ Part(α)). To a GKM-hypergraph
Γ define the set of hyperedges EΓ by

E = EΓ := {(S, α) ∈ ℘(V)× P(Λ) | S ∈ Part(α)}.
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Projection defines maps

• α : E → P(Λ), the axial function, and

• I : E → ℘(V) the incidence function.

We say a hyperedge e ∈ E is incident to a vertex v ∈ V if v ∈ I(e). Every
hyperedge is incident to a least one vertex. A hyperedge e is called degenerate
if it is incident to only one vertex. We say that a GKM-hypergraph is discrete
if all edges are degenerate. We use the term GKM-graph to mean a GKM-
hypergraph for which no hyperedge is incident to more than two vertices.

Remark 1. Observe that a GKM-hypergraph can be reconstructed from
V, E and the incidence and axial functions. We will sometimes construct a
GKM-hypergraph by specifying this data.

Given α ∈ P(Λ), denote Eα := {e ∈ E|α(e) = α}. This forms a partition

(7) E =
∐

α∈P(Λ)

Eα

and the elements in Eα correspond to equivalence classes of ∼α.

Proposition 2.2. Let X be a nice T -space. There is a natural injection

EαX ↪→ π0(Xker(α)),

whose image is those path components of Xker(α) containing T -fixed points.

Proof. This is clear from the definitions. �

Remark 2. When considering the GKM-hypergraph ΓX associated to a
nice T -space X, we use lower case letters v and e to denote vertices and
hyperedges, and upper case letters V and E to denote the corresponding
path components of XT and Xker(α(e)) respectively.

2.2.1. The topology of a GKM-hypergraph. Given a GKM-hyper-
graph Γ, we define Top(Γ) to be the a topological space with underlying set
VΓ ∪ EΓ and with basic open sets

• Uv := {v} for v ∈ VΓ and
• Ue := {e} ∪ I(e) for e ∈ EΓ.
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Somewhat counterintuitively, vertices are open points and hyperedges are
closed points in this topology. We now prove that Top extends to a functor
from the category of GKM-hypergraphs to the category of topological spaces.

Proposition 2.3. Any GKM-morphism, φ : Γ→ Γ′ induces a map of sets
ϕ : EΓ → EΓ′ preserving the axial function and commuting with the incidence
map.

Proof. Let e = (I(e), α(e)) ∈ EΓ be a hyperedge of Γ. By the definition of
GKM-morphism, there exists a unique e′ ∈ EΓ′ such that α(e) = α(e′) and
I(e) ⊆ I(e′). Defining ϕ(e) = e′ completes the proof. �

Abusing notation, we denote by

φ : VΓ ∪ EΓ → VΓ′ ∪ EΓ′

the map of sets restricting to φ : VΓ → VΓ′ and ϕ : EΓ → EΓ′ .

Proposition 2.4. Let φ : Γ→ Γ′ be a morphism of GKM-hypergraphs. The
preimage of any basic open set Ux ⊆ Top(Γ′) is a disconnected union of basic
open sets:

(8) φ−1(Ux) =
∐

y∈φ−1(x)

Uy.

In particular, φ : Top(Γ)→ Top(Γ′) is a continuous map and Top defines a
functor from the category of GKM-hypergraphs to the category of topological
spaces.

Proof. Clearly (8) holds for singleton sets Uv = {v} centered on vertices.
For a hyperedge e′ ∈ EΓ′ , we have Ue′ = e′ ∪ I(e′), so we must show that if
φ(v) ∈ I(e′) then there exists e ∈ EΓ such that v ∈ I(e) and φ(e) = e′.

Suppose that φ(v) ∈ I(e′). By the partition condition on GKM-hyper-
graphs, there is a unique e ∈ E such that α(e) = α(e′) and v ∈ I(e). Thus
φ(v) ∈ φ(I(e)) ⊆ I(φ(e)) and we deduce that φ(e) = e′. Functoriality is clear.

�

2.3. GKM-sheaves

We begin with an abstract definition.
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Definition 3. Let Γ be a GKM-hypergraph. A GKM-sheaf over Γ is a
sheaf F of finitely generated, Z-graded A-modules over Top(Γ) satisfying
the following three conditions.

1) F is locally free (that is, for every basic open set Ux ∈ Top(Γ), the
stalk F(Ux) is a free A-module).

2) For all e ∈ EΓ, the restriction map rese : F(Ue)→ F(I(e)) becomes an
isomorphism upon inverting α(e):

(9) F(Ue)⊗A A[α(e)−1] ∼= F(I(e))⊗A A[α(e)−1].

3) rese : F(Ue)→ F(I(e)) is an isomorphism for all but a finite number
of e ∈ EΓ.

We denote by GKM(Γ) the full subcategory of the category of sheaves of
graded A-modules on Top(Γ), whose objects are GKM-sheaves.

A nice T -space X determines a sheaf of graded A-algebras on Top(ΓX),
denoted FX , with stalks

FX(UV ) = FX(V ) = H∗
T (V )

at vertices V ⊆ XT and

FX(UE) = FX(E ∪ I(E)) = H∗
T (E)/TorA(H

∗
T (E))

at edges E ⊆ Xker(α(E)), where TorA(M) := {m ∈M |am = 0 for some a ∈
A \ {0}} is the torsion submodule of the A-module M . If i : V ↪→ E is a
subset inclusion then the restriction map FX(UE)→ FX(UV ) is identified
with the cohomology morphism i∗ : H∗

T (E)→ H∗
T (V ). This is well defined

because H∗
T (V ) is torsion-free so TorA(H

∗
T (E)) ⊆ ker(i∗).

Proposition 2.5. If X is a nice T -space then FX is a GKM-sheaf.

Proof. For anyE ∈ E , the restriction map resE : FX(UE)→ F(I(E)) is iden-
tified with the map H∗

T (E)/TorA(H
∗
T (E))→ H∗

T (E
T ) induced by the inclu-

sion ET ⊂ E. Since the only isotropy algebra for E \ ET is (αE)⊥ ⊂ t, the
Borel localization theorem (5) tells us that the kernel and cokernel of resE
are α(E)-torsion. The finiteness condition follows easily from compactness
of X. Local freeness of FX is an immediate consequence of Lemma 2.6. �
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Lemma 2.6. If X is a nice T -space and H ⊂ T is a codimension one
subtorus, then H∗

T (X
H) is the direct sum of a free and a torsion A-module.

If H∗
T (X) is torsion free, then H∗

T (X
H) is free.

Proof. Let α ∈ Λ ⊂ t∗ be the character for which H is the kernel. Because H
acts trivially on XH , H∗

T (X
H) ∼= H∗

T/H(X
H)⊗C[α] A. Since C[α] is a PID,

the fundamental theorem of finitely generated modules over a PID implies
that H∗

T/H(X
H) (hence also H∗

T (X
H)) is isomorphic to the sum of a free

module and a torsion module, proving the first statement.
Furthermore, because H∗

T/H(X
H) is a graded C[α]-module, its torsion

submodule decomposes into a direct sum of modules of the form

C[α]/αnC[α]

for some positive integer n (up to degree shifts). Thus H∗
T (X

H) is free if and
only if it does not contain a summand isomorphic to A/αnA.

Assume that H∗
T (X) is torsion free over A. Localizing at the prime ideal

(α) ⊂ A we have
H∗
T (X)(α) ∼= H∗

T (X
H)(α)

by the localization theorem. Localization is an exact functor so it preserves
torsion-freeness and we infer that H∗

T (X
H)(α) is torsion free over A(α). It

follows that H∗
T (X

H) cannot contain a summand of the form A/αnA, so we
conclude that H∗

T (X
H) is free over A. �

Notice that FX is in fact a sheaf of A-algebras, so the set of global
sections H0(FX) is an A-algebra. Recall from Section 1.1 the one-skeleton
(X1, X0) of a T -space X.

Proposition 2.7. Let X be a nice T -space. The space of global sections
H0(FX) fits into an exact sequence of graded A-modules

0→ H0(FX) r→ H∗
T (X0)

δ→ H∗
T (X1, X0)[+1]

for which r is a homomomorphism of A-algebras.

Proof. Let ΓX = (V, E , I, α). The map r is identified with the sheaf restric-
tion map H0(FX)→ FX(V) ∼= H∗

T (X0), so r is certainly a homomorphism
of algebras.

Since FX is locally free and the restriction maps resE : FX(UE)→
FX(I(E)) are isomorphisms modulo torsion, they must be injective. Thus
any element of FX(V) extends in at most one way to each hyperedge and
we deduce that r is injective.
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It remains to show that im(r) = ker(δ). Decomposing cohomology into
connected components we have an isomorphism

H∗
T (X0) ∼=

⊕
V ∈V

H∗
T (V )

and

H∗
T (X1, X0) ∼=

( ⊕
E∈E

H∗
T (E,E

T )
)
⊕H∗

T (X
′
1),

where X ′
1 is the union of components of X1 that do not intersect X0. Clearly

the projection of δ onto H∗
T (X

′
1) is zero, so ker(δ) ∼= ker(d), where d is the

block decomposition

(10) d :
⊕
V ∈V

H∗
T (V )→

⊕
E∈E

H∗+1
T (E,ET )

with matrix blocks dE,V , such that dE,V = 0 when V 
⊆ E, and when V ⊆ E
the diagram

(11)

H∗
T (V )

dE,V ��

ι

������������
H∗+1
T (E,ET )

H∗
T (E

T )

δE

�������������

commutes, where δE is the boundary map of the pair (E,ET ) and ι is
inclusion as a summand. Thus, (aV ) ∈

⊕
V ∈V H

∗
T (V ) lies in ker(d) if and

only if for all E ∈ E ,

(12) 0 =
∑
V ∈V

dE,V (aV ) =
∑
V⊆E

dE,V (aV ) = δE(
∑
V⊆E

ι(aV )).

By the long exact sequence of the pair (E,ET ), (12) holds if and only if∑
V⊆ET ι(aV ) ∈ H∗

T (E
T ) lies in the image of H∗

T (E)→ H∗
T (E

T ) and this is
equal to the image of resE : FX(UE)→ F(I(E)). Thus ker(d) corresponds to
those sections in F(V) that can extend to every hyperedge and we conclude
that im(r) = ker(d) = ker(δ). �
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Theorem 2.8. Let X be a nice T -space. There is a natural short exact
sequence of graded A-algebras,

0→ TorA(H∗
T (X))→ H∗

T (X)
ψ→ H0(FX)→ cok(ψ)→ 0,

where cok(ψ) is an A-module with support in codimension ≥ 2. If X is equiv-
ariantly formal, then ψ is an isomorphism

H∗
T (X)

ψ∼= H0(FX).

Proof. This follows immediately from Propositions 2.1 and 2.7. �
The following examples are equivariantly formal.

Example 1. Let S be a finite discrete set on which T acts trivially. Then
FS is simply the constant sheaf ATop(ΓS). We abuse notation and denote this
special case AS .

Example 2. The GKM-sheaf of a GKM-manifold has stalks

FX(Ux) = H∗
T (pt) = A

when x is a vertex or degenerate edge, and FX(Ue) ∼= H∗
T (S

2) ∼= A⊕A[2]
as an A-module when e is a nondegenerate edge (we use the grading shift
convention M [d]∗ ∼=M∗−d). The restriction map at a nondegenerate edge
is the map from FX(Ue) ∼= A⊕A[2] to FX(I(e)) ∼= A⊕A defined by the
matrix (

1 α(e)
1 −α(e)

)
.

Example 3. Consider a compact, connected Lie group K with maximal
torus T acting on K by conjugation, and let Δ ⊂ P(Λ) be the set of roots
of K, modulo scalar multiplication. The GKM-hypergraph ΓK is the unique
GKM-hypergraph with one vertex v. The GKM-sheaf FK has stalk

FK(Uv) = H∗
T (T ) ∼= ∧t∗ ⊗C A

at v. For every edge e with α(e) 
∈ Δ, we have FK(Ue) = FK(Uv) = ∧t∗ ⊗A
with restriction map the identity. For every edge e with α(e) ∈ Δ, letHα(e) ⊂
t∗ be the hyperplane fixed by the Weyl reflection Sα(e). Then FK(Ue) is the
A-submodule of t∗ ⊗C A generated by (∧∗Hα(e))⊗ 1 and α(e) ∧ (∧∗Hα(e))⊗
α(e) with sheaf restriction map the inclusion.
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There is another useful description of the global sections of a GKM-
sheaf. For each α ∈ P(Λ), denote be i∗α the restriction map from F(V ∪ Eα)
to F(V). Note that by the finiteness condition in Definition 3, i∗α is an
isomorphism for all but a finite set of α ∈ P(Λ).

Proposition 2.9. The restriction map i∗ : H0(F)→ F(V) is injective,
with image

(13) im(i∗) =
⋂

α∈P(Λ)

im(i∗α).

Proof. For each hyperedge e the restriction morphism F(Ue)→ F(I(e)) is
injective, because F(Ue) is a free A-module and the kernel must be torsion
free. This implies that sections in F(V) can extend in at most one way to
F(V ∪ E) = H0(F), which is equivalent to i∗ being injective. By the proof
of Proposition 2.7, this means both sides of (13) are equal the set of sections
in F(V) that extend to global sections. �

2.4. Operations on GKM sheaves

2.4.1. Pushforwards. Given a continuous map between topological
spaces f : X → Y and a sheaf F on X, that the pushforward sheaf f∗(F) is
defined by the rule f∗(F)(U) = F(f−1(U)) for open sets U ⊆ Y .

Proposition 2.10. Let f : Γ→ Γ̃ be a morphism of GKM -hypergraphs and
F a GKM -sheaf over Γ. The pushforward sheaf, f∗(F), is a GKM-sheaf over
Γ̃ satisfying

(14) H0(F) = H0(f∗(F)).

Proof. For any y ∈ Top(Γ̃) we have by Proposition 2.4 that

f∗(F)(Uy) =
⊕

x∈f−1(y)

F(Ux),

which is a direct sum of free modules, hence free. By the same proposition,
for a hyperedge ẽ ∈ EΓ̃, the restriction map resẽ : f∗(F)(Uẽ)→ f∗(F)(I(ẽ))
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is identified with the direct sum of maps⊕
e∈f−1(ẽ)

(
rese : F(Ue)→ F(I(e))

)
,

which is an isomorphism modulo α(e) and is an isomorphism for all but
finitely many ẽ ∈ EΓ̃. Equation (14) holds simply by the definition of the
pushforward sheaf. �

Proposition 2.11. For any GKM-hypergraph morphism φ : Γ1 → Γ2 the
pushforward φ∗ of sheaves defines a functor φ∗ : GKM(Γ1) �→ GKM(Γ2).

Proof. This follows from the fact that push-forward is a functor for sheaves
of A-modules. �

Proposition 2.12. Let Φ : X → Y be a T -equivariant map between nice
T -spaces and let φ : ΓX → ΓY be the induced morphism of GKM-hypergraphs.
There is a natural morphism h : FY → φ∗(FX) for which the following dia-
gram commutes:

(15)

H∗
T (Y )

��

Φ∗ �� H∗
T (X)

��
H0(FY )

H0(h) �� H0(φ∗(FX)) = H0(FX)

where the vertical arrows come from Theorem 2.8.

Proof. A T -equivariant map Φ : X → Y restricts to a map of the pairs
(X1, X0)→ (Y1, Y0). By Proposition 2.7, there is an induced map
l : H0(FY )→ H0(FX) which fits into the commutative diagram in place
of H0(h). It remains to find a GKM-sheaf morphism h : FY → φ∗(FX) such
that H0(h) = l.

If Ṽ is a connected component of Y0 = Y T representing a vertex of ΓY ,
then at the level of stalks we have

FY (UṼ ) = H∗
T (Ṽ )→

⊕
V ∈φ−1(Ṽ )

H∗
T (V ) = φ∗(FX)(UṼ )

is the direct sum of maps H∗
T (Ṽ )→ H∗

T (V ) induced by the restriction of
Φ. The morphism is defined at the stalk of hyperedges similarly, but using
components of Y ker(α) and Xker(α). This sheaf morphism is natural with
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respect to the block decomposition from the proof of Proposition 2.7, so
H0(h) = l. �

Remark 3. It is worth pointing out that the pull-back of a GKM-sheaf
under GKM-morphism is not necessarily a GKM-sheaf. Consider for exam-
ple, the case T = S1, Γ is the GKM-graph with two vertices v1 and v2 and
one edge e, Γ′ is the GKM-graph with one vertex, and φ : Γ→ Γ′ is the
unique morphism. Then the constant sheaf AΓ′ is GKM over Γ′, but the
pull-back F := φ∗(AΓ′) is not because F(Ue) = F(Γ) = A and F(I(e)) =
F(v1)⊕F(v2) = A⊕A have different ranks.

2.4.2. Group actions. Let G be a finite group acting by automorphisms
on a GKM-hypergraph Γ. Define the quotient GKM-hypergraph Γ/G with
vertex set VΓ/G = VΓ/G and equivalence relations [v] ∼α [w] if and only if
gv ∼α w for some g ∈ G. The quotient map VΓ �→ VΓ/G determines a GKM-
morphism

π : Γ �→ Γ/G.

Denote by GKMG(Γ) the category of G-equivariant GKM-sheaves. For
any F ∈ GKMG(Γ) the pushforward π∗(F) is a sheaf of modules over the
group ring AG, so we may decompose into CG-isotypical components

π∗(F) ∼=
⊕
χ∈Ĝ

π∗(F)χ,

indexed by the set Ĝ of irreducible, complex G-representations, where for
an open set U ⊂ Top(Γ/G)

π∗(F)χ(U) := (π∗(F)(U))χ ∼= χ⊗C HomCG(χ, π∗(F)(U)).

Lemma 2.13. For each χ ∈ Ĝ, the isotypical component π∗(F)χ is a GKM-
sheaf over Γ/G and there is a natural isomorphism

H0(F)χ ∼= H0(π∗(F)χ).

Proof. Everything follows easily from the fact that summands of free A-
modules are free A-modules and that G-equivariant maps respect isotypical
components. �

An important special case of Lemma 2.13 is the G-invariant subsheaf
which we denote π∗(F)G.
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Lemma 2.14. Let G be a finite group and let X be a nice G× T -space so
that X/G is a nice T -space. Then ΓX inherits a G-action and there is a
natural isomorphism of GKM-sheaves

FX/G ∼= π∗(FX)G.

Proof. This follows pretty directly from the natural isomorphisms
H∗
T ((X/G)

T ) ∼= H∗
T ((X

T )/G) ∼= H∗
T (X

T )G and similarly for codimension
one subtori H ⊂ T . �

2.4.3. Tensor products.

Definition 4. For i = 1, 2, let Γi = (Vi,∼) be GKM-hypergraphs. Define
the product GKM-hypergraph Γ1 × Γ2 with vertices V1 × V2 and rela-
tions (v1, v2) ∼α (w1, w2) if and only if v1 ∼α w1 and v2 ∼α w2.

The projection maps πi : Γ1 × Γ2 → Γi are GKM-morphisms making
Γ1 × Γ2 a product object in the category of GKM-hypergraphs.

Suppose now that Γ1 and Γ2 admit a G-actions. Then we have a diagram
of GKM -hypergraphs

Γ1 × Γ2
π1

�����
���

���
�

π2

�����
���

���
�

φ
��

Γ1 Γ1 ×G Γ2 Γ2

where φ is the quotient map for the diagonal G-action on Γ1 × Γ2.

Proposition 2.15. Let Fi be a GKM-sheaf on Γi for i = 1, 2. The external
tensor product

F1 �G F2 := φ∗(π∗1(F1)⊗A π∗2(F2))G

is a GKM sheaf on Γ1 ×G Γ2. This construction determines a bifunctor

GKMG(Γ1)×GKMG(Γ2)→ GKM(Γ1 ×G Γ2).

Proof. This bifunctor factors into GKMG(Γ1)×GKMG(Γ2) �→ GKMG

(Γ1 × Γ2) and the G-invariant pushforward GKMG(Γ1 × Γ2) �→ GKM
(Γ1 ×G Γ2), so by Lemma 2.13 it suffices to consider the case that G is
trivial.
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The finiteness and locally free conditions clearly hold. It remains to prove
that for all hyperedges e,

rese : (F1 � F2)(Ue)→ (F1 � F2)(I(e))

is an isomorphism modulo α(e). It is an easy check that e = (I(e1)× I(e2),
α(e)) for some hyperedges e1 ∈ EΓ1 and e2 ∈ EΓ2 with α(e) = α(e1) = α(e2).
By definition, rese is identified with

rese1 ⊗ rese2 : F1(Ue1)⊗F2(Ue2)→ F1(I(e1))⊗F2(I(e2))

and resei
is an isomorphism after inverting α(e) = α(ei) for i = 1, 2, so rese

is also an isomorphism after inverting α(e). �

Proposition 2.16. The external tensor product is associative. That is, if
Fi ∈ GKMGi×Gi+1(Γi) for i = 1, 2, 3 then there is a natural isomorphism

(F1 �G2 F2)�G3 F3 ∼= F1 �G2 (F2 �G3 F3)

in GKMG1×G4(Γ1 ×G2 Γ2 ×G3 Γ3).

Proof. Both sides are identified with the G2 ×G3-invariant pushforward of
the sheaf

π∗1F1 ⊗ π∗2F2 ⊗ π∗3F3,
where πi : Γ1 × Γ2 × Γ3 → Γi are the projection maps. �

Proposition 2.17. Suppose that X and Y are nice G× T -spaces for G
a finite group, and suppose that both H∗

T (X
ker(α)) and H∗

T (Y
ker(α)) are free

A-modules for all α ∈ P(Λ) (this holds if H∗
T (X) are H∗

T (Y ) are torsion free
by Lemma 2.6). Then

FX �G FY ∼= FX×GY

for the diagonal T -action on X ×G Y .

Proof. By Lemma 2.14, it suffices to consider the case that G is trivial.
It is evident that (X × Y )T = XT × Y T and that Xker(α) × Y ker(α) =

(X × Y )ker(α) for all α ∈ P(Λ), so the corresponding equalities on connected
components produces an isomorphism of GKM graphs ΓX × ΓY ∼= ΓX×Y .
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The isomorphism of sheaves is defined through the Kunneth morphisms

H∗
T (X

T )⊗A H∗
T (Y

T )→ H∗
T (X

T × Y T ),

H∗
T (X

ker(α))⊗A H∗
T (Y

ker(α))→ H∗
T ((X × Y )ker(α)),

which are isomorphisms because the modules are all free over A. �

Proposition 2.18. Suppose that F1 and F2 are G-equivariant
GKM-sheaves. Then the kernel and cokernel of the natural map

(16) φ : H0(F1)⊗AG H0(F2)→ H0(F1 �G F2)

are torsion with support in codimension greater than one. If additionally
H0(Fk) is free over A for k = 1, 2, then φ is an isomorphism.

Proof. Because H0(F1)⊗AG H0(F2) = (H0(F1)⊗A H0(F2))G and H0

(F1 �G F2) = H0(F1 � F2)G, it suffices to consider the case that G is trivial.
We use Proposition 2.9 to describe the global sections functor. Let

i∗k,α : Fk(Vk ∪ Eαk )→ Fk(Vk)

denote the restriction map and let Δ ⊂ P(Λ) be the finite set of α for which
i∗k,α is not an isomorphism for either k = 1 or 2. The map (16) is equivalent
to the functorial map

ψ :
( ⋂
α∈Δ

im(i∗1,α)
)
⊗

( ⋂
α∈Δ

im(i∗2,α)
)
→

⋂
α∈Δ

im(i∗1,α ⊗ i∗2,α).

Our hypotheses imply that i∗α is an injective map between free A-modules
and that i∗α becomes an isomorphism after localizing to the hyperplane
(α)⊥ ⊂ t. If Δ has cardinality one, then ψ is an isomorphism because every-
thing is free. Since localization commutes with tensor products and finite
intersections ([Eis95], Section 2.2), we deduce that if x ∈ t is annihilated by
no more than one element of Δ, then the localization of ψ at x is an isomor-
phism. Consequently, the support of both ker(ψ) and cok(ψ) must lie in the
union of codimension two planes (α0)⊥ ∩ (α1)⊥ where α0 and α1 vary over
distinct elements of Δ.

Now suppose that H0(Fk) is a free A-module for k = 1, 2 and let M
and N denote the source and target of ψ respectively. Then M is free,
so M ∼= Ad for some non-negative intger d (ignoring the grading). Because
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ker(ψ) is torsion submodule ofM , it must be zero and we have a short exact
sequence

(17) 0→M
ψ→ N → cok(ψ)→ 0.

Now suppose for the sake of contradiction that cok(ψ) is nonzero. By the
theory of associated primes ([Eis95], Section 3.1) there exists some nonzero
y ∈ cok(ψ) for which the annihilator ann(y) = {a ∈ A|ay = 0} is a prime
ideal. By the result on the support of cok(ψ), there must exist distinct
elements α0, α1 ∈ Δ ∩ ann(y). We apply the functor Tor∗(A/α0A,−) to (17).
We know N is torsion free because it injects into (An)⊗m, so we obtain an
exact sequence

0→ Tor1(A/α0A, cok(ψ))→ (A/α0A)d,

where y ∈ Tor1(A/α0A, cok(ψ)) = {z ∈ cok(ψ)|α0z = 0}. This implies that
(A/α0A)d contains a nonzero element annihilated by α1 which is a contra-
diction. Thus cok(ψ) = 0 and ψ is an isomorphism. �

2.4.4. Induction. LetG be a finite group and consider the discrete GKM-
hypergraph ΓG with vertex set G. Then G×G acts on ΓG by left and
right multiplication, and the constant sheaf AG := ATop(ΓG) is a G×G-
equivariant GKM-sheaf.

Given a homomorphism H → G, we make AG a G×H-equivariant
GKM-sheaf. If a GKM-hypergraph Γ has left H-action, define the induc-
tion functor

IndGH : GKMH(Γ)→ GKMG(G×H Γ)

by IndGH(F) = AG �H F . This is a well-defined functor because it is obtained
from the external tensor product. Note that IndGH(F) depends on the homo-
morphism φ : H → G even though it has been suppressed in the notation.
For the identity morphism on G we have natural isomorphism G×G Γ =
Γ = Γ×G G and

(18) IndGG(F) = AG �G F ∼= F ∼= F �G AG.

2.4.5. Convolution. Suppose now that Γ is a GKM-hypergraph equipped
with the action of an abelian group G which is free and transitive on the set
of vertices.
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Lemma 2.19. There is an isomorphism of GKM-hypergraphs

φ : Γ ∼= Γ×G Γ,

which is canonically defined up to a choice of base vertex in Γ. Furthermore,
φ is equivariant with respect to a residual G-action on Γ×G Γ.

Proof. Let Γ = (V,∼) and choose a base vertex v∗ ∈ V. Define a morphism
φ : Γ→ Γ×G Γ as the composition π ◦ i

Γ
i ��

����������� Γ× Γ

π

��
Γ×G Γ

where i(v) = (v, v∗) and π is the quotient map. It is easy to see that φ is a
bijective on vertices, because every G orbit in V × V passes once through
V × {v∗}. To see that φ is a GKM -isomorphism, it is enough to count hyper-
edges Eα and Eα ×G Eα for each α ∈ P(Λ) and show they have the same
cardinality.

Because G acts transitively on V, it also acts transitively on Eα. Because
G is abelian the stabilizer Ge is the common stabilizer of all hyperedges
e ∈ Eα and thus also the common stabilizer of all elements in Eα × Eα under
the anti-diagonal action. Consequently by the orbit-stabilizer theorem, we
have

|(Eα × Eα)/G| = |Eα × Eα|/|Eα| = |Eα|
proving that π ◦ i is an isomorphism.

Because the diagonal subgroup ΔG ⊆ G×G is normal, theG×G-action
on Γ× Γ descends to a (G×G/ΔG)-action on Γ×G Γ. Under the isomor-
phism

G ∼= (G×G)/ΔG, g �→ [(g, idG)],

φ becomes G-equivariant. �
We call the composition of functors

GKMG(Γ)×GKMG(Γ) �→ GKMG(Γ×G Γ) ∼= GKMG(Γ)

the convolution product, denoted ∗.

Remark 4. The convolution product as defined is not symmetric in gen-
eral. This can be rectified by working instead with Γop ×G Γ, where Γop = Γ
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with G acting through the inverse map g �→ g−1. In our applications, G is a
2-torsion group, so the inverse map is the identity and this issue is irrelevant.

Lemma 2.20. For i = 1, 2 let Γi be a GKM-hypergraph with an action by
an abelian group Gi which is free and transitive on vertices. The external
tensor product determines a bifunctor

� : GKMG1(Γ1)×GKMG2(Γ2)→ GKMG1×G2(Γ1 × Γ2)

for which there are natural isomorphisms

(19) (F1 ∗ G1)� (F2 ∗ G2) ∼= (F1 � F2) ∗ (G1 � G2)

for Fi,Gi ∈ GKMGi
(Γi).

Proof. The product operation of GKM-hypergraphs is associative and com-
mutative, so (Γ1 × Γ1)× (Γ2 × Γ2) is naturally isomorphic to (Γ1 × Γ2)×
(Γ1 × Γ2). Both sides of (19) are invariant pushforwards of the naturally iso-
morphic GKM-sheaves (F1 � G1)� (F2 � G2) ∼= (F1 � F2)� (G1 � G2). �

Proposition 2.21. Let Γ be GKM-graph equipped with a transitive and
vertex-free action by a finite abelian group H, and let φ : H → G be a homo-
morphism of finite abelian groups. Then the induced G-action on G×H Γ
is transitive and vertex-free, and the induction functor IndGH : GKM(Γ) �→
GKM(G×H Γ) respects the convolution product,

IndGH(F ∗ G) ∼= IndGH(F) ∗ IndGH(G).

Proof. Applying (18) and associativity we have

IndGH(F ∗ G) = AG �H (F �H G)
= AG �H (F �G AG)�H G
= (AG �H F)�G (AG �H G) = IndGH(F) ∗ IndGH(G).

�

2.5. Twisted actions

Let W be a finite group. Given a torus T a twist τ is a homomorphism

τ :W → Aut(T ), w �→ τw.
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In all examples we consider, W will be a Weyl group acting in the standard
way on T . A twist induces actions of W on P(Λ) and on A = S(t∗) that we
also denote by τ .

A τ -twisted action on a GKM-hypergraph Γ = (V, E , I, α) consists of W -
actions on the sets V and E that are equivariant with respect to I and α :
E → P(Λ). This differs from an ordinary GKM-action, becauseW is allowed
to act nontrivially on P(Λ).

A τ -twisted W -action on a GKM sheaf F over Γ is a lift of a τ -twisted
W -action ρ on Γ to an W -action ρ̃ on F as a sheaf of Z-graded abelian
groups, satisfying the identity ρ̃w(fs) = τw(f)ρ̃w(s) for all w ∈W , f ∈ A =
S(t∗) and sections s of F . Given such an action, W -invariant global sections
H0(F)W form a graded AW -module.

Let K be a compact Lie group with maximal torus T such that the nor-
malizerNK(T ) intersects every path component ofK, and letX be a niceK-
space. Restricting to the action of T , we may associate a GKM-hypergraph
ΓX and GKM-sheaf FX . Since the one-skeleton (X1, X0) is preserved by
NK(T ), we gain a twisted action of W = NK(T )/T on ΓX lifting to FX .
The following proposition is a straightforward consequence of Theorem 2.8
and the isomorphism H∗

K(X) ∼= H∗
T (X)

W .

Proposition 2.22. If X is equivariantly formal, then there is a natural
isomorphism of graded AW -algebras

φ : H∗
K(X) ∼= H0(FX)W .

2.6. Examples

2.6.1. Monodromy sheaves. So far our examples of a GKM-sheaf have
come from T -spaces. Now we consider a construction of GKM-sheaves from
combinatorial and algebraic data. Let Γ be a GKM-graph with a finite num-
ber of nondegenerate edges. Let End ⊂ E denote the set of nondegenerate
edges. Choose an orientation for each e ∈ End, by defining source and tar-
get maps s, t : End → V, such that I(e) = {s(e), t(e)}. A local system on Γ
consists of a (finitely generated, Z-graded) free A-module M called the fibre
and a map ρ : End → Aut(M).

Definition 5. The monodromy GKM-sheaf associated to the local sys-
tem (Γ,M, ρ) is the GKM-sheaf F = Fρ with stalks F(Ux) =M at ver-
tices and degenerate edges, and F(Ue) =M ⊕M [2] at non-degenerate edges
with restriction maps F(Ue) =M ⊕M [2] rese→ M ⊕M = F(Us(e))⊕F(Ut(e))
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defined by the matrix

(20) rese :=
(

1 α(e)
ρ(e) −α(e)ρ(e)

)
,

where we have abusively used α(e) to denote a generator of the projective
weight α(e) ∈ P(Λ).

This construction produces a GKM-sheaf because the matrix (20) be-
comes invertible after inverting α(e).

Example 4. The traditional GKM-manifolds of [GZ00] provide the sim-
plest example of a monodromy sheaf. In this case the fibre M = A and all
the automorphisms ρ(e) ∈ Aut(A) are the identity.

Monodromy sheaves were inspired by work of Guillemin and Holm
[GH04] in the context of Hamiltonian actions on symplectic manifolds. A
GKM manifold with nonisolated fixed points is a closed T -manifold X, all of
whose fixed point components are homeomorphic to a fixed reference space
F , with GKM-graph ΓX = (V, E , I, α) such that for each nondegenerate edge
E with (necessarily distinct) vertices Vs, Vt, there exists a commutative dia-
gram of T -spaces:

Vs
is

		 E

πs


πt ��

Vt
it

��

where πs and πt are T -equivariant S2-fibre bundles for which the inclusions
is and it are sections.

Proposition 2.23. If Fρ is the monodromy GKM-sheaf on Γ with fibre
H∗
T (F ) ∼= H∗

T (V ) and ρ(E) = (πs ◦ it)∗ then Fρ ∼= FX .

Proof. The isomorphisms Fρ(UV ) ∼= H∗
T (F ) ∼= FX(UV ) at vertices is clear

from the definition. The isomorphism

Fρ(UE) = H∗
T (F )⊕H∗

T (F )[2] ∼= H∗
T (E) = FX(UE)

follows from the Thom isomorphism for the sphere bundle πs : E → Vs ∼= F .
That the restriction maps match up is an easy exercise. �

In Section 3, we show that for regular value c ∈ K, the representation
variety R1

K(c) is a GKM-manifold with nonisolated fixed points, and that
FR1

K(c)
is a monodromy sheaf with nontrivial monodromy in general.
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2.6.2. Pure Γ-sheaves. In [BM01] Braden and MacPherson introduce
the notion of a pure Γ-sheafM over a moment graph. They also show that
in many interesting cases, the equivariant intersection cohomology IH∗

T (X)
of a complex projective variety X is equal to the global sections H0(M) of
a pure Γ-sheafM associated with X.

Proposition 2.24. To any pure Γ-sheaf M there is a canonically associ-
ated GKM-sheaf M′ such that H0(M) ∼= H0(M′).

In our framework, a moment graph is essentially the same thing as a
GKM-graph (V, E , I, α) with only a finite number of nondegenerate edges
End ⊂ E , and an ordering I(e) = {vs, vt} for e ∈ End subject to some further
conditions. A Γ-sheaf M consists of A-modules M(v) for each vertex and
M(e) for each e ∈ End and a homomorphism ρv,e :M(v)→M(e) for every
pair {(v, e) ∈ V × End|v ∈ I(e)}. The module of global sections is

(21) H0(M) = {(mx) ∈
⊕

x∈V∪End

M(x)| ρv,e(mv) = me ∀ρv,e}.

Remark 5. It is explained in [BM01] that the data defining a Γ-sheaf is
equivalent to a sheaf of A-modules over V ∪ End in the topology dual to the
one we use, in the sense that their closed sets are equal to our open sets and
vice versa.

A Γ-sheaf is called pure ifM(v) is free for all v ∈ V and if for every edge
e ∈ End with I(e) = {vs, vt} satisfies,M(e) ∼=M(vs)/α(e)M(vs) with

ρvs,e :M(vs)→M(e) =M(vs)/α(e)M(vs)

the projection, plus some additional conditions.

Proof of Proposition 2.24. Let M be a pure Γ-sheaf. Define a new sheaf of
A-modulesM′ by

• M′({v}) =M′(Uv) =M(v) for all v ∈ V;
• for all e ∈ End the stalk M′(Ue) and restriction map rese are defined
by the short exact sequence

(22) 0→M′(Ue)
rese→ M(vs)⊕M(vt)

ρvs,e−ρvt,e−→ M(e)→ 0;

• for all degenerate edges e ∈ E \ End, M′(e) =M′(I(e)) with rese the
identity map.
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Clearly M′ is a sheaf and rese is an isomorphism modulo α(e) for all
e ∈ E . Both H0(M) and H0(M′) inject into

⊕
v∈VM(v) by projection,

and the short exact sequence (22) ensures that they have the same image,
so H0(M) ∼= H0(M′).

It remains to show that M′(Ue) is a free A-module for every e ∈ End.
Because M(vs) and M(vt) are projective, ρvs,e − ρvt,e lifts through (21)
to a surjective map f :M(vs)⊕M(vt)→M(vs). Because f admits a sec-
tion, ker(f) ∼=M(vt) andM′(Ue) fits into an exact sequence 0→ ker(f)→
M′(Ue)→ α(e)M(vs)→ 0 which must also split so

M′(Ue) ∼=M(vt)⊕ α(e)M(vs)

is free. �

2.6.3. Mutants of compactified representations. These are exam-
ples of closed T -manifolds introduced by Franz and Puppe [FP08] whose
equivariant cohomology is torsion-free but not free over A. There are three
examples: Zr, r = 2, 4, 8 with action by T = (U(1))r+1, whose construction
makes use of the Hopf fibration Sr−1 → S2r−1 → Sr. Franz and Puppe prove
that as graded A-modules

H∗
T (Zr) ∼= A⊕m[r − 1]⊕A[2r + 2]⊕A[3r + 1],

where m is the augmentation ideal of A.
The GKM-sheaf FZr

is easily determined from the description of Zr
in [FP08]. The GKM-hypergraph ΓZr

consists of two vertices and r + 1
nondegenerate edges labelled by distinct weights α0, . . . , αr which form a
basis of t∗. The GKM-sheaf FZr

is the trivial monodromy sheaf with fibres
M := H∗(Sr−1)⊗A ∼= A⊕A[r − 1]. It follows that the global sections of
FZr

may be identified with the image of the matrix

(
1 f
1 −f

)

in M ⊕M , where f =
∏r
i=0 αi has degree 2(r + 1). Thus as graded A-

modules

H0(FZr
) ∼= A⊕A[r − 1]⊕A[2r + 2]⊕A[3r + 1].

This example shows thatH0(FX) may be a free A-module even whenH∗
T (X)

is not.
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2.6.4. Equivariant de Rham theory and graphs. Given a GKM-
graph Γ, consider the trivial monodromy sheaf Fid over Γ with fibre A.
The graph cohomology HT (Γ) is defined to equal H0(Fid). It is interesting
to ask under what circumstances HT (Γ) is a free A-module and what its
Betti numbers are.

In a series of papers, [GZ00, GZ01, GZ03] Guillemin and Zara translate
concepts from Hamiltonian actions on symplectic manifolds to the GKM
theory, motivated in part by these questions. They a define the notion of
moment map on a GKM-graph Γ, define the reduction Γ//S1 with respect to
such a moment map and prove a version of Kirwan surjectivity κ : HT (Γ)→
HT/S1(Γ//S1).

In certain circumstances, the reduction Γ//S1 is not a graph but a GKM-
hypergraph and in this situation, addressed in [GZ03], the arguments become
rather technical. We believe the reduction process could be more clearly
understood in our framework (we do not pursue this in this paper). For
example, the definition of HT (Γ//S1) “by duality” is a strong hint that
our topology, which is dual to the more obvious one in Braden–MacPherson
[BM01] may be important (see Remark 5). Also, the locality of HT (Γ//S1)
would be manifest if it were defined as the global sections of a GKM-sheaf.

3. Representation varieties for a punctured surface

It will be useful to introduce a larger class of representation varieties than
those defined in the introduction. Gauge theoretically, these varieties corre-
spond to moduli spaces of flat bundles over a nonorientable surface with a
single puncture and prescribed holonomy around the puncture.

Let Σg denote the connected sum of g + 1 copies4 of RP 2. By the clas-
sification of compact surfaces, every nonorientable compact surface with-
out boundary is isomorphic to Σg for some g = 0, 1, 2, . . .. The fundamental
group π1(Σg) has presentation

(23) π1(Σg) ∼=
{
a0, . . . , ag|

g∏
i=0

a2i = 1

}
.

Let Γg denote the free group on g + 1 generators {a0, . . . , ag} so that the
presentation (23) determines a surjection Γg → π1(Σg). For K a compact,

4The index is chosen so that g is the genus of the orientable double cover.
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connected Lie group of rank r and c ∈ K, define

Rg
K(c) :=

{
φ ∈ Hom(Γg,K)|φ

(
g∏
i=0

a2i

)
= c

}
.

The embedding Rg
K(c) ↪→ Kg+1 sending φ to (φ(a0), . . . , φ(ag)) identifies

Rg
K(c) with the compact real algebraic set

(24) Rg
K(c) ∼=

{
(k0, . . . , kg) ∈ Kg+1|

g∏
i=0

k2i = c

}

on which the centralizer ZK(c) ⊆ K acts by conjugation. Notice that

Rg
K(1) ∼= Hom(π1(Σg),K),

where 1 ∈ K is the identity, so we recover the representation varieties
described in the introduction.

We will always choose c to lie in a fixed maximal torus T ⊂ K, with
complexified lie algebra t. We call c regular if ZK(c) = T . We use notation
W := NK(T )/T for the Weyl group, andWc := NZK(c)(T )/T for the portion
of the Weyl group that stabilizes c. The isomorphism

H∗
ZK(c)

(Rg
K(c)) ∼= H∗

T (Rg
K(c))

Wc

allows us to divide the study of general compact group actions into torus
actions and Weyl group actions. As before, we use notation A := C[t] =
S(t∗) ∼= H∗(BT ).

3.1. Main results

In this section we construct the GKM-sheaf of the representation variety
Rg
K(c) using a monodromy sheaf, convolution products and induction.
Let T2 denote the subgroup of 2-torsion elements of T . That is,

T2 := {t ∈ T |t2 = 1}.

Then T2 is isomorphic to the finite group (Z/2)r. Let V be a torsor for T2,
meaning that V is a finite set of order 2r equipped with a free and transitive
action T2 × V → V. Let Δ ⊂ P(Λ) denote the set of roots of T ⊂ K modulo
nonzero scalar multiplication. For each α ∈ Δ, there exists a pair of co-roots
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±hα ∈ t and an element exp(±iπhα) ∈ T2 (observe that the sign ambiguity
disappears after exponentiating). For each α ∈ P(Λ), define the equivalence
relation ∼α on V to be trivial if α 
∈ Δ and to be generated by the relation

v ∼α exp(iπhα)v

for all v ∈ V, if α ∈ Δ. Together (V,∼) form a GKM-graph which we denote
Γ(K). Our first result is

Theorem 3.1. For g ≥ 1, the isomorphism type of the GKM-hypergraph
ΓRg

K(c)
is independent of both g and c and is equal to Γ(K).

Observe next that the T2-action on V respects the equivalence relations
v ∼α exp(iπhα)v because T2 is abelian. Thus we may consider the category
GKMT2(Γ(K)) of T2-equivariant GKM-sheaves on Γ(K) and this category
acquires a convolution product ∗ by Section 2.4.5.

Theorem 3.2. Let c ∈ T ⊆ K be a regular element. Then for any g ≥ 1,
the GKM-sheaf FRg

K(c)
is T2-equivariant and there is an isomorphism

FRg
K(c)

∼= FR1
K(c)

∗ · · · ∗ FR1
K(c)

with the g-fold convolution product of FR1
K(c)

.

Suppose now that c ∈ T ⊆ K is not necessarily regular.

Theorem 3.3. Let c, c′ ∈ T ⊆ K and suppose that c′ is regular. There exist
twisted actions of Wc on both FRg

K(c)
and FRg

K(c
′) such that

H0(FRg
K(c)

)Wc ∼= H0(FRg
K(c

′))
Wc .

In Theorem 3.3, the twisted action of Wc on FRg
K(c)

is induced by the
topological action of ZK(c) on the representation variety Rg

K(c) in the stan-
dard way (see Proposition 2.22). The twisted action of Wc on FRg

K(c
′) is

more subtle, and is not induced from an explicit action on Rg
K(c

′).
Theorems 3.2 and 3.3 reduce the problem of constructing the GKM-

sheaf FRg
K(c)

to the special case when g = 1 and c is regular. In this case,
FR1

K(c)
is isomorphic to a monodromy GKM-sheaf over Γ(K), supposing a
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mild additional condition on K, as we now explain. Let

M = ∧(t∗)⊗C A

with ∧(t∗) graded so that t∗ has degree one. Each α ∈ Δ determines a Weyl
group reflection on t and we denote by Sα the induced action on ∧(t∗). For
a given nondegenerate edge e of Γ(K) with α(e) ∈ Δ, we define

ρ(e) = Sα(e) ⊗C IdA ∈ Aut(M).

Observe that ρ(e) ◦ ρ(e) is the identity on M , so it is unnecessary to specify
the orientation of the edges.

Theorem 3.4. Let c ∈ T ⊆ K be regular and suppose that π1(K) is
2-torsion free (i.e., only the identity element squares to the identity). Then
there is an isomorphism between the GKM-sheaf FR1

K(c)
and the monodromy

sheaf Fρ with data M and ρ described above.

Finally, suppose that π1(K) contains 2-torsion. Choose a finite, con-
nected covering group φ : K̃ → K such that π1(K̃) is 2-torsion free. Let
T̃ ⊆ K̃ and T ⊂ K be maximal tori with φ(T̃ ) = T . Let c̃ and c be respec-
tive regular elements and let T̃2 and T2 be respective 2-torsion subgroups.
Restricting φ to the homomorphism T̃2 → T2 induces an induction functor

IndT2

T̃2
: GKMT̃2

(Γ(K̃)) �→ GKMT2(Γ(K)).

Theorem 3.5. If c is regular, then there is an isomorphism of T2-equi-
variant GKM-sheaves

FRg
K(c)

∼= IndT2

T̃2
(FRg

K̃
(c̃)).

3.2. Fixed points

Our first task is to describe the fixed points of Rg
K(c) under the conjuga-

tion action by T . Maximal tori are maximal abelian, so it follows that a
homomorphism φ ∈ Rg

K(c) is fixed by T if and only if im(φ) ⊂ T , thus

Rg
K(c)

T = Rg
T (c).

For this reason, it is useful to describe with some care the case that K =
T = U(1)r is a torus.
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Any homomorphism from π := π1(Σg) to an abelian group must factor
through the abelianization π/[π, π] ∼= H1(Σg,Z) ∼= Z

g ⊕ Z2 so we obtain

(25) Rg
T (1) = Hom(π, T ) ∼= Hom(H1(Σg,Z), T ) ∼= T g × T2,

where T2 = TorZ1 (Z/2, T ) ∼= (Z/2)r is the 2-torsion subgroup of T . More
canonically, regarding Rg

T (1) as a group under pointwise multiplication, we
have a short exact sequence

(26) 0 �� T g �� Rg
T (1)

ρ


 �� T2 �� 0

and we choose a splitting ρ : Rg
T (1)→ T g, ρ(φ) = (φ(a1), . . . , φ(ag)), using

the presentation (23) of the fundamental group.
For general c ∈ T , pointwise multiplication determines a free and tran-

sitive action of Rg
T (1) on Rg

T (c), i.e.,

Lemma 3.6. For g ≥ 0, T a rank r compact torus and c ∈ T , the rep-
resentation variety Rg

T (c) is a torsor for Rg
T (1), thus is diffeomorphic to

T g × T2.

Remark 6. The action of T2 on Rg
T (c) is canonically defined up to isotopy

and acts freely and transitively on the set of components. Thus we have a
canonical isomorphism H∗

T (Fi) ∼= H∗
T (Fj) for every pair of connected com-

ponents Fi, Fj of Rg
T (c). Less canonically, these cohomology rings may all

be identified with HT (T g) ∼= (∧t∗)⊗g ⊗C A, where A := C[t] as before.

Corollary 3.7. For any compact, connected Lie group K of rank r, the
GKM-hypergraph of Rg

K(c) has a vertex set V consisting of 2r vertices which
are naturally identified with the set of square roots of c,

V ∼= {t ∈ T |t2 = c}

upon which T2 acts freely and transitively by multiplication. The stalks of
the GKM-sheaf FRg

K(c)
at vertices may be identified with ∧(t∗)⊗g ⊗A and

the T2-action preserves these identifications.

Observe that Corollary 3.7 implies that the vertex set of ΓRg
K(c)

is inde-
pendent of both c and g, in keeping with Theorem 3.1.

Because T2 acts freely on the vertex set V, we gain a convolution product
∗ on T2-equivariant GKM-sheaves (defined in Section 2.4.5).
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Lemma 3.8. For g ≥ 0 and c ∈ T let Fg := FRg
T (c)

. Then

Fg ∼= F1 ∗ · · · ∗ F1 = (F1)∗g.

Proof. We begin with the case c = 1. Use the characterization (24)

Rg
T (1) = {(t0, . . . , tg) ∈ T g+1|t20 . . . t2g = 1}

with T2 acting by multiplying t0. There is a T2-equivariant homeomorphism

ψ : R1
T (1)×T2 Rg

T (1) ∼= Rg+1
T (1),

where ψ((s0, s1)× (t0, . . . , tg)) = (s0t0, s1, t1, t2, . . . , tg). Applying Proposi-
tion 2.17 and induction completes the proof. The case of general c ∈ T fol-
lows by the fact that Rg

T (c) is a torsor for Rg
T (1), thus is T2-equivariantly

diffeomorphic. �

Remark 7. In the proof of Lemma 3.8, T2 acts on Rg
T (1) by multiplying

the 0th entry t0. We could have chosen instead to multiply one of the other
entries and the action would be the same up to isotopy.

For c 
= 1, the isomorphism Fg ∼= F1 ∗ · · · ∗ F1 of Lemma 3.8 has only
been defined up to an automorphism of Fg induced by T2, or equivalently
up to a choice of base vertex. The following Lemma is meant to address this
ambiguity.

Lemma 3.9. A continuous path γ : [0, 1]→ T induces an isotopy class of
T2-equivariant homeomorphisms Rg

T (γ(0))→ Rg
T (γ(1)) (where T2 acts as in

Lemma 3.6). This class contains a map sending (t0, . . . , tg) to (st0, t1, . . . ,
tg), where s ∈ T satisfies s2 = γ(0)−1γ(1).

Proof. The variety Rg
T (c) is the fibre at c ∈ T of the submersion T g+1 → T

sending (t0, . . . , tg) to
∏g
i=0 t

2
i . Pulling back by γ determines a fibre bundle

γ∗T g+1 over [0, 1] inducing a homeomorphism up to isotopy between fibres
Rg
T (γ(0)) and Rg

T (γ(1)).
The T2-action is induced by a canonical Rg

T (1)-action. That the homeo-
morphism can be made equivariant follows from the classical result of Palais
and Stewart [PS60] on the rigidity of compact group actions on compact
manifolds.

Define the path δ : [0, 1]→ T by δ(x) = γ(0)−1γ(x). Because the squar-
ing map is a covering, there is a unique path

√
δ : [0, 1]→ T such that
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(
√
δ(x))2 = δ(x) and

√
δ(0) = 1. Define a T2-equivariant bundle trivializa-

tion φ : [0, 1]×Rg
T (γ(0))→ γ∗T g+1 by φ(x, (t0, . . . , tg)) = (x, (

√
δ(x)

t0, . . . , tg)). Setting s =
√
δ(1) completes the proof. �

Corollary 3.10. Let γ : [0, 1]→ T be a continuous path and denote Ri =
Rg
K(γ(i)) for i = 0, 1. Then γ determines a T2-equivariant bijection between

the vertex sets V0 ∼= V1 that lifts to a T2-equivariant isomorphism of restricted
sheaves

FR0 |V0
∼= FR1 |V1 .

3.3. The case K=SU(2)

We review here the main results from [Bai10], using the language of GKM-
sheaves. Throughout Section 3.3, set K = SU(2), and T ⊂ K is a maximal
torus with c ∈ T . The centre Z(K) consists of ±1 = T2, and all other values
of c are regular.

Theorem 3.11 ([Bai10] Theorem 1.2). The representation varieties
Rg
K(c) are equivariantly formal under conjugation by T for all c ∈ K and

g ∈ {0, 1, 2, . . .}. This means in particular that H∗
T (Rg

K(c)) ∼= H0(FRg
K(c)

) is
free over A.

Since T has rank one, P(Λ) is a single point.

Proposition 3.12. The GKM-hypergraph ΓRg
K(c)

for any c ∈ T and g ≥ 1
consists of two vertices and a single edge e connecting them, with α(e) equal
to the sole element of P(Λ).

Proof. This follows from Corollary 3.7 and the fact that Rg
K(c) is connected.

�

Because ΓRg
K(c)

has only a single edge e, the GKM-sheaf FRg
K(c)

is com-
pletely determined by the localization map

H∗
T (Rg

K(c)) = FRg
K(c)

(Ue)→ H∗
T (Rg

T (c)) = FRg
K(c)

(I(e)).

The case when g = 1 and c is regular can be described quite explicitly.
In this case, R1

K(c) is diffeomorphic to S
1 × S2 and T acts via rotation on

S2 with weight 2. In particular (recall the definitions of GKM-manifold with
nonisolated coefficients and monodromy sheaf from Section 2.6.1):
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Proposition 3.13. For regular c, R1
K(c) is a GKM-manifold with non-

isolated fixed points (Section 2.6.1). The GKM-sheaf FR1
K(c)

is isomorphic
to a monodromy sheaf with fibre H∗

T (T ) ∼= ∧t∗ ⊗A, with holonomy map
ρ(e) = Sα(e) ⊗ IdA, where Sα(e) is the automorphism of ∧(t∗) induced by
multiplication by −1 on t, which we think of as reflection in the root hyper-
plane α(e)⊥ = {0}.

Proof. That R1
K(c) is a GKM-manifold with nonisolated fixed points is clear

from the preceding description. The fibres were described in Remark 6. The
holonomy map can be inferred from Propositions 5.3 and 5.4 of [Bai10]. �

Remark 8. Notice that because the graph ΓR1
K(c)

is “simply connected”,
the local system above can be trivialized. However, the convention adopted
in Remark 6 of using the T2-action to identify fixed point components forces
the local system to be nontrivial. Furthermore, when we consider higher
rank groups in 3.5, the analogous local system will not be trivializable in
general.

Because T2 = {±1} lies in the centre of K, the T2-action on Rg
T (c)

described in Remark 6 extends to Rg
K(c) in the obvious way. This makes

FRg
K(c)

into a T2-equivariant GKM-sheaf.

Proposition 3.14. Let c ∈ T be a regular element and let Fg := FRg
K(c)

.
For g ≥ 1 we have an isomorphism between the GKM-sheaves Fg ∼= F1 ∗
· · · ∗ F1 = (F1)∗g.

Proof. Follows from Propositions 5.3 and 5.4 of [Bai10]. �

Remark 9. In view of Proposition 2.17, one might suspect that Proposition
3.14 is the consequence of a homeomorphism or at least a T -map between
FRg

K(c)
and FRg

K(c)
×T2 . . .×T2 FRg

K(c)
. As explained in [Bai10], the real story

is trickier than this.

Now we turn to the nonregular cases ε ∈ {±1}. The full groupK central-
izes ε, so K acts by conjugation on Rg

K(ε), and FRg
K(ε)

acquires a twisted
Wε =W -action as described in Section 2.5. Choose a path γ : [0, 1]→ K
connecting ε with some regular element c. Using Lemma 3.9 we obtain a
twisted action of W on the restriction of FRg

K(c)
to the vertex set.
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Proposition 3.15. The action described above extends to a twisted action
of the Weyl group W on FRg

K(c)
, twisted by the standard action of W on t.

Taking W -invariants produces an isomorphism

H∗
K

(Rg
K(ε)

) ∼= H0(FRg
K(c)

)W .

Proof. Use (26) to identify Rg
T (1) ∼= T g × T2. By Lemma 3.9, any path con-

necting 1 to −1 also determines an isomorphism Rg
T (−1) ∼= T g × T2. In

terms of these isomorphisms, the action of the nontrivial element w ∈W ,
sends (t1, . . . , tg, z) to (wt1w−1, . . . , wtgw−1, εz). The result now follows from
the explicit description of the image of the localization map H∗

T (Rg
K(ε))→

H∗
T (Rg

T (ε)) found in Propositions 5.3, 5.4 and 5.5 from [Bai10]. �

Remark 10. This result is stranger than it might first appear. The W -
action on FRg

K(c)
is not in general induced by one on Rg

K(c). Moreover,
while the result implies that H∗

T

(Rg
K(ε)

)W ∼= H0(FRg
K(c)

)W , it is not true
in general that H∗

T

(Rg
K(ε)

) ∼= H0(FRg
K(c)

).

Remark 11. It will be important later to observe that for both ε ∈ {±1},
the action of W on FRg

K(c)
described in Proposition 3.15 commutes with the

T2-action, and these actions differ by the nontrivial element of T2.

3.4. K has semisimple rank one

Let K be a compact connected Lie group of rank r with complexified Lie
algebra k and let T ⊂ K be a maximal torus with complexified Lie algebra
t. We may decompose k into its central and semisimple parts:

k = Z(k)⊕ kss.

In this section, we consider the case where kss has rank 1 or equivalently,
kss ∼= su(2)⊗ C. The following lemma is elementary.

Lemma 3.16. If K has semisimple rank one, then it is isomorphic to one
of the following:
(i) U(1)r−1 × SU(2),
(ii) U(1)r−2 × U(2),
(iii) U(1)r−1 × SO(3).



902 Thomas Baird

IfK = SU(2)× U(1)r−1 and c = (c1, c2), then the representation variety
factors as a product of spaces already described

(27) Rg
K(c) = Rg

SU(2)(c1)×Rg
U(1)r−1(c2).

If K has form (ii) or (iii), then it fits into a short exact sequence

(28) 0→ C2 → K̃
φ→ K → 1,

where K̃ = U(1)r−1 × SU(2) and C2 ∼= Z/2 is central in K̃. Thus

(29) Rg
K(c) ∼=

∐
φ(c̃)=c

Rg

K̃
(c̃)/Cg+12 ,

where Cg+12 acts by multiplying g + 1-tuples entry-wise.

Proposition 3.17. For all g ≥ 0 and c ∈ T the representation variety R :=
Rg
K(c) is equivariantly formal, so H0(FR) ∼= H∗

T (R) by Theorem 2.8.

Proof. If K is type (i) then the result follows from (27) because the product
of equivariantly formal spaces is equivariantly formal under the product
group action.

In the remaining cases, apply equivariant cohomology to (29)

H∗
T (Rg

K(c)) ∼= H∗
T̃
(Rg

K(c)) ∼=
⊕
φ(c̃)=c

H∗
T̃
(Rg

K̃
(c̃))C

g+1
2 ,

where T̃ is the maximal torus in K̃ mapping to T . Thus H∗
T (Rg

K(c)) is a
summand of a free A-module, hence free. �

Remark 12. There is a small subtlety in the above proof that should be
explained. We are working with complex coefficients so the homomorphism
T̃ → T induces an isomorphism H∗

T̃
(Rg

K̃
(c̃)) ∼= H∗

T (Rg

K̃
(c̃)). Thus formality

with respect to T is equivalent to formality with respect to T̃ .

Remark 13. Since C2 is a subset of the two torsion group T̃2 ⊂ T̃ ⊆ K̃, it
follows from Remark 7 each factor of Cg+12 acts the same way on Rg

T̃
(c̃)) up

to homotopy. Thus the GKM-sheaf of Rg
K(c) coincides with the GKM-sheaf

of Rg

K̃
(c̃)/C2 where C2 acts by multiplying (say) the 0th entry.

We turn to studying the GKM-sheaf FRg
K(c)

. We begin with determining
the GKM-hypergraph. Observe that since K has semisimple part of rank
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one, the pair (K,T ) has a unique pair of roots, which we denote ±α. Every
point of Rg

K(c) is fixed by ker(α), so the one-skeleton is the whole space
(Rg

K(c),Rg
T (c)).

Define the co-root hα ∈ t to be the unique element in t ∩ kss satisfying
α(hα) = 2. The exponential exp(2πihα) = 1 ∈ K, so exp(πihα) ∈ T2 .

Proposition 3.18. For any c ∈ T and g ≥ 1, denote the GKM-hypergraph
ΓRg

K(c)
= (V,∼). The vertex set V is naturally identified with the T2-torsor

V ∼= {t ∈ T |t2 = c}.

The equivalence relation ∼α is discrete unless α is the root, in which case

(30) v ∼α exp(πihα) · v

for all v ∈ V. In particular ΓRg
K(c)

= Γ(K).

Proof. The vertex set was explained in Corollary 3.7. If K ∼= K̃ ∼= SU(2)×
U(1)r−1, thenRg

K(c) = Rg
SU(2)(c1)×Rg

U(1)r−1(c2) and the result follows eas-
ily. For the remaining cases we use Remark 13 to identify ΓRg

K(c)
with the

quotient of the C2 action on
∐
φ(c̃)=c ΓRg

K̃
(c̃) and the result follows. �

Remark 14. The element exp(πihα) ∈ T2 is nontrivial if K has type (i)
or (ii) and is the identity when K has type (iii). Thus ΓRg

K(c)
is a bipartite

graph in the first two cases and is discrete in the third.

3.4.1. If c is regular. As explained in Section 3.1, the GKM-graph
Γ(K) = ΓRg

K(c)
admits a T2-action that is free and transitive on vertices.

Denote Fg := FRg
K(c)

for c regular. The homomorphism K̃ → K of (28)
restricts to a homomorphism T̃2 → T2 of 2-torsion groups.

Lemma 3.19. If c ∈ T is regular, then the GKM-sheaf Fg := FRg
K(c)

is
T2-equivariant, and the induction functor

IndT2

T̃2
: GKMT̃2

(Γ(K̃)) �→ GKMT2(Γ(K))

satisfies IndT2

T̃2
(F̃g) ∼= Fg, where F̃g = FRg

K̃
(c).

Proof. If K ∼= SU(2)× U(1)r−1, then T2 lies in the centre of K so the action
of T2 on Rg

K(c) is simply by multiplying the zeroth entry, and this induces
the action on Fg.
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For the remaining cases we use of Remark 13 to identify

Fg ∼= (F̃g
∐
F̃g)/C2 = IndZ2

C2
(Fg),

where the induction is with respect to the zero morphism C2 → Z2. Because
C2 ⊂ T̃2 is the kernel of the morphism T̃2 → T2, we can also say

Fg ∼= IndT2

T̃2
(F̃g)

thereby making Fg equivariant. �

Proposition 3.20. Denote Fg = FRg
K(c)

where c ∈ K is regular. Then Fg
is isomorphic as a GKM-sheaf to the g-fold convolution product F1 ∗ · · · ∗ F1.

Proof. For K of type (i) we have (27) so the result follows from Lemmas 3.8
and 2.20 and Proposition 3.14.

The result for general K follows from the isomorphisms

F1 ∗ · · · ∗ F1 ∼= IndT2

T̃2
(F̃1 ∗ · · · ∗ F̃1) ∼= IndT2

T̃2
(F̃g) ∼= Fg

from Proposition 2.21 and Lemma 3.19. �

Proposition 3.21. If K is of type (i) or (ii), then F1 is monodromy sheaf,
with vertex stalk ∧(t∗)⊗A and holonomy Sα(e) ⊗ IdA for all nondegenerate
edges e, where Sα(e) ∈ Aut(∧(t∗)) is induced by the Weyl reflection in the
hyperplane α(e)⊥ ⊂ t.

Proof. For type (i) the result follows from the SU(2) case, Proposition
3.13. In type (ii) we have F1 = IndT2

T̃2
(F̃1) where F̃1 where is a monodromy

sheaf as described above. Because the identification of the vertex stalks
F̃1(v) ∼= ∧(t∗)⊗A were specifically chosen to be invariant under the T̃2-
action, it is clear that F1 is also a monodromy sheaf with the required
monodromy. �

3.4.2. If c is not regular. Let c ∈ T be a not necessarily regular element
with centralizer Z(c) ⊆ K and define the Weyl group at c by the formula
Wc := NZ(c)(T )/T . Because K has semi-simple rank one, Wc =W = Z/2Z
if c is not regular and Wc is trivial if c is regular. The T -action on Rg

K(c)
extends to a Z(c)-action and there is a well known formula:

H∗
Z(c)(Rg

K(c)) ∼= H∗
T (Rg

K(c))
Wc .



GKM-sheaves and nonorientable surface group representations 905

Proposition 3.22. Let R := Rg
K(c) for c not necessarily regular and let

Fg be as defined in Section 3.4.1. Then Wc acts on both FR and Fg giving
rise to an isomorphism of Wc-invariants,

H∗
T (R)Wc ∼= H0(FR)Wc ∼= H0(Fg)Wc .

Proof. If Wc is trivial then c is regular and the statement is vacuous. So
assume c is not regular so Wc =W ∼= Z/2Z.

The twisted W -actions on H∗
T (R) and on FR are the standard ones

described in Proposition 2.22 determining the isomorphism

H∗
T (R)W ∼= H0(FR)W .

To construct the twisted W -action on Fg, consider first the case of
K = K̃ ∼= SU(2)× U(1)r−1. In this case the representation variety splits as
R ∼= Rg

SU(2)(c1)×Rg
U(1)r−1(c2). If γ : [0, 1]→ T is a path connecting c to a

regular value, then Lemma 3.9 and Proposition 3.15 imply that Fg acquires
a twisted W -action and H0(Fg)W ∼= H∗

T (R)W .
Now consider K of type (ii) or (iii), fitting into the short exact sequence

(28). DenoteR =
∐
φ(c̃)=cRg

K̃
(c̃) which by (29) forms a Cg+12 -Galois covering

R̃ → R. The elements c̃ ∈ φ−1(c) are either both regular or both nonregular.
If they are both regular, then R is isomorphic as a T -space to Rg

K(c
′) for

regular c′ ∈ K and consequently FR ∼= Fg even before taking W -invariants.
Otherwise, both c̃ ∈ φ−1(c) are nonregular and W acts on both cofactors,
so H∗

T (R̃)W ∼= H0(F̃g)W ⊕H0(F̃g)W since we have already confirmed this
isomorphism for K = K̃.

By Remark 11 the actions by Cg+12 and W commute, on both H∗
T (R)

and on Fg. Thus

H∗
T (R)W ∼= (H∗

T (R̃)C
g+1
2 )W ∼= (H∗

T (R̃)W )C
g+1
2

∼= (H0(F̃g)W ⊕H0(F̃g)W )C
g+1
2

∼= ((H0(F̃g)⊕H0(F̃g))C
g+1
2 )W ∼= H0(Fg)W .

�

Remark 15. It is useful to describe more explicitly the twisted Wc-action
on Fg. This action is completely determined by its restriction to the vertex
set V. We may identify the vertex set V ∼= {t ∈ T |t2 ∈ c} and Wc acts on
V by restricting the standard action on T . The stalks over every v ∈ V are
identified with Fg(v) = ∧(t∗)⊗g ⊗ S(t∗) (see Corollary 3.7) on whichWc-acts
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by Sα ⊗ Sα, where Sα denotes the extension of the Weyl reflection on t∗ to
algebra automorphisms of ∧(t∗) and S(t∗).

3.5. Proving the theorems of Section 3.1

In this section, let K denote an arbitrary compact connected Lie group with
maximal torus T . Denote by Δ the set of roots of T ⊂ K and let Δ ⊂ P(Λ)
be the set of roots modulo scalars.

For α ∈ P(Λ), denote by Kα the centralizer of ker(α) in K. It is easy to
see that

(31) Rg
K(c)

ker(α) = Rg
Kα
(c) ⊆ Rg

K(c).

Lemma 3.23. The centralizer Kα ⊆ K is strictly larger than T if and only
if α ∈ Δ.

Proof. Centralizers of tori in K are connected (see [BtD85] IV Theorem 2.3)
so Kα is connected for any α ∈ P(Λ). Thus Kα is strictly larger than T if
and only the adjoint action of ker(α) ⊂ T on k has fixed point set larger
than t. Since the roots Δ ⊂ Λ record the weights of the adjoint action, the
result follows. �

Lemma 3.23 and (31) imply that the one-skeleton of Rg
K(c) is the pair

(32)
( ⋃
α∈Δ

Rg
Kα
(c), Rg

T (c)
)
.

Consequently, the construction of the GKM-sheaf FRg
K(c)

reduces to the
torus and the semi-simple rank one cases.

Proof of Theorem 3.1. The description of the vertex set is from Corollary
3.7. Lemma 3.23 reduces the description of the edge set to the semisim-
ple rank one case, which is described in Proposition 3.18. ΓRg

K(c)
is T2-

equivariant because ΓRg
Kα

(c) is for all α ∈ P(Λ). �
Proof of Theorem 3.2. Fg := FRg

K(c)
. Restricting to vertices, there is a nat-

ural isomorphism

(33) Fg|V ∼= (F1)∗g|V
as defined in Corollary 3.7. For any α, Proposition 3.20 combined with
(31) provides an isomorphism Fg|V∪Eα ∼= (F1)∗g|V∪Eα respecting (33). Glu-
ing together completes the result. �



GKM-sheaves and nonorientable surface group representations 907

Proof of Theorem 3.3. LetR = Rg
K(c) where c is not necessarily regular and

let Fg be as defined in Section 3.4.1.
The centralizer Z(c) acts on R by conjugation, and this determines a

twisted Wc-action on FR as described in Proposition 2.22.
The action of Wc on the restriction Fg|V is the one described in Remark

15. NamelyWc acts on V ∼= {t ∈ T |t2 = c} by the restriction of the standard
action on T , and Wc acts on stalks Fg(v) ∼= ∧(t∗)⊗g ⊗ S(t∗) by the tensor
product of standard representations of Wc on ∧(t∗) and on S(t∗). To see
that this action extends to all of Fg ∼= (F1)∗g, observe that Wc respects the
local system of the monodromy sheaf F1 because for any w ∈Wc and e ∈ E

(w ⊗ w)(Sα(e) ⊗ IdA)(w−1 ⊗ w−1) = Swα(e)w−1 ⊗ IdA = Sα(w·e) ⊗A

as an automorphism of ∧(t∗)⊗ IdA.
Now let i∗α : FR(V ∪ Eα)→ FR(V) and j∗α : Fg(V ∪ Eα)→ Fg(V) denote

the restriction maps and identify

Fg(V) = FR(V) = CV ⊗ ∧(t∗)⊗g ⊗ S(t∗).

By Proposition 3.22 we know that im(i∗α)Sα⊗Sα = im(j∗α)Sα⊗Sα , so

H0(FR)Wc ∼=
( ⋂
α∈Δ

im(i∗α)
)Wc

=
( ⋂
α∈Δ

im(i∗α)
Sα

)Wc

=
( ⋂
α∈Δ

im(j∗α)
Sα

)Wc ∼= H0(Fg)Wc .

�

Every connected compact Lie group K possesses a finite covering group
K̃ → K for which π1(K̃) is torsion-free. We can exploit this fact to simplify
arguments, much as we did in the previous section.

Lemma 3.24. If K is a compact, connected Lie group for which π1(K) is 2-
torsion free, then for all roots α ∈ Δ+, the fundamental group π1(Kα) is also
2-torsion-free. This implies that the exponential of the coroot exp(πihα) ∈ K
does not equal the identity.

Proof. Consider the exact sequence of homotopy groups

π2(K)→ π2(K/Kα)→ π1(Kα)→ π1(K).
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Here π2(K) = 0 by Whitehead’s theorem, and π2(K/Kα) ∼= H2(K/Kα;Z) is
torsion free because K/Kα admits a Bruhat decomposition into even dimen-
sional cells. Since π1(K) contains no 2-torsion, we deduce that π1(Kα) does
not either.

Since Kα has semisimple rank one, it is isomorphic one of the groups in
Lemma 3.16 and is not equal to U(1)(r−1) × SO(3), so it is easy to verify
that exp(πihα) 
= 1. �
Proof of Theorem 3.4. The restriction of FR1

K(c)
to V ∪ Eα is naturally iso-

morphic to FR1
Kα

(c) where Kα is of type (i) or (ii) so this follows directly
from Proposition 3.21. �
Proof of Theorem 3.5. The restriction of FR1

K(c)
to V ∪ Eα is naturally iso-

morphic to FR1
Kα

(c) so this follows directly from Lemma 3.19. �

4. Cohomology calculations

For simplicity, we focus on simple groups K for which π1(K) has finite and
odd cardinality. Let Φ = SpanZ{±hα| α ∈ Δ} denote the coroot lattice of
K in t. Lemma 3.24 implies that the map Φ→ T2, ξ �→ exp(πiξ) defines an
isomorphism

(34) Φ/2Φ ∼= T2.

4.1. Regular c

Let F1 = Fρ ∼= FR1
K(c)

is the monodromy GKM-sheaf of Theorem 3.4.
Because F1 is T2-equivariant, we may decompose H0(F1) into isotypical
components

H0(F1) ∼=
⊕
χ∈T̂2

H0(F1)χ.

The localization map i∗ : H0(F1) = F1(V ∪ E)→ F1(V) is injective and T2-
equivariant, so we may identify H0(F1)χ with the image of

i∗χ : H
0(F1)χ ↪→ F1(V)χ ∼= ∧(t∗)⊗A.

Employing Proposition 2.9, we have

(35) im(i∗χ) =
⋂
α∈Δ

im(i∗α,χ),

where i∗α,χ : F1(V ∪ Eα)χ ↪→ F1(V)χ is the sheaf restriction.
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Given α ∈ Δ a root, choose a basis {α, β1, . . . , βr−1} of t∗ where the βi
are orthogonal to α (equivalently, the βi are +1 eigenvectors for the reflection
defined by α). If m ∈ ∧(t∗) is a monomial in this basis define degα(m) = 1
if α is a factor of m and degα(m) = 0 if not.

Proposition 4.1. The image of i∗α,χ in ∧(t∗)⊗A is generated as an
A-submodule by elements

m⊗ 1 if (−1)degα(m)χ(exp(πihα)) = 1

and

m⊗ α if (−1)degα(m)χ(exp(πihα)) = −1
as m varies over a monomial basis of ∧(t∗).

Proof. The basis is chosen so that for a monomial m ∈ ∧(t∗),

Sα(m) = (−1)degα(m)m.

T2 factors as T ′
2 × T ′′

2 , where T
′′
2 acts freely on Eα and T ′

2
∼= Z/2Z is

generated by exp(πihα), which fixes the edges in Eα and transposes their
incident vertices. Thus we may restrict attention to a single edge, and iden-
tify i∗α with the intersection of the image of the matrix(

1⊗ 1 1⊗ α
Sα ⊗ 1 −Sα ⊗ α

)

in (∧(t∗)⊗A)⊕2 with either the diagonal if χ(exp(πihα)) = 1 or the anti-
diagonal if χ(exp(πihα)) = −1, from which the result follows. �

In [Bai08] Chapter 8, it was shown that the projection mapRg
K(c)→ Kg

sending (k0, . . . , kg) to (k1, . . . , kg) is a “cohomological covering map”. In
particular, this means that the induced map on cohomology is an injection
H∗
T (K

g) ↪→ H∗
T (Rg

K(c)). The analogue of this for FRg
K(c)

is the following.

Corollary 4.2. Let Fg denote the g-fold convolution product F1 ∗ · · · ∗
F1. Then the T2 invariant part of cohomology H0(Fg)T2 is isomorphic to
H∗
T (K

g).

Proof. For g = 1, just compare Proposition 4.1 with Example 3. For g > 1
apply Proposition 2.18. �
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Remark 16. Using Theorem 35, we identify H∗
T (K) ∼= H0(F1)T2 as a sub-

module of ∧(t∗)⊗ S(t∗). The equivariant fundamental class of K spans
the one-dimensional subspace ∧r(t∗)⊗ (

∏
α∈Δ α). Compare this with

Example 3.

Let projr denote projection from ∧(t∗)⊗A onto ∧r(t∗)⊗A.

Lemma 4.3. Use Theorem 35 to identify H0(F1)χ with a submodule of
∧(t∗)⊗A. Then

projr(H
0(F1)χH0(F1)χ) ⊆ ∧r(t∗)⊗ (

∏
α∈Δ

α)A.

Proof. The fact that H0(F1) is a T2-equivariant algebra implies that
H0(F1)χH0(F1)χ ⊆ H0(F1)T2 ⊆ ∧(t∗)⊗A. By Remark 16, we know

projr(H
0(F1)T2) = H0(F1)T2 ∩ (∧r(t∗)⊗A) = ∧r(t∗)⊗

( ∏
α∈Δ

α

)
A.

�
We will use this Lemma 4.3 in combination with

Lemma 4.4. Let d ∈ wedger(t∗)⊗A be a homogeneous element and let
M be a free A-submodule of the A-algebra ∧(t∗)⊗A with homogeneous free
generators {x1, . . . , x2r} satisfying

projr(xix2r−j) = ai,jd,

where [ai,j ] is a nonsingular matrix of complex numbers. Then M is maximal
among submodules satisfying projr(MM) ⊆ d⊗A .

Proof. Suppose there exists y ∈ (∧(t∗)⊗A) \M for which projr(My) ⊆
d⊗A. Then by subtracting an A-linear combination of xi from y, we may
assume that projr(My) = 0. But this implies that y = 0 because M is of
maximal rank and the projr is a nondegenerate pairing for ∧(t∗)⊗A. �

4.2. Nonregular c

For c ∈ T ⊆ K, theWc-action on Fg defined in Remark 15 does not generally
commute with the T2-action. InsteadWc acts by conjugation on T2, restrict-
ing the standard action of Wc on T . Consequently, H0(Fg)Wc decomposes
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into a sum over the orbit space T̂2/Wc,

(36) H0(Fg)Wc ∼=
⊕

[χ]∈T̂2/Wc

(H0(Fg)Wc)[χ].

Corollary 4.5. Let (Wc)χ be the stabilizer of χ ∈ T2. If H0(F1)χ is free
over A, then

(H0(Fg)Wc)[χ] ∼= (H0(F1)χ ⊗A · · · ⊗A H0(F1)χ)(Wc)χ .

Proof. TheWc-action permutes the summands of
⊕

χ∈T̂2
H0(Fg)χ according

to its action on T̂2, so

(H0(Fg)Wc)[χ] ∼= (H0(Fg)χ)(Wc)χ

and the result then follows from the isomorphism H0(Fg)χ ∼= H0(F1)χ ⊗A
· · · ⊗A H0(F1)χ of Theorem 3.2 and Proposition 2.18. �

A choice of base vertex v∗ determines an isomorphism

(37) Fg(V)χ ∼= Fg(v∗) = ∧(t∗)⊗g ⊗ S(t∗)

and we want to describe the twisted (Wc)χ-action on Fg(V)χ in terms of
this identification.

Lemma 4.6. Given a base vertex v∗, let

τ : (Wc)χ → Aut(∧(t∗)⊗g ⊗ S(t∗))

denote the twisted action induced from (37). Let τ st denote the standard
twisted W -action on ∧(t∗)⊗g ⊗ S(t∗), induced by the standard Weyl group
action on t. Then τw = χ(t)τ stw where t ∈ T2 satisfies t · v∗ = w · v∗. In par-
ticular, the restriction of τ to (Wc)χ is the standard action if either (Wc)χ
fixes the base vertex v∗ or if χ is trivial.

Proof. It was explained in the proof of Theorem 3.3 thatW acts on Fg(V)χ ∼=
CV ⊗ ∧(t∗)⊗g ⊗ S(t∗) by the tensor product of τ st with the action on CV
induced by the action on V. If v∗ is fixed by (Wc)χ then the identification
(37) is undisturbed and τ = τ st. Otherwise it is necessary to correct by
multiplying by t, which introduces the factor χ(t). �
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4.3. Type A2

In this section we let K = SU(3) or PSU(3). Then because π1(K) has
odd order, (34) holds. Let {e1, e2, e3} denote the standard basis in C

3 with
the standard pairing. Identify t = (e1 + e2 + e3)⊥ ⊂ C

3. We choose positive
roots Δ+ = {αi,j = ei − ej |i < j} and use the pairing to identify αi,j = hαi,j

.
The group Φ/2Φ ∼= T2 ∼= (Z/2)2 has coset representatives consisting of 0 and
the three positive roots Δ+. There are three nontrivial characters χ1, χ2, χ3
of T2 ∼= Φ/2Φ, defined by χk([αi,j ]) = 1 if and only if i, j, k are pairwise dis-
tinct. The Weyl group S3 acts on the three nontrivial characters χ1, χ2, χ3
in the standard fashion.

Proposition 4.7. The summands H0(F1)χk are pairwise isomorphic free
modules for k = 1, 2, 3. Under the injection

i∗ : H0(F1)χ3 ↪→ ∧t∗ ⊗ S(t∗)

described in Theorem 35 and using coordinates x1 = α1,3 and x2 = α2,3, the
free basis is

1⊗ x1x2, x1 ∧ x2 ⊗ (x1 − x2),(38)
x1 ⊗ x2 + x2 ⊗ x1, x1 ⊗ x2(x1 − x2)− x2 ⊗ x1(x1 − x2).(39)

Proof. That the H0(F1)χk are pairwise isomorphic follows from the fact that
the χk are permuted by W .

Let M denote the submodule of ∧(t∗)⊗A generated by the purported
free basis. It is straightforward linear algebra to check that M is con-
tained in the intersection

⋂
α∈Δ im(i

∗
α) of Theorem 35, so we conclude that

M ⊆ H0(F1)χ3 .
To prove M ⊇ H0(F1)χ3 observe that M satisfies the conditions of

Lemma 4.4 with d an element of ∧2(t∗)⊗ x1x2(x1 − x2). Combining this
with Lemma 4.3 completes the proof. �

Corollary 4.8. For g ≥ 1, the A-module H0(Fg) is free with Poincaré
series

Pt(H0(Fg)) = ((1 + t3 + t5 + t8)g + 3(t3 + 2t4 + t5)g)Pt(BT ).

Proof. By Corollary 4.2 we know H0(Fg)T2 = H∗
T (K

g) and this explains the
term (1 + t3 + t5 + t8)gPt(BT ). The remaining three isotypical components
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H0(Fg)χ ∼= (H0(F1)χ)⊗g are isomorphic and have Poincaré series (t3 + 2t4 +
t5)gPt(BT ) by Proposition 4.7. �

Corollary 4.9. Let ε ∈ Z(K) and R = Rg
K(ε). Then H0(FR)W is a free

AW -module with Poincaré series

((1 + t3 + t5 + t8)g + (1 + t2 + t4)(t3 + 2t4 + t5)g)Pt(BK).

Proof. Observe that every ε ∈ Z(K) has a square root in Z(K), so the
Wε =W action fixes one vertex and permutes the remaining three. By
Lemma 4.6 the induced W -action on ∧(t∗)⊗g ⊗ S(t∗) is the standard one.

Because W permutes the three nontrivial characters {χ1, χ2, χ3},
H0(FR)W decomposes into a sum of two AW -modules as explained in Corol-
lary 4.5. The trivial character contributes the first summand H∗

T (K
g)W =

H∗
K(K

g) with Poincaré series

(1 + t3 + t5 + t8)gPt(BK).

The remaining summand is

(
3⊕
i=1

H0(Fχi

R ))W ∼= ((H0(F1)χ3)⊗g
)Wχ3

,

where Wχ3 =< (1, 2) > is the stabilizer of χ3. The free basis of Proposition
4.7 of H0(F1)χ3 is invariant under (1, 2) so the basis of (H0(F1)χ3)⊗g is also
invariant and we deduce that

Pt(((H0(F1)χ3)⊗g)Wχ3 ) = (t3 + 2t4 + t5)gPt(AWχ3 ) =
(t3 + 2t4 + t5)g

(1− t2)(1− t4)
= (t3 + 2t4 + t5)g(1 + t2 + t4)Pt(BK).

�

Proof of Theorem 1.2. In [Bai09] the Betti numbers ofH∗
U(3)(Rg

U(3)(1)) were
computed and it was shown to be torsion-free as an H∗(BU(3))-module. It
is easily deduced that H∗

SU(3)(Rg
SU(3)(1)) is torsion-free and that

P
SU(3)
t (Rg

SU(3)(1)) = ((1 + t3 + t5 + t8)g + (1 + t2 + t4)(t3 + 2t4 + t5)g)

× oPt(BSU(3)).
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By Theorem 2.8 this means that there is an injective morphism of graded
algebras

H∗
SU(3)(Rg

SU(3)(1)) ↪→ H0(FRg
SU(3)(1)

)

which by comparing Betti numbers must be an isomorphism, so H0

(FRg
SU(3)(1)

) is free by Corollary 4.9. �

4.4. Type B2

The root system of Spin(5) has positive roots {2e1, 2e2,−e1 + e2, e1 + e2} ⊂
C
2, with corresponding coroots {e1, e2, e1 + e2, e1 − e2} under the standard

pairing. Thus T2 ∼= Φ/2Φ is generated by [e1] and [e2], so [e1 + e2] = [e1 −
e2] ∈ Φ/2Φ. The character group T̂2 has four elements defined in the basis
{[e1], [e2]} by matrices [1, 1], [−1,−1], [1,−1], [−1, 1], and the Weyl group
interchanges only [1,−1] with [−1, 1].

Proposition 4.10. For K = Spin(5) and all χ ∈ T̂2, the A-submodule
H0(F1)χ ⊂ ∧(t∗)⊗A is free. The generators of H0(F [−1,−1]

1 ) are

1⊗ e1e2, e1 ∧ e2 ⊗ (e1 + e2)(e1 − e2),
e1 ⊗ e2 + e2 ⊗ e1e1 ⊗ e2(e21 − e22) + e2 ⊗ e1(e22 − e21).

Changing basis to x = e1 + e2 and y = e1 − e2, the generators of H0(F [−1,1]
1 )

are

1⊗ xy(x+ y), x ∧ y ⊗ (x− y),
x⊗ y(x+ y) + y ⊗ x(x+ y), x⊗ y(x− y)− y ⊗ x(x− y).

Proof. Analogous to Proposition 4.7. �

Corollary 4.11. For K = Spin(5) and g ≥ 1, the ring H0(Fg) is a free
module over A with Poincaré series

Pt(H0(Fg)) = (Pt(K)g + (t3 + t4 + t6 + t7)g + 2(t4 + 2t5 + t6)g)Pt(BT ).

Furthermore, under the augmentation morphism A→ C, the extension of
scalars H0(Fg)⊗A C is a dimension 10g Poincaré duality ring over C.
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Proof. The calculation of the Poincaré series is analogous to Corollary 4.8.
Since H0(Fg) is free over A, we have

Pt(H0(Fg)⊗A C) = Pt(H0(Fg))(1− t2)2
= (1 + t3 + t7 + t10)g + (t3 + t4 + t6 + t7)g

+ 2(t4 + 2t5 + t6)g

The fundamental class for the Poincaré duality pairing is a nonzero ele-
ment of (

(∧r(t∗)⊗
∏

α0∈Δ+

α0)
)⊗g ∈ H0(FT2

1 )⊗g = H0(FT2
g )

and the pairing is just the extension of scalars of (projr)⊗g. The generators
listed in Proposition 4.10 provide the nondegenerate pairs. �

Remark 17. For any regular c ∈ Spin(5), if Rg
Spin(5)(c) is equivariantly for-

mal then its ordinary cohomology ring is isomorphic to H0(Fg)⊗A C. Since
we know that Rg

Spin(5)(c) is an orientable manifold of dimension 10g, Corol-
lary 4.11 is consistent with the conjecture that Rg

Spin(5)(c) is equivariantly
formal.

In terms of the basis e1, e2, the Weyl group for type B2 is generated by
(any two of) the reflections:

s1 :=
(−1 0
0 1

)
, s2 :=

(
1 0
0 −1

)
, s3 :=

(
0 1
1 0

)
.

Corollary 4.12. Let ε ∈ Spin(5) = K be the nontrivial central element and
let R = Rg

K(ε
i) for i = 0 or 1. The ring of Weyl invariants H0(FR)Wεi is a

free module over AW = H∗(BK) with Poincaré series

(Pt(K)g + (t3 + t4 + t6 + t7)g + t2(1 + t4)(t4 + 2t5 + t6)g)Pt(BK)

if g + i is even and

(Pt(K)g + t4(t3 + t4 + t6 + t7)g + t2(1 + t4)(t4 + 2t5 + t6)g)Pt(BK)

if g + i is odd.

Proof. The generators of H0(F1)[−1,−1] are not invariant under the standard
Wεi =W action, but instead are weight vectors, of weight −1 for s1 and s2
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and weight +1 for s3. Taking tensor powers, it follows that for even g, the
free A-generators of H0(Fg)[−1,−1] equal the free AW = H∗(BK) generators
of (H0(Fg)[−1,−1])W1 , while for odd g the generators of (H0(Fg)[−1,−1])W1 are
e1e2 times the generators of H0(Fg)[−1,−1]. On the other hand, one checks
that under the twisted action of Wε on H0(F1)[−1,−1] the generators are
invariant, so for odd g the generators of (H0(Fg)[−1,−1])Wε coincide with
those of H0(Fg)[−1,−1] while for even g we must shift by e1e2.

The remaining pair of characters are permuted by the Weyl group, so
we must consider (H0(F [1,−1]

g )⊕H0(F [−1,1]
g ))Wε ∼= H0(F [1,−1]

g )W[1,−1] , which
will be a free module over AW[1,−1] . Similar considerations now apply, but in
this case generators must be shifted by a degree two element (either e1 or
e2 depending on the parity of g + i). �

4.5. Type G2

The compact groupG2 has root system spanning the orthogonal complement
of e1 + e2 + e3 in C

3, with simple roots α = e1 − e2 and β = −2e1 + e2 + e3
and remaining positive roots α+ β, 2α+ β, 3α+ β and 3α+ 2β. The Weyl
group is isomorphic to the dihedral group D6 and acts transitively on the
nontrivial characters of T2 ∼= Φ/2Φ, with stabilizer isomorphic to Z2 ⊕ Z2.
If we let χ denote the nontrivial character sending [hα] and [h3α+2β ] to 1
then Wχ is generated by matrices

s1 :=
(
0 1
1 0

)
, s2 :=

(−1 0
0 −1

)

in the basis x = α+ β and y = 2α+ β.

Proposition 4.13. For K = G2, the module H0(F1)χ is a free A-module
generated by

1⊗ xy(2x− y)(2y − x), (x⊗ y − y ⊗ x)(x2 − y2),
x ∧ y ⊗ (x2 − y2), (x⊗ y + y ⊗ x)(2x− y)(2y − x).

Proof. Analogous to Proposition 4.7. �

Corollary 4.14. For K = G2, the graded ring H0(Fg) is a free A-module
with Poincaré series (Pt(K)g + 3(t6 + 2t7 + t8)g)Pt(BT ). Moreover the
extension of scalars by the augmentation map H0(Fg)⊗A C is a Poincaré
duality ring of dimension 14g.
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Proof. Analogous to Corollary 4.11. �

The simply connected group G2 has trivial centre.

Corollary 4.15. For K = G2, the ring H0(FRg
K(1)

)W ∼= (H0(Fg))W is a
free AW -module with Poincaré series

(Pt(K)g +
1

2
(1 + t4 + t8)(t6 + t7)g((t4 + t2)(t + 1)g + (t2 − 1)(t − 1)g))Pt(BK).

Proof. We have Pt(H0(Fg)W ) = Pt(Kg)Pt(BK) + Pt((H0(F1)χ)⊗g)Wχ).
The formula follows by computation from Proposition 4.13. �

4.6. Type A3

Let {e1, e2, e3, e4} denote the standard basis in C
4 with the standard pair-

ing. Identify t = (e1 + e2 + e3 + e4)⊥ ⊂ C
3. We choose positive roots Δ+ =

{αi,j = ei − ej |i < j} and use the pairing to identify αi,j = hαi,j
. The Weyl

group W = S4 acts on the group of characters of T2 = Φ/2Φ with two non-
trivial orbits, distinguished by where they send −1.

Proposition 4.16. Let χ : Φ/2Φ→ Z/2 be the nontrivial character send-
ing [hα1,2 ], [hα1,3 ], [hα2,3 ] to 1 ( χ lies in orbit of size 4). Then H0(F1)χ is a
free A-module. Choosing coordinates xi = αi,4, i = 1, 2, 3, we have free basis

1⊗ x1x2x3,(x1 ∧ x2 ∧ x3)⊗ (x1 − x2)(x2 − x3)(x3 − x1),∑
c.p

x1 ⊗ x2x3,
∑
c.p.

(x1 ∧ x2)⊗ (x1 − x2)x1x2x3,
∑
c.p.

x1 ⊗ x1x2x3,
∑
c.p.

(x1 ∧ x2)⊗ (x1 − x2)x2x3,
∑
c.p.

x1 ⊗ (x2x3)2,
∑
c.p.

(x1 ∧ x2)⊗ (x1 − x2)x3.

where the sums are over cyclic permutations by the 3-cycle (1, 2, 3).

Proof. Analogous to Proposition 4.7. �

On the other hand, the remaining Weyl orbit of characters gives rise to
nonfree modules:
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Proposition 4.17. Let χ : Φ/2Φ→ Z/2 be the nontrivial character satis-
fying χ(hα1,2) = χ(hα3,4) = 1. Then H0(F1)χ is not free over A. The Hilbert
series of H0(F1)χ is

Pt(H0(F1)χ) ∼= (2t7 + 4t8 + 2t9 + t10 + t11 − t12 − t13)
(1− t2)3 .

Proof. The calculation was done using MAGMA [BCP97] (explained in
Appendix A). Because the numerator of the Hilbert series is has negative
coefficients, the module cannot be free. �

This example disproves the general conjecture that Rg
K(c) is equivari-

antly formal for all c and K, because it fails when K = SU(4) and c is
regular.

4.7. Data tables

The following tables list the Hilbert series of H0(F1) and whether or not
it is a free A-module, for several simply connected compact Lie groups K.
All results not already described in Section 4 were obtained using MAGMA
[BCP97].

The terms correspond to into Weyl orbits of T2-isotypical components
of H0(F1). Every term containing no negative coefficients corresponds to a
free A-module summand.

Lie type Free? Hilbert series of H0(FR1
K(c)

) times (1− t)rk(K) for
regular c.

A2 Yes Pt(A2) + 3(t3 + 2t4 + t5)
B2 Yes Pt(B2) + 2(t4 + 2t5 + t6) + (t3 + t4 + t6 + t7)
G2 Yes Pt(G2) + 3(t6 + 2t7 + t8)
A3 No Pt(A3) + 4(1 + t)2(t8 + t5) + 3(1 + t)(−t12 + t10 +

2t8 + 2t7)
B3 No Pt(B3) + 3t7(t+ 1)(1 + 2t3 + t6) + 4t9(t+ 1)2(t3 +

1)(−t3 + t2 + 1)
C3 No Pt(C3) + 3t8(t+ 1)2(t3 + 1) + 3t9(t+ 1)(−t9 + 2t5 +

t2 + t+ 1) + t5(t+ 1)(t3 + 1)(t7 + 1)
A4 No Pt(A4) + 5t7(t+ 1)2(t3 + 1)(t5 + 1) + 10t11(t+

1)2(t3 + 1)(−t4 + t+ 2)
B4 No Pt(B4) + 4t11(t+ 1)(t3 + 1)2(t7 + 1) + 3t15(t+

1)(t3 + 1)(−t11 + t7 + 2t3 + t2 + 1) + 8t16(t+
1)2(t3 + 1)(−t8 + t5 + t2 + 1)
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C4 No Pt(C4) + 4t12(t+ 1)2(t3 + 1)(t7 + 1) + t7(t+ 1)(t3 + 1)(t7 +
1)(t11 + 1) + 6t16(t+ 1)2(−t13 + 3t5 + t2 + 1) + 4t15(t+
1)2(t3 + 1)2(−t9 + t8 − t7 + 2t6 − t5 + t4 − 2t3 + t2 + 1)

D4 No Pt(D4) + 12t11(t+ 1)2(t3 + 1)(−t8 + t7 + t2 + 1) + 3t12(t+
1)2(−3t9 + 6t5 + t2 − t+ 1)

F4 No Pt(F4) + 3t15(t+ 1)(t3 + 1)(t7 + 1)(t11 + 1) + 11t24(t+
1)2(t3 + 1)(−t14 + t11 − t8 + t6 + t5 − t3 + t2 + 1)

In the following table we collect Hilbert series for H0(FR1
K(1)

)W divided by
Pt(BK), where 1 ∈ K is the identity.

Lie type Free? Hilbert series for H0(FR1
K(1)

)W divided by Pt(BK)

A2 Yes Pt(A2)+ (t4+ t2+1)(t5+2t4+ t3)
B2 Yes Pt(B2)+ t4(t7+ t6+ t4+ t3)+ t2(t4+1)(t6+2t5+ t4)
G2 Yes Pt(G2)+ 1

2 t
6(t+1)(t8+ t4+1)(t5+ t4+2t3 − t+1)

Appendix A. MAGMA Calculation

To compute the Hilbert series of H0(F1) and to check whether it is free over
A, we use a Magma program. The program uses Magma functions for Cox-
eter groups and root systems. The program begins by defining an A-module
M isomorphic to ∧(t∗)⊗A. Then it constructs the submodules im(i∗χ,α)
using the generators described in Proposition 4.1. Finally, it intersects these
submodules to get im(i∗χ) = H0(F1)χ and applies the functions IsFree and
HilbertSeries, to test freeness and obtain the Hilbert series.
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